
NeuralSteiner: Learning Steiner Tree for
Overflow-avoiding Global Routing in Chip Design

Ruizhi Liu1,2,4 Zhisheng Zeng1,2,5 Shizhe Ding1,2 Jingyan Sui1,2

Xingquan Li5,6 Dongbo Bu1,2,3∗

1SKLP, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100190, China

{liuruizhi19s, dingshizhe19s, suijingyan18b, dbu}@ict.ac.cn
2University of Chinese Academy of Sciences, Beijing 101408, China

3Central China Artificial Intelligence Research Institute,
Henan Academy of Sciences, Zhengzhou 450046, Henan, China
4Beijing Institute of Open Source Chip, Beijing 100089, China
5Peng Cheng Laboratory, Shenzhen 518000, Guangdong, China

{zengzhsh, lixq01}@pcl.ac.cn
6School of Mathematics and Statistics,

Minnan Normal University, Zhangzhou 363000, Fujian, China

Abstract

Global routing plays a critical role in modern chip design. The routing paths gener-
ated by global routers often form a rectilinear Steiner tree (RST). Recent advances
from the machine learning community have shown the power of learning-based
route generation; however, the yielded routing paths by the existing approaches
often suffer from considerable overflow, thus greatly hindering their application in
practice. We propose NeuralSteiner, an accurate approach to overflow-avoiding
global routing in chip design. The key idea of NeuralSteiner approach is to learn
Steiner trees: we first predict the locations of highly likely Steiner points by adopt-
ing a neural network considering full-net spatial and overflow information, then
select appropriate points by running a graph-based post-processing algorithm, and
finally connect these points with the input pins to yield overflow-avoiding RSTs.
NeuralSteiner offers two advantages over previous learning-based models. First,
by using the learning scheme, NeuralSteiner ensures the connectivity of gener-
ated routes while significantly reducing congestion. Second, NeuralSteiner can
effectively scale to large nets and transfer to unseen chip designs without any
modifications or fine-tuning. Extensive experiments over public large-scale bench-
marks reveal that, compared with the state-of-the-art deep generative methods,
NeuralSteiner achieves up to a 99.8% reduction in overflow while speeding up the
generation and maintaining a slight wirelength loss within only 1.8%.

1 Introduction

In the modern design flow of Very Large Scale Integration (VLSI), global routing has become one
of the most complex and time-consuming steps. Given the complexity of VLSI netlist [17] that
contains millions or even billions of nets requiring routing, global routers must interconnect pins of
nets, minimize the total wirelength of the routes while avoiding overflow (or congestion) in a strictly
limited area of chip[2, 24]. Overflow occurs when the number of routes in a particular area of the

*Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1:An illustrative example to show over�ow-avoiding global routing in chip design. (a)
Chip layout of a real-world net extracted from ISPD07_adaptec1. (b) Two-dimensional grid graph.
(c) The Hanan grid of a 4-pin net. (d) The resource map and pin map (actually divided into two
channels) obtained from (a) for this 4-pin net. (e) The predicted hub points (black circles) and stripe
mask applied by Hubrouter [8]. (f) The routing result generated by HubRouter [8] suffers from
congestion (red edges). (g) The candidate points (green circles) predicted by NeuralSteiner and the
corresponding net augmented graph (NAG). (h) The �nal routing result generated by NeuralSteiner
that avoids over�ow.

chip exceeds the available routing resources or routes cross through impassable obstacles, which
signi�cantly impacts the subsequent design �ow and functionality realization of the chip [24, 22].
Even the two-pin routing under design constraints or obstacles turns out to be NP-complete. When
the number of pins exceeds two, the routing problem can often be transformed into the construction
problem of rectilinear Steiner minimum tree (RSMT) [10], which is also NP-complete and becomes
even more challenging when considering avoiding over�ow [22, 16, 24, 6].

Traditional global routers propose various human-designed heuristics to obtain near-optimal solutions
for RSMT [7, 27, 13, 16, 24] or directly solve the integer programming problem for concurrent
routing of multiple nets [6, 33]. Recent advances in applying learning-based methods to chip design
problems have shown feasibility and powerful abilities and even surpassing the performance of
human expert-designed algorithms, such as using deep reinforcement learning (DRL) for placement
[29, 18, 19] and using convolutional neural network (CNN) for predicting design rule violations [34].
In global routing, DRL is �rstly adopted to explore surrounding directions of current positions and
achieve successful connectivity on small-scale nets [20], while REST [23] decomposes multi-pin net
into 2-pin pairs and explores the sequence of pin pairs through DRL to form the RST. Moreover, recent
works adopt deep generative models [32, 4] to perform one-shot generation of nets. To address the
connectivity problems of generative methods, HubRouter[8] decomposes global routing generation
into hub-generation phase and pin-hub-connection phase to sequentially connect the pin-hub pairs,
thereby successfully ensuring the connectivity of the routes.

However, current learning-based routing methods suffer from high over�ow within their routing
results, primarily due to inadequate consideration of resource availability during the routing process.
Existing DRL-based approaches [20, 23, 28] tend to solely focus on wirelength as the reward during
action space exploration, while other generative methods do incorporate the current routing area's
resource status in their inputs but mainly aim for connectivity or wirelength optimization in their
post-processing phases [4, 32, 5, 8]. Consequently, our experimental �ndings indicate that routes
generated by HubRouter still exhibit signi�cant congestion, which is illustrated in Fig. 1f.

To address these challenges, we propose a congestion-aware learning scheme named NeuralSteiner,
which consists of two main phases:i ) Candidate point prediction phase: Utilizing a neural network
combined with full-image spatial and over�ow information aggregation to predict the accurate
locations of what we call candidate points for over�ow-avoiding rectilinear Steiner tree;ii ) Over�ow-

2



avoiding RST construction phase: Constructing an augmented graph of the net based on the
predicted candidate points and calculating the over�ow-avoiding RST using a simple but effective
greedy algorithm. Through this two-phase setup, NeuralSteiner successfully ensures connectivity and
enables the generation of over�ow-avoiding routing results for large-scale nets.

This paper hasthree main contributions:

• We propose NeuralSteiner, a two-phase global routing scheme, which to our knowledge, is
the �rst learning-based approach capable of optimizing both wirelength and over�ow and
effectively addressing the routing problem of large-scale nets.

• We devise a neural network architecture that integrates the deep residual network with
recurrent crisscross attention mechanism to learn the Steiner point locations from a carefully
curated expert dataset and propose a post-processing algorithm based on augmented graphs
to construct routes with substantially less over�ow than recent works.

• We conduct extensive experiments on 14 public large-scale routing benchmarks compared
with the state-of-the-art learning-based method, where the NeuralSteiner achieves up to
99.6% reduction in total over�ow with a wirelength loss within 1.8%. Moreover, Neural-
Steiner can generate over�ow-avoiding routes for nets with more than 1000 pins, previously
challenging for recent works, which narrows the gap between learning-based methods and
practical routing applications.

2 Preliminaries and Related Works

Global Routing. Given the complexity of VLSI routing problems, the circuit layout like 1a is
partitioned into rectangular areas known as global cells (GCells) [6]. The global routing problem
can be modeled as a grid graphG(V; E), where each GCell is represented as a vertex(v 2 V ), and
adjacent GCells are connected by an edge(e 2 E) that represents the boundary between GCells.
Chip designs often contain two or more metal layers for routing. Each metal layer is dedicated to
either horizontal or vertical direction and the projection of these layers onto a two-dimensional grid
graph is shown in Fig.1b. Global router will assign a set of GCells interconnected by numerous
edges to each net as its routing result to connect all pins, which often forms a Rectilinear Steiner Tree
(RST) [7]. The concepts of Hanan grid [11] and escape graph [9] are often used for the generation
of the shortest RSMT avoiding obstacles [22], considering the intersection points in these graphs
as candidate locations for Steiner points. However, due to the complex and irregular distribution of
congestion, the construction of escape graph becomes complicated, while the Hanan grid is ineffective
at circumventing congestion, which is shown in Fig.1c.

Over�ow. Give edgee(u; v) 2 E is the boundary between GCellu and GCellv, the capacityc(u; v)
is the routing resource of edgee that can be provided to global router and demandd(u; v) is the
number of routes passing through edgee. The resourcer (u; v) of edgee is the part of the capacity
that can still be utilized to route, which is de�ned in Equation (1):

r (u; v) = c(u; v) � d(u; v) (1)

Over�ow occurs whenr (u; v) < 0. The routing results containing over�ow generated by the global
router will not be accepted by subsequent routing process and will trigger a time-consuming rip-up
and reroute iteration in order to eliminate over�ow [2]. Therefore, the global router should not only
attempt to �nd the shortest connection for each net but also minimize the number of over�ow.

Traditional Global Router. Traditional routing algorithms typically divide global routing into two
main stages to address congestion: Steiner topology generation and rip-up and reroute (RRR). The
former utilizes the FLUTE algorithm [7], based on lookup tables, to generate Steiner trees with nearly
minimal wirelength for each net. However, FLUTE is unaware of congestion. During this phase, most
routers only use edge shifting to partially mitigate congestion by moving some edges out of congested
areas [7], while CUGR-2 [25] applies the construction of augmented graphs to build candidate paths
for nets' RSTs, adjusting the position of certain Steiner points to circumvent potential congestion. In
order to resolve congestion in the RSTs, traditional routers will invoke RRR, iteratively removing all
initially routed nets in congested areas and employing maze routing that optimizes wirelength and
congestion simultaneously. This process becomes dramatically time-consuming as the chip design's
scale and complexity rise. Hence, accelerating congestion resolution through deep learning-based
methods can enhance the overall performance of global routing algorithm.

3



Figure 2:Overview of NeuralSteiner. (a) The parallel routing tasks accelerate routing by grouping
the non-overlapping nets into one batch. (b) During the �rst phase, NeuralSteiner predicts the
candidate point locations for the RST with full-image aggregation of spatial and over�ow information.
(c) During the second phase, NeuralSteiner constructs the net augmented graphs based on the
predicted candidate points and generates over�ow-avoiding RSTs.

Learning-based RST construction.Various works explore the feasibility and advantages in wire-
length and ef�ciency of applying deep neural networks to global routing, including generation of the
pin-connection order [23], segments [4, 32] or custom hub points of RST [8]. However, most of the
challenges in actual global routing come from the complexity of large-scale nets and how to avoiding
over�ow when routing resources are limited. Under the circumstances, detours are indispensable
to get rid of congestions, while the shortest RST like Fig. 1f generated by HubRouter [8] is not
practically usable. The chip layout can be viewed as an image, where each pixel represents a tile in
global routing, and images of different channels represent the locations of the pins and capacity of
the grid edges. The output points can also be represented as a binary image. But unlike the four kinds
of hub points de�ned in Hubrouter, we simplify the learning target in RST construction and select
Steiner points and corner points in RST as candidate points to learn. Formally, we have

De�nition 1. Candidate pointGiven anm � n binary image representing the RST, where each
pixel pxy (1 � x � m; 1 � y � n) represents whether the position is occupied by a route and
p0y = p(m +1) y = px 0 = px (n +1) = 0 . The pixelpxy is a candidate point if and only if it satis�es:

�
pxy = 1 ; (dxy > 2)
pxy = 1 ; andp(x � 1)y + p(x +1) y = 1 ; andpx (y � 1) + px (y+1) = 1 ; (dxy = 2) (2)

wheredxy = p(x � 1)y + p(x +1) y + px (y � 1) + px (y+1) denotes the degree of this point in the RST.

Using De�nition. 1, the Steiner points and corner points can be recognized as candidate points in the
pixel image of RST. The differences between hub point in [8] and candidate point are visualized in
Fig. S1.

3 Method

3.1 Overall Pipeline

NeuralSteiner decomposes the global routing process into two main phases to optimizes wirelength
and over�ow of the routing result simultaneously. Before introducing the main methods, we �rst
propose our parallel task construction in Sec. 3.2. We then introduce the candidate point prediction
method with aggregation of full-scale spatial and over�ow information in Sec. 3.3. An augmented
graph-based over�ow-avoiding RST construction method will be proposed in Sec. 3.4. The overall
pipeline of NeuralSteiner is illustrated in Fig.2.

4



3.2 Parallel Routing Tasks Construction.

Routing of two nets cannot be parallelized if the bounding boxes of their pins have overlap, which is
de�ned as con�ict between two nets. Inspired by [26], we scan and group the non-con�icting nets
into a sett, which is called a routing task, which divides the numerous nets in the design into a set
of mutually con�icting routing tasks. Nets within a taskt can be batched together and fed into the
neural network for prediction and post-processing, signi�cantly enhancing the parallelism of routing.
Please refer to App. B.3 for the detail of our routing tasks construction algorithm.

3.3 Candidate Point Prediction

Candidate points prediction can be formulated as an image segmentation task [31], which involves
training a neural network model to perform pixel-level classi�cation to recognize the locations of
candidate points found in the expert RSTs data. We will �rst introduce the expert routes dataset
optimized for both wirelength and over�ow, then the network architecture incorporating the recurrent
crisscross attention module to tackle the complex large-scale nets, as well as the design of our training
protocol.

Expert Routing Dataset Construction.We utilize a state-of-the-art traditional global router named
CUGR [24] to perform routing on public benchmarks [30] also used by [8] and extract the over�ow
map and pin map of every net in real-time. We adopt the logistic function in CUGR to calculate the
over�ow value using resourcer (u; v):

lg(u; v) = (1 :0 + exp(slope� r (u; v))) � 1: (3)
whereslope(which is set to 1 here) is an adjustable parameter that determines the global router's
sensitivity to over�ow and the over�ow value will increase rapidly as the resources are being used
up. After that, we directly employ CUGR's maze routing algorithm to execute the rip-up and reroute
process to obtain the congestion-avoiding routing results. We mark the Steiner points and corner
points in the RSTs constructed by CUGR as candidate points and generate the label candidate
point map for every net. Rather than clipping all images to the same scale 64× 64, which is set in
HubRouter [8], we maintain three maps of every net at the original scale of its bounding box. This
preserves the precise spatial and over�ow information and does not exclude any large-scale nets.

Network Architecture. In order to tackle the problem of large variation in net scale, we employ a
ResNet structure as the backbone of our model and combined it with the recurrent crisscross attention
mechanism [14] to encoding full-net over�ow and long-range associations in the input features.
Convolutional neural networks (CNN) have been proven to be ef�ciently applied in chip design
like predicting chip congestion distribution [35], DRV distribution [34], and thermal distribution [3].
However, due to the �xed geometric structures, CNN is inherently limited to local receptive �elds
that face dif�culties in capturing long-range correlations. Thus, we introduce the recurrent crisscross
attention mechanism (RCCA) to aggregate features from all pixels on the feature map. We insert
one RCCA module with two e crisscross attention blocks in ResNet. Fig.2 illustrates the network
architecture of NeuralSteiner. We also remove the down-sampling operations to retain more spatial
details of feature maps because the construction of RST requires accurate spatial location information
when connecting pins that are far apart in large-scale nets. Through the computation of RCCA, the
network can aggregate information of pins and congestion over the whole scale of feature maps,
thereby enhancing the quality of candidate points prediction for large RSTs. This will be further
demonstrated in ablation study in Sec. 4.4. The implementation details of our network and RCCA
calculation are shown in App. B.1.

Model Training. We adopt focal loss [21] ` focal to mitigate the imbalance between positive and
negative class samples in training data where the candidate points in RST only occupy a minority of
pixels in the entire routing area. Letpt be the predicted probability for the ground truth classt, ` focal
is de�ned as:

` focal = � � t (1 � pt ) 
 log(pt ) (4)
where� t is the weighting factor while
 is the focusing parameter that reduces the loss for well-
classi�ed examples. We also adopt the dice loss`dice to measure the similarities between the predicted
candidate points and the ground truth. Usingpxy to represent the probability of pixel at position
(x; y) predicted as a candidate point andgxy to represent the label,`dice can be expressed as:

`dice = 1 �
2

P
x;y pxy gxy + �

P
x;y pxy +

P
x;y gxy + �

(5)

5



where� is a small constant added to avoid division by zero. Additionally, since the global routing
problem is NP-complete, even expert router may not generate the optimal routing solution for the
net that achieves the shortest wirelength with the minimal over�ow. Therefore, we further add an
over�ow loss`of to measure the congestion status of predicted points. Letoxy be the value at position
(x; y) of the over�ow map,̀ of can be calculated by:

`of =

P
x;y pxy oxy + �

P
x;y pxy + �

(6)

The inclusion of over�ow loss helps the model identify potential candidate points that are not in
the label set but have a lower intrinsic congestion, bene�ting the post-processing algorithm for
over�ow-avoiding RST construction. Then the trainable model� is determined at the training stage
by minimizing the loss function as follows:

L (� ) = cf l � ` focal + cdi � `dice + cof � `of (7)

wherecf l ; cdi ; cof represent weight of corresponding loss item. The parameters used in training
process are provided in App. B.2.

3.4 Over�ow-avoiding RST Construction

To construct an over�ow-avoiding Rectilinear Steiner Tree (RST) based on the candidate points
predicted by the neural network, we will �rst introduce the construction of net augmented graph
that contains potential over�ow-free edges and then propose a simple and effective greedy RST
construction algorithm. Unlike previous works that focus solely on minimizing wirelength, the
inclusion of the irregular distribution of congestion makes solving for an RST more challenging.

Net Augmented Graph. We introduce the concept of the net augmented graph (NAG) based on
neural network-predicted points to avoid congestion. We �rst merge the predicted candidate point
map and pin map, then sequentially examine each pointpxy � 1 from the merge map according to the
following two conditions: 1) if this point shares the same horizontal (X) or vertical (Y) coordinates
with another pointq, and 2) if there is no other points on the line connectingp andq. Then an edge
e(p; q) will be established if the above two conditions are met and the weight ofe(p; q) is set as

W(e) = wd(jxp � xqj + jyp � yqj) + wo

X

x;y

oxy (8)

wheremin (xp; xq) � x � max(xp; xq); min (yp; yq) � y � max(yp; yq). W(e) balances the
wirelength and congestion of the edge by using weightswd = 1 :0 andwo = 5 :0. After examining
all the points, to ensure the connectivity of the net, we will check the connectivity of the current
NAG and add candidate point and edge between different connected components if this NAG is
disconnected. App. B.4 provides a detailed introduction to the construction algorithm.

Note that in HubRouter [8], stripe mask is introduced as a �lter that removes noise hub points to limit
the solution space similar to the Hanan grid, which ensure that the wirelength as short as possible.
However, as dipicted in Fig.1e, the addition of stripe mask in HubRouter limits its ability to generate
RST avoiding congested areas. On the contrary, we here retain all candidate points predicted by the
model and constructed the NAG based on them, which reduces the complexity of solving RST while
preserving the solution space to avoid over�ow.

Over�ow-avoiding RST Construction. We convert the calculation of the over�ow-avoiding RST
into a greedy construction of minimal spanning tree that connects all pins. Initially, we consider all
pins as separate connected components containing only one node. In each iteration, based on the
NAG, we greedily select and connect the path between the two nearest connected components, then
update the shortest distance (the sum of the weights of all edges on the path) of the newly formed
connected component to all other connected components. This operation repeats until all pins are
included in one connected component. Since this method may generate additional detours, we use a
simple algorithm to detect potential feasible path reuse to shorten the wirelength. Furthermore, to
accelerate the construction of RST, we parallelize the computation of the shortest distances between
pins or connected components on the NAG. For the detailed algorithm and analysis of time complexity
and scalability, please refer to App. B.5.

6



4 Results and Discussion

4.1 Datasets and Experiment Setting

For training, we construct the training set from ISPD07[30] using the method described in Sec. 3.3.
Since our network's input size is variable, we limit the nets' Half-perimeter wirelength (HPWL) in the
training set toHPWL � 128, instead of �xing both width and height to 64. For test, in Sec. 4.2 we
use the same settings from HubRouter [8] to divide samples outside the training set into four groups
of small-scale nets to compare the connectivity and wirelength of NeuralSteiner and HubRouter.
For more extensive experiments, in Sec. 4.3 we select six public chip designs (ibm01-06) from
ISPD98 [1] and eight two-layer large-scale chip designs (adaptec(01-05)_2d, newblue(01-03)_2d)
from ISPD07 (with no overlap with the training set) to perform global routing on all nets in these
designs, comparing total over�ow, wirelength and generation time. The ablation and generalization
studies for NeuralSteiner are also conducted on chip designs from ISPD07. We repeat 3 times under
different seeds for HubRouter on the small nets test set and ISPD98, and then choose the seed with
best over�ow for HubRouter (GAN) to conduct the ISPD07 experiment. More details about the
experimental benchmark information and hyperparameter settings can be found in App. B.2.

4.2 Connectivity and Wirelength on Small Nets

We compare NeuralSteiner with three different architectures of HubRouter on the same test set from
part of ISPD07 benchmarks, which is divided into `Route-small-4', `Route-small', `Route-large-4'
and 'Route-large'. The number `4' in their names represents no more than or more than 4 pins,
while `small' and `large' represent whether the Half-perimeter wirelength (HPWL) of the net is less
or more than 16. The size of all nets' input map is �xed at64 � 64. We do not include PRNet
[4] as it shows very poor connectivity on `large' net in previous work [8]. As shown in Table S2,
NeuralSteiner ensures connectivity on this small-scale net test set, while achieving a wirelength rate
(WLR) comparable to HubRouter. Due to the presence of recurrent crisscross attention calculation,
our method is slightly behind in generation time.

4.3 Global Routing on Large-scale Benchmarks

To conduct extensive experiments, we �rst compare the proposed NeuralSteiner with three versions
of HubRouter [8] and traditional global routers Boxrouter [6], GeoSteiner [15] and FLUTE + Edge
Shifting [7] on ibm01-06 benchmarks from ISPD98. We then conduct fully routing of 8 chip designs
from ISPD07 using GeoSteiner, FLUTE + Edge Shifting, HubRouter and our method. Note that
in our experiments, we do not use the randomly generated nets from previous works [20], as they
are relatively simple and have no over�ow in the results. Moreover, it has been already studied in
HubRouter that the DQN method takes excessively long time to run on even very small cases and
PRNet [4] also lags behind HubRouter in terms of wirelength, time and over�ow, so they are not
included in the comparison.

Table 1:Wirelength (WL) and running time on ISPD-98 (ibm01-06). NeuralSteiner is compared
with 2 traditional baselines and HubRouter with 3 generative structures (HR-VAE,HR-DPM, HR-
GAN). Optimal results of WL and time are in bold.

Metric Model ibm01 ibm02 ibm03 ibm04 ibm05 ibm06

WL

GeoSteiner 60142 165863 145678 162734 409709 275868
Boxrouter 62659 171110 146634 167275 410614 277913

FLUTE+ES 61492 169251 146287 167547 411936 280477
HR-VAE 64812� 1252 176838� 6419 161032� 3231 179018� 4791 440302� 4577 301035� 5836
HR-DPM 66575� 1394 190142� 2511 168550� 2103 183051� 1946 474463� 6674 320423� 2958
HR-GAN 60971� 290 167316� 578 146893� 315 164084� 299 411887� 4529 277977� 514

NeuralSteiner 61735 170405 148036 166648 415684 283727

Time (Sec)

GeoSteiner 1.00 2.21 1.68 2.19 3.69 3.38
Boxrouter 5.33 9.76 8.42 31.69 10.75 24.94

FLUTE+ES 2.90 4.71 5.87 17.16 6.83 13.64
HR-VAE 8.41� 0.03 8.47� 0.06 8.59� 0.04 10.85� 0.04 12.44� 0.18 15.83� 0.11
HR-DPM 1701.57� 34.19 2589.93� 19.63 2669.28� 22.77 3593.04� 24.10 3995.47� 19.57 4305.82� 132.85
HR-GAN 37.40� 0.37 41.55� 0.51 50.84� 2.84 59.94� 2.75 69.42� 4.03 81.96� 3.98

NeuralSteiner 27.18 34.79 46.24 50.37 75.99 70.32

7



Figure 3:Over�ow on ISPD98 (ibm01-06). Over�ow of Geosteiner, HubRouter (VAE, DPM, GAN)
and NeuralSteiner on ISPD-98 (ibm01-06) cases. Note that NeuralSteiner causes only 18 over�ows
on ibm05, which is annotated in the �gure.

Table 2:Evaluating NeuralSteiner and comparing it with state-of-the-art approaches on ISPD-
07 (adaptec(01-05)_2d, newblue(01-03)_2d).Over�ow (OF), wirelength (WL) and running time
are compared among traditional router GeoSteiner, FLUTE + Edge Shift and HubRouter with
GAN structures (HR-GAN), which achieves the best over�ow and wirelength among three kinds of
HubRouters on ISPD98. Optimal results of over�ow, wirelength and time are in bold.

Metric Method adaptec01_2d adaptec02_2d adaptec03_2d adaptec04_2d adaptec05_2d newblue01_2d newblue02_2d newblue03_2d

OF

GeoSteiner 35945 53848 142254 45050 102300 1734 1832 584761
FLUTE+ES 32518 50947 137104 42306 957704 1348 1713 558047
HR-GAN 35441 53652 142131 45230 102108 1516 1857 583901

NeuralSteiner 82 255 728 97 431 5 35 10343

WL

GeoSteiner 3389601 3209172 9330748 8865643 9784471 2320456 4595235 7371273
FLUTE+ES 3418461 3235803 9417934 8896007 9886249 2347941 4651033 7454720
HR-GAN 3407033 3229110 9355980 8888775 9832110 2339204 4623006 7391055

NeuralSteiner 3438717 3247429 9459117 9003952 9915795 2365499 4668079 7480679

Time (Sec)

GeoSteiner 83.17 111.92 320.08 267.13 261.43 124.68 183.82 315.48
FLUTE+ES 118.48 187.03 396.51 376.72 360.68 169.36 223.55 438.79
HR-GAN 593.02 780.44 1324.81 1387.01 1384.96 849.34 1221.16 1526.86

NeuralSteiner 347.20 461.35 1351.91 1138.66 1106.54 390.34 446.68 1225.79

Routing Results on ISPD98.Table 1 shows the total wirelength and generation time for all methods
on ISPD98 benchmark. Since the total over�ow of the traditional router Boxrouter is0, we depict
the routing over�ow of the other methods in Fig. 3. NeuralSteiner signi�cantly reduces the total
over�ow compared to the state-of-the-art learning-based method HubRouter (GAN), with an average
reduction of 61.1% and up to 95% on ibm05. In terms of wirelength, NeuralSteiner does not incur
much additional loss, maintaining it within 1.8%. Furthermore, due to the construction of the net
parallel routing tasks, NeuralSteiner achieves shorter generation time compared with HubRouter
(GAN). The comparison of the actual solutions between NeuralSteiner and Hubrouter is given in Fig.
S2.

Routing Results on ISPD07.Based on the experimental results on ISPD98, we select four methods
GeoSteiner, HubRouter (HR-GAN), and NeuralSteiner for comparison on the larger-scale ISPD07
chip designs. The summary of ISPD07 benchmarks we use is detailed introduced in Table S1, as well
as the number of predicted candidate points for ISPD07. According to Table S1, the average number
of candidate points added by NeuralSteiner is not signi�cantly more than the average number of pins,
which means that for the vast majority of nets, the number of nodes in the NAG will remain at a
small scale and keep friendly to the calculation of the over�ow-avoiding RST algorithm introduced
in Sec. 3.4. The total over�ow (OF), wirelength (WL) and generation time are shown in Table 2.
According to Table 2, as the sizes of chip designs and nets further increase, NeuralSteiner achieves
more dramatic reduction in total over�ow, with an average reduction of 97.8% across all eight designs,
and up to a 99.8% reduction on design adaptec04_2d, while the increase in wirelength still remains
within 1.8% compared to HubRouter.

8




	Introduction
	Preliminaries and Related Works
	Method
	Overall Pipeline
	Parallel Routing Tasks Construction.
	Candidate Point Prediction
	Overflow-avoiding RST Construction

	Results and Discussion
	Datasets and Experiment Setting
	Connectivity and Wirelength on Small Nets
	Global Routing on Large-scale Benchmarks
	Generalization and Ablation Study

	Conclusion
	Acknowledgements
	Related Information
	Implementation details
	NeuralSteiner Network Architecture.
	Training details for candidate point prediction phase.
	Parallel Routing Tasks Construction.
	Net Augmented Graph Construction.
	Overflow-avoiding RST Construction.

	Additional Results

