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Abstract

LiDAR point cloud semantic segmentation enables the robots to obtain fine-grained
semantic information of the surrounding environment. Recently, many works
project the point cloud onto the 2D image and adopt the 2D Convolutional Neural
Networks (CNNs) or vision transformer for LiDAR point cloud semantic segmen-
tation. However, since more than one point can be projected onto the same 2D
position but only one point can be preserved, the previous 2D projection-based seg-
mentation methods suffer from inevitable quantized information loss, which results
in incomplete geometric structure, especially for small objects. To avoid quantized
information loss, in this paper, we propose a novel spherical frustum structure,
which preserves all points projected onto the same 2D position. Additionally,
a hash-based representation is proposed for memory-efficient spherical frustum
storage. Based on the spherical frustum structure, the Spherical Frustum sparse
Convolution (SFC) and Frustum Farthest Point Sampling (F2PS) are proposed to
convolve and sample the points stored in spherical frustums respectively. Finally,
we present the Spherical Frustum sparse Convolution Network (SFCNet) to adopt
2D CNNs for LiDAR point cloud semantic segmentation without quantized infor-
mation loss. Extensive experiments on the SemanticKITTI and nuScenes datasets
demonstrate that our SFCNet outperforms previous 2D projection-based semantic
segmentation methods based on conventional spherical projection and shows bet-
ter performance on small object segmentation by preserving complete geometric
structure. Codes will be available at https://github.com/IRMVLab/SFCNet.

1 Introduction

Nowadays, 3D LiDAR point clouds are widely used sensor data in autonomous robot systems. Many
recent works focus on resolving perception [1} 2] and localization [3| 4} 5] tasks on autonomous
robot systems using LiDAR point clouds. Among them, semantic segmentation on the LiDAR
point cloud enables the robot a fine-grained understanding of the surrounding environment. In
addition, the semantic segmentation results can be adopted for the reconstruction of the semantic
map [6} 7,189, [10] of the environments.

Inspired by the achievements of deep learning in image semantic segmentation, researchers focus on
searching for effective approaches to transfer the achievements to the field of point cloud semantic
segmentation. Most previous works convert the raw point cloud to regular grids, like 2D images [[11}
1201130114, [15L 116417, 118 (194 20, 121]] and 3D voxels [22, 123} 24, 25], to exploit Convolutional Neural
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Figure 1: Difference between our spherical frustum and conventional spherical projectionln
conventional spherical projection, the points projected onto the same 2D grid are dropped, which
leads to quantized information lossg, dropping the boundary between the person, a small object,
and the road, and results in incorrect prediction of the 2D projection-based method Rar@@ViT [

for the person. In contrast, our spherical frustum preserves all points in the frustum, which eliminates
qguantized information loss and makes SFCNet correctly segment the person.

Networks (CNNs) and transformers in the eld of point cloud semantic segmentation. The CNNs
and transformer can easily process the regular grids to effectively segment the point cloud. However,
due to the limited resolution, more than one point can be projected onto the same grid, and only one
point is preservedwhich results in quantized information loss to the regular grid-based point cloud
semantic segmentation methods. The quantized information loss poses a challenge for small object
segmentation since most points belonging to the small objects can be dropped during the projection.
A few methods|13,[17] are proposed to compensate for the quantized information loss by restoring
complete semantic predictions from partial predictions. However, quantized information loss still
exists in the feature aggregation.

To overcome quantized information loss during 2D projection, in this paper, a novel spherical frustum
structure is proposed. Fig. 1 shows the comparison between the conventional spherical prdigiction [
and spherical frustum. Through spherical frustum, all the points projected onto the same 2D grid are
preserved. Therefore, spherical frustum can avoid quantized information loss during the projection
and improve the segmentation of small objects. However, without speci ¢ designs, the spherical
frustum is an irregular structure and can not be processed by CNNs. Using dense grids to store the
spherical frustums is an intuitive method to regularize the spherical frustum. However, since the
point number of the spherical frustums is different, each point set is required to be padded to the
maximal point number of the spherical frustums before being stored in the dense grid, which results
in many redundant memory costs. To avoid redundant memory occupancy, we propose a hash-based
spherical frustum representation, which stores spherical frustums in a memory-ef cient way. In the
hash-based spherical frustum representation, the neighbor relationship of spherical frustums and
points is represented through the hash table, which enables the points to be simply stored in the
original irregular point set.

In the hash-based representation, each point is uniquely identi ed by the hash key, which consists of
the 2D coordinates of the corresponding spherical frustum and the point index in the spherical frustum
point set. Thus, the points projected onto any speci ¢ 2D grids can be ef ciently queried. Based
on the hash-based representation, we propose the Spherical Frustum sparse Convolution (SFC) to
exploit 2D CNNs on spherical frustums. SFC aggregates point features of nearby spherical frustums
to obtain the local feature of the center point.

Moreover, previous 2D projection-based segmentation methods downsample the projected point
cloud based on stride-based 2D sampling, which is unable to uniformly sample the 3D point cloud.
However, the stride-based 2D sampling uniformly samples the spherical frustums. Therefore, we
propose a novel uniform point cloud sampling method, Frustum Farthest Point Sampling (F2PS).



F2PS rstly samples spherical frustums by stride, and then uniformly samples the point set inside each
sampled spherical frustum by Farthest Point Sampling (FE®) $ince the computing complexity

of sampling points in each spherical frustum is constant-level, F2PS is an ef cient sampling algorithm
with a linear computing complexity.

In summary, our contributions are:

» We propose a novel spherical frustum structure with a memory-ef cient hash-based repre-
sentation. Spherical frustum avoids quantized information loss of spherical projection and
preserves complete geometric structure.

» We integrate spherical frustum structure into 2D sparse convolution, and propose a novel
Spherical Frustum sparse Convolution Network (SFCNet) for LIDAR point cloud semantic
segmentation.

» An ef cient and uniform 3D point cloud sampling named Frustum Farthest Point Sampling
(F2PS) is proposed based on the spherical frustum structure.

* SFCNet is evaluated on the SemanticKITT) &nd nuScene<[/] datasets. The experiment
results show that SFCNet outperforms previous 2D projection-based methods and can better
segment small objects.

2 Related Work

Point-Based Semantic Segmentation. A group of works 6, 28, 29, 30, 31, 32, 33] learn to
segment point cloud based on the raw unstructured point cloud. However, learning of raw point cloud
requires the neighborhood query with high computing complexity to learn effective features from the
local point cloud structure. Therefore, the ef ciency of these point-based methods is limited.

3D Sparse Voxel-Based Semantic SegmentationStoring large-scale LiDAR point clouds in

dense 3D voxels requires huge memory consumption. Therefore, Graham3d} pitdposes

the 3D sparse voxel structure. Instead of dense grids, the hash table is adopted to represent the
neighborhood relations of the 3D sparse grids. Based on the hash table, the convolved grids are
recorded in the rule book. According to the rule book, the 3D sparse convolution is performed.
Based on the sparse 3D voxel architecture, the methods of 3D sparse convolution and 3D attention
mechanisms [22, 23, 24, 35, 36, 25, 37] are proposed.

2D Projection-Based Semantic Segmentation.The research of image semantic segmenta®&n [
39,40, 41, 42] has gained great achievement. Thus, many watks]2, 13, 14, 15, 43, 18, 19, 20,

21, 16, 17] project the point cloud onto the 2D plane and utilize 2D neural networks to process the
projected point cloud. Spherical projection is a widely used projection method rst introduced by
SqueezeSed.]]. The subsequent work&], 12, 13, 14, 43, 20, 21] effectively segment the point
cloud with the image semantic segmentation architecture including 2D CNNs and vision transformers.

Due to the limited resolution, the 2D projection-based segmentation methods suffer from quantized
information loss. With quantized information loss, networks can only process the incomplete geomet-
ric structure and output partial semantic predictions, which results in the penalty of segmentation
performance. The previous works only focus on restoring complete semantic predictions from the
partial predictions of 2D neural networks. RangeNet4-8] proposes a post-processing strategy to
restore the complete predictions. The semantic predictions of dropped points are voted by the predic-
tions of their K-Nearest Neighbors (KNN). In addition to KNN-based post-processing, KPRRet [
directly reprojects incomplete predictions to the complete point cloud and adopts point-based network
KPConv P9 to re ne the predictions. However, few works explore the method of preserving the
complete geometric structure during projection.

In this paper, we propose the spherical frustum which avoids the quantized information loss of
spherical projection. Our spherical frustum structure can not only preserve the complete geometric
structure but also output the complete semantic predictions without any post-processing or point-based
network re nement.



3 SFCNet

In this section, the spherical frustum and the hash-based representation will be rstillustrated in
Sec. 3.1. Based on the hash-based spherical frustum representation, the spherical frustum sparse
convolution and frustum farthest point sampling for LIDAR point cloud semantic segmentation will

be introduced in Sec. 3.2 and 3.3 respectively. Finally, the architecture of the Spherical Frustum
sparse Convolution Network (SFCNet) is illustrated in Sec. 3.4.

3.1 Spherical Frustum

Conventional Spherical Projection. The LiDAR point cloudP is composed oN points. The

k-th point inP is represented by its 3D coordinates = [ Xx; Yk; z«]" and the input point features
fo2 RCn , whereCi, represents the channel dimension of the features. The conventional spherical
projection [11] rst calculates the 2D spherical coordinates of each point:

e _ 3[1 arctan(yi;xk) 1 W . 1)
Vi [1 (arcsin(zc=rk) + foown) f 1 H

where(H; W) is the height and width of the projected imagg.= P X2 + yz + zZ is the range of

the point.f = fy, + fgown is the vertical eld-of-view of the LiDAR sensor, whefe, andf gown

are the up and down vertical eld-of-views respectively. According to the computed 2D spherical
coordinates, the point featurek, gi., are projected onto the 2D dense image. If multiple points
have the same 2D coordinates, the conventional spherical projection only projects the point closest to
the origin and drops the other points, which results in the quantized information loss.

From Spherical Projection to Spherical Frustum. Since dropping the redundant points projected
onto the same 2D position results in quantized information loss, we propose the spherical frustum to
preserve all the points projected onto the same 2D position. Speci cally, we organize these points
as a point set and assign each point with the unique imdein the point set. In addition, the 3D
coordinates of each poiftXx; yk; zk)gh-, are preserved as the 3D geometric information for the
subsequent modules.

Hash-Based Spherical Frustum Representation. The irregular spherical frustums can not be
directly processed by the 2D CNNs. A natural idea to regularize the spherical frustums is putting
them in dense grids. To store the point set of each spherical frustum in the dense grids, an extra
grid dimension is required. The size of this dimension should be the maximal point ni¥nbgr

each spherical frustum point set. However, since most of the spherical frustum point numbers are
much less thaM , many grids are empty. To avoid saving these empty grids in memory, we propose
the hash-based spherical frustum representation to regularize the spherical frustum, where the hash
table replaces the dense grids to map the 2D coordinates to the corresponding spherical frustums and
points. In the hash table, the indkyf any point in the original point cloud can be queried using the

key (uk; vk; my), which is the combination of the 2D spherical coordinates and the point index in
the spherical frustum point set. Based on the hash-based representation, the spherical frustums are
regularly stored in a memory-ef cient way.

3.2 Spherical Frustum Sparse Convolution

Since multiple points are stored in a single spherical frustum, the conventional 2D convolution can not
be directly performed on the spherical frustum structure. Therefore, we propose Spherical Frustum
sparse Convolution (SFC). As shown in Fig. 2, SFC can be seen as the sparse convolution on the
virtual spherical plane of the center point. The feature of each convolved 2D position on the virtual
spherical plane is lled with the feature of the nearest point in the corresponding spherical frustum.

Selecting Convolved Spherical FrustumsSFC rst selects the convolved spherical frustums for
each center poim. The 3D coordinates and the 2D spherical coordinates of the centemppmiat

(x;y; z) and(u; v) respectively. The conventional 2D convolution convolves the features of the grids

in the convolution kernel. Similar to the conventional convolution, the spherical frustum of each
2D position in the convolution kernel is selected to perform the convolution. The coordinates of the
2D positions aré (u+ uj;Vv + vi)g}ii , WhereK is the kernel size anfl u;; V;) are the shift

inside the kernel. Then, the points inside each spherical frustum are queried through the hash table.
Meanwhile, the featurei | ng:'l of these points are obtained, whaég is the number of the points
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Figure 2: Pipeline of Spherical Frustum sparse Convolution. The spherical frustums in the
convolution kernel and the points in these spherical frustums are rst selected through the hash table.
Then, the nearest point in each spherical frustum is determined by the 3D geometric information.
Finally, the sparse convolution is performed on the selected point features.

in thei-th spherical frustum. Notablil; can be zero, which means that no points are projected onto
the corresponding 2D position, and the spherical frustum is invalid. The invalid spherical frustums
are ignored in the subsequent convolution.

Selecting the Nearest Point in Each Spherical Frustum. After identifying the points in the
spherical frustum, a feature should be selected from the features of the frustum point set for 2D
convolution. PointNet++46] emphasizes that the local feature of the center point is expected to be
aggregated from the 3D neighboring points. Inspired by PointNet++, we select the feature of the
nearest point to the center point in each spherical frustum. Speci cally, based on the 3D geometric
information, the 3D coordinatdgX; ; y; ; i )gj"":‘l of the frustum points are obtained for the nearest
point&election. Inspired by the post-processing of RangeNet3}+ye select the distance of range

r = sz + yj2 + zj2 rather than the Euclidean distance as the metric of the nearest point for ef cient

distance calculation. Therefore, the selected point index of each spherical frustegmig; jr;  rj,

wherer is the range of the center point. According to the indexes, the convolved fefatqlg#‘;,i
are obtained, wheri %is the number of valid spherical frustums.

Sparse Convolution. Finally, the sparse convolution is performed as:

fO0= Wif 2)
i=1

whereW; is the convolution weight of thieth valid 2D position, and °is the aggregated feature.

Through the proposed spherical frustum sparse convolution, we realize effective regularization and
2D convolution-based feature aggregation for all points in the unstructured point cloud.

3.3 Frustum Farthest Point Sampling

Sampling is a signi cant process of point cloud semantic segmentation. Through sampling, the
network can aggregate the features of different scales and recognize objects of different sizes.
Moreover, the sampling should uniformly sample the point cloud to avoid key information loss.
The previous 2D projection-based methods sample the projected point cloud using stride-based 2D
sampling. This sampling ignores the 3D geometric structure of the point cloud. In contrast, as shown
in Fig. 3, our Frustum Farthest Point Sampling (F2PS) only samples the spherical frustums by stride,
while the spherical frustum point set is sampled by farthest point sampling.

Sampling Spherical Frustums by Stride. Speci cally, we split the 2D spherical plane into several
non-overlapping windows of siZ®, S, where(Sy; Sy) are the strides. The spherical frustums in

each window are merged as the downsampled spherical frustum. Meanwhile, the points inside the
merged spherical frustums are queried through the hash table. Then, the queried points are merged
as the point setp gl-, in the downsampled spherical frustum, whergs the point number in the
downsampled spherical frustum.



Figure 3:Pipeline of Frustum Farthest Point Sampling.According to the downsampling strides, the
spherical frustums in each stride window are downsampled. Then, through the hash table, the points
in each downsampled spherical frustum are queried. The queried points are sampled by Farthest Point
Sampling (FPS) based on the 3D geometric information. Finally, the uniformly sampled spherical
frustums and point cloud are obtained.

Sampling Frustum Point Set by Farthest Point Sampling. The Farthest Point Sampling (FP¥]

is adopted to uniformly sample the point set in the downsampled spherical frustum. Since the point
number of each downsampled spherical frustum is much smaller than the point number of the point
cloud, performing FPS is not time-consuming. Speci cally, the 3D coordinates of each point in
fpg, are rstacquired from the 3D geometric information for 3D distance calculation. Then,
thedL=(Sy, Sy )epoints are iteratively sampled from the original point set. At each iteration, the
distance of each non-sampled point towards the sampled point set is calculated. The point that has
the maximal distance is added to the sampled set. Finally, the uniformly sampled spherical frustum
point set is obtained.

F2PS integrates the stride-based spherical frustum sampling with the FPS-based frustum point set
sampling. Thus, F2PS can sample the original point cloud uniformly. In addition, since performing
FPS on the frustum point set co€¢1) time, the computing complexity of F2PS@{N ). Thus,

F2PS is an ef cient point cloud sampling algorithm.

3.4 Network Architecture

Based on the Spherical Frustum sparse Convolution (SFC) and Frustum Farthest Point Sampling
(F2PS), the Spherical Frustum sparse Convolution Network (SFCNet) is constructed. SFCNet is
an encoder-decoder architecture. The hash-based spherical frustum representation is rst built for
convolution and sampling in the subsequent modules. Then, the point febtur2sR® g are
extracted through the encoder of SFCNet, wi@rie the channel dimension. The encoder consists

of the residual convolutional blocks from ResN&4], where the convolutions are replaced by the
proposed SFC. In addition, the point cloud is downsampled based on F2PS to extract the features
of different scales. After each downsampling operation, an SFC layer is adopted to aggregate the
neighbor features for each sampled point. Since F2PS can uniformly sample the point cloud, the
information of the original point cloud can be fully gathered in the downsampled point cloud. In the
decoder, the extracted features are upsampled, concatenated, and fed into the head layer to output the
prediction of semantic segmentation.

4 Experiments

In this section, we rst introduce the datasets adopted in the experiments and the implementation
details of the SFCNet. Then, the quantitative results of the two datasets and the qualitative results
of the SemanticKITTI dataset are presented. Finally, the ablation studies and comparison with
restoring-based methods are conducted to validate the effectiveness of the proposed modules.



Table 1: Quantative results of semantic segmentation on the SemanticKI[lt&sf set.Bold results
are the best in each block of methods.
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Point Based
PointNet++ [26] 20.153.7 19 02 09 02 09 1.0 0.0 72.0 18.7 41.8 56 62.3 16.9 46.5 13.8 30.0 6.0 8.9
RandLA [31] 55.994.2 47.4 32.2 43.9 39.1 48.4 47.4 9.490.5 61.8 74.024.5 89.7 60.4 83.8 63.6 68.6 519D.7
KPConv [29] 58.8/96.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 90.5 64.2 84.8 69.2 69.1 56.4 47.4

3D Voxel Based

Cylinder3D [23] 67.897.1 67.6 64.0 59.0 58.6 73.9 67.9 36.0 91.4 65.1 75.5 32.3 91.0 66.5 85.4 71.8 68.5 62.6 65.6
(AF)2-S3Net[22] 69.794.5 65.486.8 39.2 41.180.7 80.474.3 91.3 68.8 72.53.587.9 63.2 70.2 68.5 53.7 61.5 71.0
SphereFormer [25 74.8/97.5 70.1 70.5 59.6 67.7 79.0 80.4 75.3 91.8 69.7 78.2 41.3 93.8 72.8 86.7 75.1 72.4 66.8 72.9

2D Projection Based

RangeNet++[13] 52.091.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
PolarNet [16] 54.393.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5
SqueezeSegV3[14] 55.92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9
SalsaNext [15] 59./91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1

KPRNet [17] 63.195.5 54.1 47.9 23.6 42.6 65.9 65.0 1698.2 73.9 80.630.2 91.7 68.485.7 69.8 71.2 58.7 64.1
Lite-HDSeg [19]  63.892.3 40.0 55.4 37.7 39.6 59.2 7131 93.0 68.2 78.3 29.3 91.5 65.0 78.2 65.8 65.1 587%57
RangeViT [21] 64.095.4 55.8 43.5 29.8 42.1 63.9 58.2 38.1 93.1 70.2 &2( 92.0 69.085.3 70.671.2 60.8 64.7
CENet [20] 64.791.9 58.6 50.340.6 42.3 68.9 65.9 43.5 90.3 60.9 75.1 31.5 91.0 66.2 84.5 69.7 70.0 61.5 67.6

SFCNet (Ours)  65.0/95.1 64.2 63.2 23.5 45.6 78.3 73.1 26.4 87.9 65.6 71.9 29.1 91.1 64.5 83.7 72.6 69.6 62.6 67.2

Table 2: Quantative results of semantic segmentation on the nuS&@heal[dation set.Bold
results are the best in each block of methods.

mloU (%)
barrier
bicycle
bus

car
construction
motorcycle
pedestrian
traf c-cone
trailer
truck
driveable
other at
sidewalk
terrain
manmade
vegetation

Approach

3D Voxel Based
(AF)2-S3Net [22] 62.260.3 12.6 82.3 80.0 20.1 62.0 59.0 49.0 42.2 67.4 94.2 68.0 64.1 68.6 82.9 82.4
Cylinder3D [23] 76.176.4 40.3 91.393.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71/®6.4 75.490.5 87.4
SphereFormer [2E 78.4| 77.7 43.8 94.5 93.1 52.4 86.9 81.2 65.4 73.4 85.3 97.0 73.4 75.4 75.0 91.0 89.2

2D Projection Based

RangeNet++ [13] 65.566.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
PolarNet [16] 71.074.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 7XX 74.0 87.3 85.7
SalsaNext [15] 72.274.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
RangeViT [21] 75.275.5 40.7 88.3 90.149.3 79.3 77.266.3 65.2 80.0 96.4 71.4 73.8 73.89.9 87.2
SFCNet (Ours)  75.9/76.7 40.4 89.5 91.3 46.7 82.0 78.1 65.8 69.4 80.6 96.6 71.6 74.5 74.9 89.0 87.5

4.1 Datasets

We train and evaluate SFCNet on the SemanticKITIJ gnd nuScene<[7] datasets, which provide
point-wise semantic labels for large-scale LiDAR point clouds.

SemanticKITTI [l] dataset containé3551LiDAR point cloud scans captured by thé-line Velodyne-
HDLEG64 LiDAR. Each scan contains neaflOK points. These scans are split iff#@ sequences.
According to the of cial setting, we split sequences 00-07 and 09-10 as the training set, sequence 08
as the validation set, and sequences 11-21 as the test set. Moreover, SemanticKITTI provides the
point-wise semantic annotations I8 classes for the LIDAR semantic segmentation task.

NuScenesZ7] dataset consists &4 149LiDAR point cloud scans collected il000autonomous
driving scenes using thg2-line Velodyne HDL-32E LiDAR. Each scan contains neaf)K points.
We adopt the of cial setting to split the scans of the nuScenes dataset into the training and validation



Figure 4: Qualitive results on SemanticKITTI validation set. The rst column presents the ground
truths, while the following three columns show the error maps of the predictions from the three
methods. Speci cally, the reference from point color to the semantic class in the ground truths is
shown at the bottom. In addition, the false-segmented points are marked as red in the error maps.
Moreover, we use circles with the same color to point out the same objects in the ground truth and
the three error maps. Furthermore, the corresponding RGB images of each scene with the colored
point cloud projected are demonstrated. We also show the corresponding zoomed RGB image view
of circled objects if they are visible in the RGB images.

sets. In addition, in nuScenes datadétclass point-wise semantic annotations are provided for the
LiDAR semantic segmentation task.

On both datasets, the performance of LIDAR point cloud semantic segmentation is evaluated by mean
Intersection-over-Union (mloU) [45].

4.2 Implementation Details

SFCNet is implemented through Py Torel®] framework. For spherical frustum, the height and width

in the calculation of spherical coordinates are sdtlas 64; W = 1800 for the SemanticKITTI
dataset, antl = 32; W = 1024 for the nuScenes dataset. The channel dimensionigthe extracted

point features for SemanticKITTI and nuScenes datasets are $28aad256 respectively. The
strides(Sy; Sy) of the F2PS are all set 48; 2). The multi-layer weighted cross-entropy loss and
Lovasz-Softmax losd[7] are adopted for network optimization. Adadf] with the initial learning
rate0:001is treated as the optimizer. The learning rate is delayesbbin every epoch. Random
rotation, ipping, translation, and scaling are utilized for data augmentation on both datasets. Model
training is conducted on a single NVIDIA Quadro RTX 8000. The training batch size is det as

4.3 Quantative Results

We compare our SFCNet to the State-of-The-Art (SoTA) 2D projection-based, point-based and 3D
voxel-based segmentation methods on the SemanticKITTI and nuScenes datasets.



As shown in Tabs. 1 and 2, SFCNet outperforms the previous SoTA 2D convolution-based seg-
mentation methods CENe2(] and SalsaNextl5] on the SemanticKITTI and nuScenes datasets
respectively. In addition, SFCNet also has better performance than the vision transformer-based
segmentation method RangeViZ]] on both two datasets. SFCNet also outperforms the point-based
methods and realizes a smaller performance gap between the 2D projection-based methods and the
3D voxel-based methods. As for the per-class loU comparison, SFCNet has better loU than the other
2D projection-based methods on the small 3D objects, including the motorcycle, person (which is
pedestrian in nuScenes), bicyclist, trunk, and pole. The performance improvement on these small
objects results from the elimination of quantized information loss. Without quantized information
loss, the complete geometric structure of the small 3D objects can be preserved, which enables more
accurate segmentation. We also observe the slightly weaker performances on wide-rangesajgsses,
road, parking, and terrain, on the SemanticKITTI dataset. However, since preserving complete points
signi cantly improves the accuracies of the hard small objects, SFCNet has a higher mean loU than
the previous 2D projection-based methods.

4.4 Qualitative Results

Fig. 4 presents the qualitative comparison between our SFCNet and the 2D projection-based seg-
mentation methods CENe2(] and RangeViT 21]. The comparison shows that the predictions of
SFCNet have the minimal segmentation error among the three methods. Moreover, the circled objects
in the three rows of Fig. 4 demonstrate the accurate segmentation of SFCNet to the persons, poles,
and trunks respectively. This result further indicates our better segmentation performance of 3D small
objects by eliminating the quantized information loss.

4.5 Ablation Study

In this section, we conduct the ablation study on the SemanticKITTI dataset to validate the effec-
tiveness of the proposed modules. We adopt the baseline network using the conventional spherical
projection and stride-based sampling. The results of ablation studies are shown in Tab. 3.

Spherical Frustum Sparse Convolution Taple 3: Results of ablation studies on the Se-

(SFC). First, we replace spherical projectiomnanticKITT! validation set.
in the baseline with spherical frustum and adopt |p | Baseline | SFC F2PS | mloU (%)

spherical frustum sparse convolution for fea—

‘ X 56.2
ture aggregation. After replacement, the mioU » X X 60.5
increase:3%, which indicates that spherical 3 X X X 62.9

frustum structure can avoid the quantized infor-
mation loss, and thus prevent segmentation error from incomplete predictions.

Frustum Farthest Point Sampling (F2PS). After replacing the stride-based 2D sampling with
F2PS, the mloU increas@s%. F2PS uniformly samples the point cloud and preserves the key
information. Thus, the performance of semantic segmentation has been improved.

4.6 Comparision with Restoring-Based Methods

we compare our SEFCNet with the methods t ble 4. The performance comparison between

compensate for the quantized information loss.. restoring-based methods and SFCNet on the
Pens: g ar BemanticKITTI validation set.

by restoring complete predictions from par= Vethod [ mioU (%)

tial predictions, including the KNN-based post

Based on the same baseline network in Sec. Aﬁ
h

processing 13 and KPConv re nement17]. K based E:ﬁ;‘;}rto[cﬁs'”g (13] oot
Tab. 4 shows that SFCNet ha®2% mloU im- SFCNet (Ours) 62.9

provement to the KNN-based post-processing
and2:8% mloU improvement to KPConv re ne-
ment. Compared to the restoring-based methods, SFCNet preserves the complete geometric structure
for the feature aggregation rather than compensating for the information loss by post-processing or
re nement, which results in higher performance of semantic segmentation.



5 Conclusion

In this paper, we present the Spherical Frustum sparse Convolutional Network (SFCNet), a 2D
convolution-based LiDAR point cloud segmentation method without quantized information loss.
The quantized information loss is eliminated through the novel spherical frustum structure, which
preserves all the points projected onto the same 2D position. Moreover, the novel spherical frustum
sparse convolution and frustum farthest point sampling are proposed for effective convolution and
sampling of the points stored in the spherical frustums. Experiment results on SemanticKITTI and
nuScenes datasets show the better semantic segmentation performance of SFCNet compared to the
previous 2D projection-based semantic segmentation methods, especially on small objects. The
results show the great potential of SFCNet for safe autonomous driving perception due to the accurate
segmentation of small targets.

Limitations and future work.  To implement the 2D convolution on the spherical frustum, only

the nearest points in the neighbor spherical frustums are adopted in the spherical frustum sparse
convolution. This design may limit the receptive eld of the network and thus result in a slightly
weaker performance of the wide-range classes. To maintain the performance on both the wide-range
classes and small classes, the improvement direction is to expand the receptive eld based on our
spherical frustum structure. To realize this, future work can lie in combining the vision network
architecture with a larger receptive eld, like the vision transfornd pr vision mamba%$Q], with

our spherical frustum structure. In addition, our work mainly focuses on the supervised and unimodal
point cloud semantic segmentation. Future work can also lie in adopting the spherical frustum
structure on the weakly-supervisesil] and multi-modal $2] point cloud semantic segmentation.
Moreover, applying the spherical frustum structure to more tasks on the LIDAR point cloud, like
point cloud registration [53, 54] and scene ow estimation [55], is also a direction for future work.
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Appendix

In the appendix, we rst introduce the detailed architecture of the Spherical Frustum sparse Con-
volution Network (SFCNet) in Sec. A. Then, the additional implementation details of SFCNet are
presented in Sec. B. Next, the additional experimental results are illustrated in Sec. C. Finally, more
visualization of the semantic segmentation results on the SemanticKIJ&hfl nuScene<[/]
datasets are presented in Sec. D.

Figure 5: The Detailed Architecture of SFCNet. (a) presents the detailed pipeline of SFCNet. In
addition, (b), (c), and (d) show the detailed module structures of the SFC layer, SFC block, and
downsampling SFC block respectively, where SFC means spherical frustum sparse convolution, and
F2PS means the frustum farthest point sampling.

A Detailed Architecture

Fig. 5 shows the detailed architecture of SFCNet. In SFCNet, the spherical frustum structure of the
input point cloud is rst constructed. Then, the encoder, which consists of the context block and
extraction layers 1 to 4, is adopted for the point feature extraction. Next, in the decoder, the point
features extracted in extraction layers 2 to 4 are upsampled by the upsampling Spherical Frustum
sparse Convolution (SFC). The upsampled features are concatenated with the features extracted in
the context block and the extraction layer 1. The concatenated features are fed into the head layer to
decode the point features into the semantic predictions.

In addition, Fig. 5 also shows the three basic modules in SFCNet, including the SFC layer, SFC block,
and downsampling SFC block. Moreover, we present the detailed hyperparameters of SFCNet in
Tab. 5.

Basic Modules of SFCNet. Speci cally, the SFC layer is composed of the SFC, batch normalization,
and the activation function. Inspired by [20], we use Hardswish [56] as the activation function. The
formula of Hardswish is: 8

<0 if X 3
Hardswish (x) =  x ifx 3 : 3)
" X (x+3)=6 otherwise
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Table 5: The Detailed Hyperparameters of the Components and Modules in SFCNet. Component
shows the names of components in SFCNet. Module Type shows the types of basic modules used
in the components. Kernel Size shows the convolution kernel size of Spherical Frustum sparse
Convolutions (SFCs) used in the modules. In the column of Stfidé&] strides mean the SFC
treats all the points as the center points, wiilg?] strides show the strides used in Frustum
Farthest Point Sampling (F2PS). The column of Upsampling Rate shows the upsampling rate used
in the upsampling SFCs. Number of Modules shows the number of composed modules used in
corresponding components. Width shows the output channel dimensions of the modules. In addition,
in the column of WidthC means the channel dimensions of the extracted point features, wHhi2B is

for the SemanticKITTI dataset arab6for the nuScenes datasatmeans the number of semantic
classes, which i$9for the SemanticKITTI dataset arid for the nuScenes dataset.

Component Module Type Kernel Size Stride Upsampling Rate Number of Modules ~ Width
Context Block SFC Layer [3,3] [1,1] — 3 [C/2,C,C]
Extraction Layer 1 SFC Block [3,3] [1,1] — 3 [C,C.C]
. Downsampling SFC Block [3,3] [2,2] — 1 [C]
Extraction Layer 2 SEC Block 13,3] [1.1] _ 3 [C,C.C]
. Downsampling SFC Block [3,3] [2,2] — 1 [C]
Extraction Layer 3 SEC Block 13,3] [1,1] _ 5 [C,C,C,C,C]
. Downsampling SFC Block [3,3] [2,2] — 1 [C]
Extraction Layer 4 SEC Block 3.3] [1.1] i 2 [c.cl
Upsampling SFC for Extraction Layer 2 [3,3] [1,1] [2,2] 1 [C]
Upsampling  Upsampling SFC for Extraction Layer 3 [7,7] [1,1] [4,4] 1 [C]
Upsampling SFC for Extraction Layer 4  [15,15] [1,1] [8,8] 1 [C]
Head Layer SFQ Layer [3,3] [1,1] — 2 [2C,C]
Linear — — — 1 [n]

The SFC block consists of two SFC layers. In addition, the residual conneddpis adopted in the
SFC block to overcome network degradation.

The downsampling SFC block combines the downsampling of Frustum Farthest Point Sampling
(F2PS) and the feature aggregation of the SFC block. Notably, in the downsampling SFC block, the
rst SFC treats the sampled points as the center points and the features of the point cloud before
sampling as the aggregated features.

Moreover, after the downsampling, the 2D coordinates of each spherical frustum are divided by the
stride to gain the 2D coordinates on the downsampled 2D spherical plane. Meanwhile, each point is
assigned a new point index in the downsampled spherical frustum point set according to the sampled
order in F2PS.

Components in the Encoder of SFCNet. In the encoder, the context block consists of three SFC
layers to extract the initial point features from the original point cloud. The subsequent four extraction
layers are composed 8f 3; 5, and2 SFC blocks respectively. In addition, a downsampling SFC
block with (2; 2) strides is adopted in the last three layers to downsample the point cloud into different
scales. Thus, the multi-scale point features are extracted.

Components in the Decoder of SFCNet. We implement the upsampling SFC in the decoder of
SFCNet according to the deconvolutid&¥] used in the 2D convolutional neural networks. In the
upsampling SFC, we rst multiply the 2D coordinates of the spherical frustums in the corresponding
layer by the upsampling rate to obtain the 2D coordinates on the original spherical plane. Then, each
point in the raw point cloud is treated as the center point in SFC. The spherical frustums fall in the
convolution kernel are convolved. As shown in Tab. 5, we set the appropriate kernel size according to
the upsampling rate for each upsampling SFC.

After the upsampling, the point features from different extraction layers are of the same size. Thus,
the point features can be concatenated. In the head layer, two SFC layers and a linear layer are
adopted for the decoding of the concatenated features.
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B Additional Implementation Details

Data Normalization. For thek-th point in the HDAR point cloudP, the combination of the

3D coordinates x = [X;Yk;z]", the rangey = = xZ + y2 + zZ, and the intensity is treated as
the input point featuré . Because of the different units of the different data categories, the input
features should be normalized.

Speci cally, for the SemanticKITTI]] dataset, like

RangeNet++13], we minus the features by the mean o _

and divide the features by the standard deviation t8ble 6: The statistics of each input data cate-
obtain the normalized features. The mean and st@fty on SemanticKITTI dataset.

dard deviation are obtained from the statistics of each Statistics | x 'y z rangeintensity
input data category on the SemanticKITTI dataset,—ean 10.880.23-1.04 1212 021
which are presented in Tab. 6. Standard DeviatiJﬂlA? 6.91 0.86 12.32 0.16

For the nuSceneg7] dataset, like Cylinder3DZ3],

a batch normalization layer is applied on the input

point features to record the mean and standard deviation of the nuScenes dataset during training.
During inferencing, the recorded mean and standard deviation are used to normalize the input point
features.

Spherical Frustum Construction. We construct the spherical frustum structure by assigning each
point with the 2D spherical coordinaté@sy; vi) and the point indexny in the spherical frustum
point set, wheré is the index of the point in the original point cloud. The 2D spherical coordinates
can be calculated through Eqg. 1. Thus, the key process is to assign the pointipdexeach point
based on the 2D spherical coordinates.

We implement this by sorting the 2D coordinatesg; vk) of the points. The points with smaller

ux andvg are ranked ahead of the points with larggrandvy . Thus, the points with the same 2D
coordinates are neighbors in the sorted point cloud. For each point, we count the number of points
that have the same 2D coordinates and appear ahead or behind the point in the sorted point cloud
separately. The number of the points appearing ahead is treated as the poimhindegach point.

In addition, we assign each point an indicatpr2 f 0; 1g according to the number of the points
appearing behind. The point with zero point appearing behind is assigned a zero indicator. Otherwise,
the point is assigned with an indicator equal to one. The indicator indicates the end of the frustum
point set and is used for the subsequent spherical frustum point set visiting.

The sorting and the point number counting are implemented through the Graphics Processing Unit
(GPU)-based parallel computing using Compute Uni ed Device Architecture (CUDA). Thus, the
construction is ef cient in practice.

Hash-Based Spherical Frustum Representation. After the construction of the spherical frustum
structure, we build the hash-based spherical frustum representation. Speci cally, we construct the
key-value pairs between the kéyy; vi; my) and the valuk. The key-value pairs are inserted into a
hash table, which represents the neighbor relationship of spherical frustums and points.

In practice, we adopt an ef cient GPU-based hash tab8 [The GPU-based hash table requires
both key and value to be an integer. The vdtusatis es the integer requirement. However, the key
(uk; vk; my) in the hash-based spherical frustum representation is not an integer.

To adopt the GPU-based hash table for ef cient procesgimg,vk ; mg) is transferred to an integer

asvk (W M)+ ux M + my, whereW is the width of the spherical projectiol] is the maximal

point number of the spherical frustum point sets. Through this process, any point represented by the
coordinateguy; vk ; mg) can be ef ciently queried through the GPU-based hash table.

Spherical Frustum Point Set Visiting. Both the SFC and F2PS require visiting all the points in any
spherical frustums. Thus, we propose the spherical frustum point set visiting algorithm. The visiting
obtains all the points in the given spherical frustum, whose 2D coordinatés;arg by sequentially
guerying the points in the hash table.

Speci cally, we rst query the rst point in the spherical frustum using the Keyv; 0). If the key
(u; v; 0) is not in the hash table, the spherical frustun{oyv) is invalid. Otherwise, the rst point
in the spherical frustum can be queried through the hash table.

16



Then, the points in the spherical frustum are sequentially visited. We rst initialize the point index
m = 0 in the spherical frustum. At each step, the point indeincreases by one. Through the
hash table, the point wittn-th index in the spherical frustum is queried using the i&w; m).
Meanwhile, the indicator of this point is obtained. indicates whethefu;v; m + 1) refersto a
valid point. Thus, the visiting ends when the indicator of the current point is zero.

Detailed Implementation of Frustum Farthest Point Sampling. In F2PS, we rst sample the
spherical frustums by stride. Then, we sample the points in each sampled spherical frustum by
Farthest Point Sampling (FPS§. As mentioned in Sec. 3.3, FPS is an iterative algorithm. The
detailed process of thjeth iteration can be expressed by the following formula:

S =S f in dist(p;9)o; 4

j 1 [ argngr?gj( 152"2501 ist(p; s)g (4)

wherePs is the spherical frustum point set to be sampBdandS; i are the sampled point sets in
j-thand(j 1)-thiterations respectively. Notablg, contains the point randomly sampled frég.

In addition,dist(p; s) is the distance between pointaind points in 3D space. The iteration starts at
j =1, and ends when the size §f equals the number of sampling points.

Moreover, since the distances between the points i, and the points iPsnS; 1 have been
calculated before the-th iteration, we just need to calculate the distance betweeng@cBsnS;
and the point sampled ifj  1)-th iteration for the calculation afins;s; , dist(p;s), which is
the minimal distance from poimtto the point se§; ;. Thus, the computing complexity of FPS
for Ps of sizen is O(n?). Since the point number of each spherical frustu($), the computing
complexity of FPS for the spherical frustum is al3¢1), which ensures the ef ciency of F2PS.

Loss Function. We use multi-layer weighted cross-entropy loss and Lovasz-Softmaxdds® [

help the network learn the semantic information from different scales. To get the semantic predictions
of extraction layers 1 to 4, we apply a linear layer to decode the extracted point features of each
extraction layer into the semantic predictions.

Speci cally, for extraction layer 1, the linear layer is applied on the extracted point fedtures
gain the predictior”; . For the other extraction layers, the linear layer is applied on the upsampled
point features 9, F, andF ? to obtain the predictions,, C3, andC 4 respectively.

Based on the predictions of each layer and the nal predictions of SFCNehe loss function is
calculated as:

x4

L= Lwee(Cis L)+ Liov (CisL); 5)

i=1
whereL e is the weighted cross-entropy lots,q, is the Lovasz-Softmax loss, ahdis the ground
truth. In addition, the weights of weighted cross-entropy loss are calculategag fo. + ) 1,
wherec is the semantic class, is the frequency of classin the dataset, andis a small positive
value to avoid zero division.

C Additional Experiments

C.1 Efciency Comparison

We evaluate the ef ciency of the proposed SFCNet with the previous works and our 2D projection-
based baseline model on a single Geforce RTX 4090Ti GPU.

We adopt the same baseline model used in Sec. 4.5. For RangeViT, we adopt the of cial code for
ef ciency evaluation. Notably, in the inference, RangeVIT splits the projected LiDAR image, inputs
each image slice into the network to gain the predictions, and merges the predictions to gain the
prediction of the entire projected LIDAR image. Thus, the inference time of RangeViT includes the
time of all the processes. In addition, since RangeViT adopts the KPConv re nefr@nivhich
restores the complete predictions from the partial predictions, we use the point number of the entire
point cloud as the processed point number. For PointNe2él \ve sample45K points from the

point cloud before inputting into the network as its original setting. For 3D voxel-based methods,
Cylinder3D R3] and SphereFormeRp], only the points preserved after the voxelization are counted
since these points are exactly processed in the 3D sparse convolution network.
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Table 7: Ef ciency comparison. The inference time of a single LiDAR scan, the processed point
number, and the normalized time, the inference time per thousand points, are evaluated on the
SemanticKITTI validation set with a single Geforce RTX 4090Ti GPU.

Approach | Time (ms)/Pointst Normalized Time (md{ ) #
PointNet++ [26] 131.0/ 45K 2.91
RandLA [31] 212.2/ 12K 1.77
Cylinder3D [23] 67.5/ 40K 1.69
SphereFormer [25] 108.2/ 90K 1.20
RangeViT [21] 104.8/ 12K 0.87
Baseline 46.4/] 90K 0.52
SFCNet (Ours) 59.7/ 120K 0.49

Table 8: The quantitative results of different resolutions used in the baseline model with KNN-based
post-processing [13] on the SemanticKITTI validation set.

Resolution| Preserved Points/All Points  mloU (%)

64 1800 88K=12K 59.7
64 2048 97K=12K 58.9
64 4096 113X=12K 57.0

The results are presented in Tab. 7. The results show that SFCNeb8dstss for a single scan
inference, which reaches real-time LiDAR scan processing. In addition, our SFCNet also has the
highest ef ciency evaluated by normalized tim&49 msK ) compared to the previous 3D and

2D methods and the 2D baseline model, which indicates that SFCNet can adopt the 2D projection
property to ef ciently segment the large-scale point cloud.

C.2 Analysis on Different Resolutions of the Baseline Model

Since the limited projection resolution is the reason for quantized information loss, expanding the
resolution of the projected range image can preserve more points during the spherical projection and
ease the quantized information loss. However, expanding the resolution increases the sparsity of the
projected points and makes the convolution hard to aggregate the local features. Thus, resolution
expansion is not a feasible solution for resolving quantized information loss. To validate this, we
expand the image horizon resolution of the baseline mod&d48and4096and conduct the ablation
studies of different resolutions on the SemanticKITTI validation set to show the effect of a larger
resolution. As shown in Tab. 8, the increment of resolution preserves more points but results in worse
performances. In contrast, SFCNet not only overcomes quantized information loss but also effectively
aggregates local features with a suitable resolution by preserving all points using spherical frustum.

C.3 Additional Ablation Studies

In this subsection, we conduct additional ablation studies to evaluate the sensitivity of our SFCNet to
the key parameters.

Stride Sizes in Frustum Farthest Point Sampling (F2PS). The ablation studies of four different
settings of the stride sizes in the F2PS on the three downsampling layers are conducted, including
(1;2);(2;1); (2;4), and(4; 2). The results are shown in Tab. 9. The results show on all the down-
sampling layers, th€; 2) stride sizes show a better segmentation performance than the other stride
size settings,(2; 2) stride sizes suitably downsample the point cloud in the vertical and horizon
dimensions. Higher or lower downsampling rates result in the oversampling or undersampling of the
point cloud respectively.

Number of Points in the Spherical Frustums. In the spherical frustum structure, the number

of points in the frustum is unlimited and only depends on how many points are projected onto the
corresponding 2D location. To analyze the effect of the number of points in the frustum, we set the
maximal number of points in each spherical frustum and the points exceeding the maximal point
number are dropped. As shown in Tab. 10, preserving more points in the spherical frustum results in
better segmentation performance, since more complete geometry information is preserved. These
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Table 9: Ablation study on the stride sizes of the Frustum Farthest Point Sampling in the downsam-
pling layers on the SemanticKITTI validation set.

. . . miloU (%) "
Stride SizegSn; Sw) Layer1 Layer2 Layer3
2,1) 60.7 613  61.1
(1,2) 62.4 622  62.3
(2,4) 623  62.6 619
(4.2) 605 616 619
(2,2) (Ours SFCNet) 62.9

Table 10: Ablation study on the maximal number of points in spherical frustums on the Se-
manticKITTI validation set.

Maximal Number of Points in Spherical FrustunmloU (%) "

2 61.0
4 61.9
Unlimited (Ours SFCNet) \ 62.9

results further indicate the signi cance of overcoming quantized information loss in the eld of
LiDAR point cloud semantic segmentation.

Con guration of the Hash Table. The number of hash functions is the main parameter of the hash
table, which means the number of functions used for the hash table retrieval. In the implementation,
if the rst hash function can successfully retrieve the location of the target point, the other functions
will not be used. We change the number of hash functions to show the model sensitivity of hash
table con gurations. As shown in Tab. 11, the performance and inference time of SFCNet have
little difference under different numbers of hash functions. The results show that in most cases, the
rst function can successfully retrieve the location, and thus the inference times change slightly
in different function numbers. These results indicate that SFCNet is robust to different hash table
con gurations.

C.4 Comparison of Sampling Methods

We further validate the effectiveness and ef ciency of the proposed Frustum Farthest Point Sampling
(F2PS) by the qualitative comparison with stride-based 2D sampling and the comparison of time
consumption with Farthest Point Sampling (FPS).

Qualitive Comparison. As shown in Fig. 6(a), Stride-Based 2D Sampling (SBS) only samples the
point cloud based on 2D stride. The visualization shows that the stride-based sampled point cloud
is relatively rough. Due to the lack of 3D geometric information, SBS fails to sample the 3D point
cloud uniformly. Thus, the loss of geometric structure in the sampled point cloud is obvious, such as
many broken lines on the ground. Our F2PS takes into account the 3D geometric information based
on the FPS in the spherical frustum, which enables F2PS to sample the 3D point cloud uniformly and
preserve the signi cant 3D geometric structure during the sampling.

Time Consumption Comparison. As shown in Fig. 6(b), with the increment of sampled point
number, the cost time of our F2PS increases slowly, while the cost time of FPS increases dramatically.
This result shows performing FPS on the frustum point sets is ef cient and does not increase the
computing burden.

C.5 Comparison between SFCNet and Baseline Model on Small Object Categories

To further show the improvement of small object segmentation, we compare the quantitative results
on the small object categories between SFCNet and the baseline model with the KNN-based post-
processing13] on SemanticKITTI and nuScenes validation sets. As shown in Tabs. 12 and 13, our
SFCNet has higher performances on all small object categories compared to the baseline model. The
results show overcoming quantized information loss preserves complete geometric information of the
small objects and thus makes them better recognized and segmented by our SFCNet.
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Table 11: Ablation study on the con guration of the hash table for the spherical frustum structure on
the SemanticKITTI validation set.

Number of Hash FunctionsInference Time (ms§ mloU (%)"

2 59.5 62.9
3 60.1 62.9
5 59.5 62.9
4 (Ours SFCNet) 59.7 62.9

Figure 6: In this gure, (a) presents the qualitative comparison between stride-based 2D sampling
and our Frustum Farthest Point Sampling (F2PS). The red boxes show the zoomed view of the point
clouds in the close areas. (b) illustrates the time consumption comparison between Farthest Point
Sampling (FPS) and our F2PS.

D More Visualization

To better demonstrate the effectiveness of SFCNet for LIDAR point cloud semantic segmentation, we
conduct more visualization on the SemanticKITTIl and nuScenes datasets. The results are shown in
Figs. 7, 8, 9, 10 and the supplementary vidgpplementaryVideo.mp4.

Qualitative Comparison on NuScenes Validation Set. The results of qualitative comparison
between our SFCNet and RangeVH1] are shown in Fig. 7. On the nuScenes validation set, SFCNet

can also have fewer segmentation errors than RangeViT as the results in the SemanticKITTI dataset.
Moreover, the better segmentation accuracy of the 3D small objects, like pedestrians and motorcycles,
can also be observed on the nuScenes validation set. The results once more demonstrate semantic
segmentation improvement of SFCNet due to the overcoming of quantized information loss.

More Qualitative Comparison on SemantickKITTIl Test Set. The ground truths on the Se-
manticKITTI test set are not available. Thus, we search for the corresponding RGB image and project
the semantic predictions on the image to compare the semantic segmentation accuracy between the
state-of-the-art 2D image-based method CEIL6} ind our SFCNet on the SemanticKITTI test set.

As shown in Figs. 8 and 9, compared to CENet, SFCNet can more accurately segment the LiDAR
point cloud in various challenging scenes on the SemanticKITTI test set.

Speci cally, SFCNet recognizes the thin poles in distance on the rural road of Fig. 8(a) and in the
complex intersections of Fig. 9(c), while CENet predicts the poles as wrong classes. In addition,
SFCNet recognizes the thin trunks inside the vegetation on the rural scenes of Fig. 8(b) and Fig. 9(b)
while CENet wrongly predicts the trunk as the fetch and vegetation respectively. Moreover, SFCNet
successfully segments the boxed persons in the complex intersection of Fig. 8(c) and in the urban
scene of Fig. 9(a) while CENet gives wrong predictions due to the information loss of the distant
persons during 2D projection. These results further validate the better segmentation performance of
SFCNet to 3D small objects.

More Qualitative Comparison on NuScenes Validation Set. As the visualization on the Se-
manticKITTI test set, we provide the additional qualitative comparison between our SFCNet and
RangeVIiT on the nuScene validation set with the projected predictions illustrated in Fig. 10. The
results further demonstrate the better semantic segmentation of SFCNet for the challenging street
scenes on the nuScenes validation set compared to RangeViT.

Speci cally, in the rst scene, the close motorcycle can be correctly segmented by SFCNet, while
RangeViT recognizes the motorcycle as a car, which shows that SFCNet can help the autonomous car
correctly recognize the type of close obstacles, and enable the car to make appropriate decisions.
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Table 12: Quantative comparison of semantic segmentation between baseline model and SFCNet
for the small object categories on SemanticKITTI validation d&tdd results are the best in each
column. The performance improvement of each category is highlighted in green.

SemanticKITTI
@ &
) . 9 5
o e g 2 e P
o [} [%3 o 4 o
g S 5 g 5 s g 5
Approach = IS o a £ =] a =
Baseline w/ KNN-Based Post-procesging44.2 46.0 48.8 71.6 73.6 67.4 63.1 45.7
SFCNet (Ours) 44.9(+0.7) 60.6(+14.6) 50.5(+1.7) 73.1(+1.5) 83.1(+9.5) 68.5(+1.1) 64.6(+1.5) 47.8(+2.1)

Table 13: Quantative comparison of semantic segmentation between baseline model and SFCNet for
the small object categories on the nuScenes validationBeld results are the best in each column.
The performance improvement of each category is highlighted in green.

nuScene

(2]

bicycle

motorcycle
pedestrian
traf c-cone

Approach

Baseline w/ KNN-Based Post-processing30.6 77.0 73.9 62.8
SFCNet (Ours) 40.4(+9.8) 82.0(+5.0) 78.0(+4.1) 65.8(+3.0)

In the second scene, the distant pedestrians on the other side of the crossing can also be correctly
segmented by SFCNet due to the elimination of quantized information loss. In contrast, RangeViT
wrongly predicts the pedestrians as traf c cones.

In the third scene, since the boxed pedestrian is close to the manmade, RangeViT confuses it with the
manmade and does not segment the pedestrian, while our SFCNet can clearly recognize the boundary
and successfully segments the pedestrian.

Sequential Qualitative Comparison on SemanticKITTI Validation Set. We demonstrate the
gualitative comparison between our SFCNet and the SoTA 2D projection-based segmentation meth-
ods, CENet and RangeViT, on a continuous sequence on the SemanticKITTI validation set in the
supplementary videBupplementaryVideo.mp4. In this video, the semantic predictions in both

the 3D point cloud view and the RGB image view (where the colored point cloud is projected onto
the RGB images) are presented. The results show that our SFCNet can consistently show higher
segmentation accuracy on the point cloud of each frame in the sequence than 2D projection-based
methods, which further indicates the stronger semantic segmentation capability of our SFCNet.

21



Figure 7: Qualitative Comparison on NuScene Validation Set. In this gure, we conducted the
qualitative comparison between RangeVPI]and our SFCNet of semantic segmentation on the
nuScenes validation set. The rst column presents the ground truths, while the following two columns
show the error maps of the predictions of RangeViT and our SFCNet respectively. In addition, the
reference from point color to the semantic class in the ground truths is shown at the bottom. Moreover,
the false-segmented points are marked as red in the error maps. Furthermore, we use circles with the
same color to point out the same objects in the ground truth and the two error maps.
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Figure 8: More Qualitative Comparison on Semantic Segmentation on SemantickITTI Test Set. We
show the qualitative comparison between our SFCNet and the state-of-the-art 2D image-based method
CENet 0] on the SemanticKITTI test set. The visualized challenging autonomous driving scenes
include urban, rural, and complex intersection scenes. The predictions projected on the corresponding
RGB images are also illustrated. In addition, we use the same color boxes to point out the same
objects in the point clouds and images for each scene. Meanwhile, we provide the zoomed-in view of
some boxed objects for clear visualization. Moreover, the reference from point color to the semantic
class in the predictions is shown at the bottom of the gure.
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