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Abstract

Accurate emotion perception is crucial for various applications, including human-
computer interaction, education, and counseling. However, traditional single-
modality approaches often fail to capture the complexity of real-world emotional
expressions, which are inherently multimodal. Moreover, existing Multimodal
Large Language Models (MLLMs) face challenges in integrating audio and recog-
nizing subtle facial micro-expressions. To address this, we introduce the MERR
dataset, containing 28,618 coarse-grained and 4,487 fine-grained annotated sam-
ples across diverse emotional categories. This dataset enables models to learn
from varied scenarios and generalize to real-world applications. Furthermore,
we propose Emotion-LLaMA, a model that seamlessly integrates audio, visual,
and textual inputs through emotion-specific encoders. By aligning features into a
shared space and employing a modified LLaMA model with instruction tuning,
Emotion-LLaMA significantly enhances both emotional recognition and reason-
ing capabilities. Extensive evaluations show Emotion-LLaMA outperforms other
MLLMs, achieving top scores in Clue Overlap (7.83) and Label Overlap (6.25) on
EMER, an F1 score of 0.9036 on MER2023-SEMI challenge, and the highest UAR
(45.59) and WAR (59.37) in zero-shot evaluations on DFEW dataset.

1 Introduction

Emotion perception plays a vital role in applications such as human-computer interaction [17-19, 80],
educational assistance [43], and psychological counseling [7, 42]. While single-modality approaches,
including facial expression recognition [45, 57, 70, 87], text emotion analysis [25, 49, 41], and
audio emotion recognition [31, 39, 47], have shown effectiveness, real-world emotional data is often
multimodal, integrating text, audio, and images.

Despite extensive multimodal fusion methods having achieved promising improvements [13, 14, 16,
56, 58,59,77,91, 96, 100, 103], they mainly focus on feature interaction and modality completion,
remaining under-explored for knowledge-level interaction which is essential for emotional reasoning
of humans. Recently, Multimodal Large Language Models (MLLMs) have excelled in tasks such as
visual-language understanding [50, 65], visual question answering [104], and video understanding [35,
63, 86]. However, for emotion recognition [45], models like GPT-4 with Vision (GPT-4V) still face
two main challenges: the inability to process audio and the failure to recognize micro-expressions.
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We argue that the lack of specialized multimodal emotion instruction datasets is the main factor
limiting MLLMs’ effectiveness. These issues stem from the inability of previous methods to ef-
fectively integrate audio inputs, which are crucial for capturing vocal tones and auditory cues, and
their difficulty in recognizing subtle facial micro-expressions. These limitations lead to sub-optimal
performance in real-world scenarios.

To address these challenges, we introduce the MERR dataset (Sec. 3.1), which enables multimodal
large models and supports instruction tuning to learn from diverse scenarios and generalize to
real-world applications. We also propose the Emotion-LLaMA model (Sec. 3.2), which integrates
audio, visual, and textual inputs through emotion-specific encoders. By employing instruction tuning
(Sec. 3.3), Emotion-LLaMA significantly enhances both the accuracy of emotional recognition and the
depth of emotional reasoning, setting a new benchmark for multimodal emotion analysis. Extensive
experiments and evaluations (Sec. 4) demonstrate Emotion-LLaMA’s superiority, achieving top scores
on EMER, MER2023!, MER20242, and DFEW datasets. Our main contributions are as follows:

* We constructed the MERR dataset, which includes 28,618 coarse-grained and 4,487 fine-
grained annotated samples, covering a wide range of emotional categories such as “doub”
and “contempt”. Unlike previous datasets, MERR’s diverse emotional contexts allow models
to learn from varied scenarios and generalize to real-world applications, serving as a valuable
resource for advancing large-scale multimodal emotion model training and evaluation.

* We developed the Emotion-LLaMA model, which incorporates HuBERT for audio process-
ing and multiview visual encoders (MAE, VideoMAE, EVA) for capturing facial details,
dynamics, and context. By aligning these features into a modified LLaMA language model,
Emotion-LLaMA enhances emotional recognition and reasoning capabilities.

* Extensive experiments demonstrate that Emotion-LLaMA significantly outperforms other
MLLMs across multiple datasets, establishing it as the current state-of-the-art model in
public competitions. It achieved top scores on the EMER dataset (Clue Overlap: 7.83,
Label Overlap: 6.25) and attained F1 scores of 0.9036 on MER2023-SEMI' and 0.8452 on
MER2024-NOISE?. Emotion-LLaMA also surpassed ChatGPT-4V in zero-shot evaluations,
including DFEW (+4.37%) and MER2024-OV? (+8.52%).

2 Related Work

To highlight our contributions, we review existing multimodal large language models and instruction
tuning methods, emphasizing their limitations in emotional understanding.

Multimodal Large Language Models (MLLMs). MLLMs [, 5, 11, 20, 73, 88] have gained
substantial attention due to their powerful inferential capabilities. Research primarily focuses on
leveraging pretrained models like CLIP [75], Q-Former [53], and ImageBind [34] for general
domain applications [10, 97, 104]. However, even advanced models like GPT-4V [61] struggle
with understanding audio emotional cues and recognizing facial micro-expressions due to the lack
of specialized training on multimodal emotional datasets and emotion-related knowledge. Recently,
researchers have begun training MLLMs on multimodal emotional datasets to identify emotion-
triggering utterances in dialogues [2, 14], though these studies often lack detailed explanations. In
contrast, our proposed Emotion-LLaMA employs emotion-specific encoders to extract multimodal
features, enhancing emotional recognition and reasoning capabilities.

Instruction Tuning. Language instructions have been widely used across diverse NLP tasks [6,
21,76, 101, 95]. Studies like InstructionGPT [72], FLAN [23], and OPT-IML [44] have explored
instruction-tuning methods [89, 90] that significantly enhance the zero-shot and few-shot capabilities
of LLMs. The vision field has also embraced language instructions for various vision-language
tasks [1, 3,27, 40, 46, 99]. LLaVA [65] converted image-text pairs into instruction-following data
using a language-only model, while EmoVIT [92] generated visual emotion instruction data using
paired annotations. However, these approaches often lack audio information, which is crucial for
understanding human emotions. Due to high annotation costs, AffectGPT [62] manually annotated
only 100 samples with emotion clues. To address the scarcity of emotion-related instruction-following
data, our approach generates multimodal descriptions using prior knowledge.
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3 Methodology

This section presents our proposed Emotion-LLaMA model, which consists of three key components:
the MERR dataset construction (Sec. 3.1), the Multimodal Emotion-LLaMA model architecture
(Sec. 3.2), and the training procedures (Sec. 3.3).

3.1 MERR Dataset Construction

The MERR dataset is constructed through a comprehensive process of emotion annotation in video
data, as outlined in Algorithm 1 and Figure 1. First, human faces are extracted from each video frame
using the OpenFace toolkit, which detects and scores Action Units (A8s){] to identify the
frame with the maximum cumulative intensity: !

Ipeak = arg max S (1)

1

whereS,,, represents the intensity of each AU. These AUs are mapped to facial expression descrip-
tionsCyeq (Tables 10 and 11) to accurately depict facial movements. Next, MiniGP&nwv@yzes the
peak frame to extract contextual informatiGp,y, such as activities and environment (Figure 1), fa-
cilitating the identi cation of latent emotional elements within the background context. Qwen-Audio
processes audio segments to extract nuances in speech and vocal tone, generating emotion-related
descriptionsC4yq . Visual and audio information are concatenated into a raw multimodal description,
integrating sensory inputs to enhance the contextual supplementation for lexical subtitles. Lexical sub-
tittes Cis are integrated into the multimodal description, providing textual context that complements
the audio and visual data. LLaMA23e nes these annotations by aggregating unimodal descriptions
(Cveds Cvods Catd» Cis) into a detailed multimodal descriptiddnyg, following instructions and
examples in Table 12. Finally, the comprehensive descrifiliqy is used to annotate the peak frame,
ensuring the video is annotated with detailed emotional descriptors.

Figure 1: Example of the MERR dataset: It includes audio tone description, lexical subtitle, visual
objective description, visual expression description, classi cation label, and multimodal description.

The MERR dataset extends the range of emotional categories and annotations beyond those found
in existing datasets (Table 15). Each sample is annotated with an emotion label and described in
terms of its emotional expression. The dataset was initially auto-annotated with coarse-grained labels
for 28,618 samples from a large pool of unannotated data using LLaMA-3, and was later re ned to
include 4,487 samples with ne-grained annotations, carefully selected by experts. Figure 5 shows
that, compared to other datasets, MERR encompasses a wider range of emotional categories. More
details of MERR dataset construction are provided in the project homepage and the Appendix A.

3.2 Multimodal Emotion-LLaMA Model

The proposed Multimodal Emotion Large Language Model (Emotion-LLaMA) architecture, depicted
in Figure 2, comprises an audio encof@Y? , a visual encodeE""s , and a multimodal large language

3https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo_v2.py
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Algorithm 1 Multimodal Emotion Annotation Procedure

Ensure: Annotated video with comprehensive emotional descriptors for the peak emotional expres-
sion frame
. Initialize I peak O
. Initialize Framepeak ;
. for each framd in V do P
Detect AUs and computiey i S,
if lau>1 peakthen
I peak IAU
Framepeak fx
end if
9: end for
10: AnalyzeF rame yeaxWith OpenFace to obtaiByeq
11: AnalyzeF rame peacWith MiniGPT-v2 to obtainCyqq
12: Analyze audicA with Qwen-Audio to obtairCyy
13: IntegrateCis, Cyed, Cvod, aNdCyyq to synthesize context
14: Generate comprehensive descriptidy using LLaMA-3
15: return Cpgq

ONoaRwNE

model . Given an input tupl® = hAudio; Video, Prompt, Emotion-LLaMA is formulated as:

O=( ; E ;P) @
= (E%9(Audio); E'S (( Video)); E** (Promp))
where , , andE denote the LLaMA language modeld], vision pre-processor, and multimodal

encoder, respectivelyd represents the formatted output text result. The multimodal end®der
consists of audio, vision, and text prompt encoders. IMideois pre-processed to construct the
frame sequenc¥ andFramepeax(Sec. 3.1).

Multimodal Prompt Template. To address the intricate needs of emotional understanding, we craft
a structured multimodal prompt template incorporating descriptive captions and emotion ags (as
detailed in Table 16 and 17), directing the LLM to decipher latent correlations between emotional
states and corresponding visual or auditory content. The template is denoted as:

[INST] < VideoFeature < AudioFeature [Task Identi er] Prompt [/INST]

Multiview Multimodal Encoder. To capture emotional cues in audio and visual modalities, we
leverage the HUBERT 3P] model as our audio encod&® and a multiview visual encoder
EVS . HUBERT extracts a comprehensive auditory representafihfrom the input audio signal,
exhibiting remarkable performance in emotion recognition tasks.

We use a vision preprocessor to unify vision modalities, including facial sequences and peak frame
extracted from the input video. Three visual encodets = EjS; EiS ; Egn,, are employed to
comprehensively extract complementary multi-view visual emotional features:

» Local Encoder A ViT-structured model pre-trained by the MAE schem&?][extracts
static facial expression features. A facial sequence is fed into the local encoder, and the
output frame-wise features are fused by average pooling, producing the local visual feature
Uils = AVG( EJE (V).

» Temporal EncoderA VideoMAE [84] model, produces the temporal featung'ﬁmp =

"eiﬁm (V) of a facial sequence, learning facial dynamics that indicate emotional states and

offering a temporal dynamic view of human emotion.
* Global Encoder A ViT-structured model, EVA $7], initialized with of cial pre-trained
weights, produces the visual featu:gg = EYs (Framepeax ), capturing not only facial
expressions but also background context.

Multimodal Integration and Tokenization. We use the LLaMA tokenizer, employing a byte-pair
encoding (BPE) model based on SentencePieé} fo address open vocabulary challenges and



facilitate ef cient processing of textual inputs. For multimodal emotional reasoning, a modi ed
generate method iteratively selects the most probable tokens, producing contextually appropriate and
emotionally nuanced responses.

To integrate audio and visual features with text tokens, we introduce a linear projection mechanism
that transforms these features into a common dimensional space. This involves trainable linear
mappings , which include 249 for the audio token, andgs, joc» and r,, for the visual tokens.

Speci cally, we apply to convert multimodal feature into language embedding tokehs

T = uwith u= u™uys;uls;us, (3)

The resulting multimodal tokeriE comprise a single audio tokdfi?“9 i, three visual tokenk ‘g"ﬁ, i,

hTice i, andhTych ) i, and a sequence of text tokefiig ™ i; : : 1 ; HTT* i . These tokens are fused through

the inner cross-attention mechanism of Emotion-LLaMA, enabling it to capture and reason about the
emotional content in the multimodal input.

By employing this linear projection and multimodal token representation, Emotion-LLaMA processes
and integrates information from various modalities, leveraging the strengths of the underlying LLaMA
model while incorporating essential emotional cues from audio and visual sources. Further details of
the Emotion-LLaMA Model are provided in the code repository.

Figure 2: Architecture of Emotion-LLaMA, which integrates audio, visual, and text inputs for
multimodal emotional recognition and reasoning.

3.3 Training of Emotion-LLaMA Model

We design a multi-task learning scheme to simultaneously supervise the model in learning emotional
reasoning and recognition. The ground truth output and labels are converted and concatenated as
standard text by a formatted template for autoregressive loss calcul&ti@n Iterative random
instruction sampling (see Table 16 and 17 for full list of instructions) for emotional reasoning
and recognition tasks during training guides the model to develop a comprehensive understanding
of emotions. Typically, Emotion-LLaMA is trained in a coarse-to- ne manner, consisting of the
Pre-trainingandMultimodal Instruction Tuning

Stage 1: Pretraining. Initially, the model is trained on 28,618 coarse-grained samples from the
MERR dataset. Distinct tasks help the model grasp emotions from multiple perspectives. This phase
involves simple descriptions or classi cations, facilitating the rapid alignment of multimodal feature
tokens firaudi, hTgioi, MTiee i, andhTiey, ) 1) to the word embedding space [10, 97].

Stage 2: Multimodal Instruction Tuning. The pretrained Emotion-LLaMA model is then re ned

using ne-grained instructional datasets to enhance its capacity for emotion recognition and reasoning.
This stage utilizes multimodal instruction tuning datasets, incorporating 4,487 ne-grained annotated
descriptions for comprehensive reasoning from the MERR dataset. The tuning process is extended
to diverse sources, including MER20239] and DFEW [15], which feature precisely annotated
emotional categories. This phase ensures that the model not only identi es emotions accurately but
also understands the underlying context and reasoning behind each emotion. More details are in the
code repository and the Appendix B.



4 Experiments

4.1 Experimental Setup

To verify the effectiveness of Emotion-LLaMA, we conducted extensive evaluations across four
different datasets: MER2023:§], MER2024 0], DFEW [45], and EMER [Z]. Notably, we
utilized the MERR dataset for pre-training the model and then ne-tuned it on target datasets for
evaluation.

Emotion Recognition Evaluation We performed instruction tuning on the MER2023 and DFEW
datasets, allowing the model to integrate the emotional knowledge acquired during pretraining. To test
the generalizability of our model, we used three datasets: MER2023, MER2024, and DFEW. These
datasets are multimodal emotion recognition datasets composed of movie and TV series clips, each
annotated with various emotion categories. For fair comparisons, we evaluated Emotion-LLaMA on
MER2023-SEMI and MER2024-NOISE using the F1 score. We also compared it with other MLLMs
and state-of-the-art (SOTA) methods using unweighted average recall (UAR) and weighted average
recall (WAR) on the DFEW dataset. Additionally, we used the average of accuracy and recall scores
as evaluation metrics on the MER2024-OV dataset.

Emotion Reasoning Evaluation The EMER dataset differs from traditional emotion datasets by
including emotion trigger labels, such as facial micro-expressions, tone of speech, and video context
information, in addition to emotion categories. To assess the emotional reasoning capabilities of
different MLLMs on the EMER dataset, we employ ChatGPT to score their predictions, focusing on
three key aspects: (1) the degree of overlap between emotion-related clues, (2) the degree of overlap
between summarized emotional states, and (3) the completeness of the reasoning process across
modalities. This multi-faceted evaluation provides a rigorous and in-depth assessment of the models'
ability to understand and explain emotions in a multimodal context.

4.2 Implementation Details

For the global visual encoder, we employ the EVA model with full images sized at448 pixels as

input. For the local and temporal visual encoders, we rst crop and align the faces within the images,
then hierarchical sample 16 facial images as inputs for the MAE and VideoMAE models. The audio
is handled by the HUBERT-Chinese large model. The extracted emotional features are transformed
into a 4096-dimensional space via linear layers before being concatenated with text tokens.

During the tuning process, we froze the visual and audio backbones, focusing on training the linear
projection layer. For the language model (LLM), we utilize LLaMA2-chat (7B) equipped with
LoRA for parameter-ef cient tuning. Following the Minigpt-v2 approach, we ne-tune the query and
value projection matricesq andW, ) by settingr = 64 and = 16. Consequently, the trainable
parameters of Emotion-LLaMA totaled only 34 million, representing a mere 0.495% of the overall
parameter count. We train on 4*A100 GPUs for 300,000 steps, which takes around 20 hours. Detailed
information can be found on the project homepage and in the code repository.

4.3 Comparison with State-of-the-Art Methods

To comprehensively evaluate the performance of Emotion-LLaMA, we compared it with several
state-of-the-art (SOTA) methods across different datasets.

Multimodal Emotion Reasoning Results. Table 1: Comparison of multimodal emotion reason-
We compared Emotion-LLaMA with conteming results on the EMER dataset. Clue Overlap and

porary MLLMs such as Video-LLaMA, Video- | abel Overlap scores range from 0 to 10.
ChatGPT, PandaGPT, VideoChat, and Valley,

presenting the results in Table 1. VideoChatModels Clue Overlap  Label Overlap
demonstrates that aligning visual data directlyvidgeochat-Text [54] 6.42 3.94
with textual embedding space (VideoChat-Video-LLaMA [97] 6.64 4.89
Embed) signi cantly outperforms converting \F{gjﬁé’éggc;[g] 6] 3-9154 552‘;

it into textual format (VideoChat-Text), SUP- \jyeochat-Embed [54] 715 565
porting our method of mapping audio and vi- vajley [67] 7.24 5.77
sual features to textual embedding space. NoEmotion-LLaMA (ours) 7.83 6.25

tably, other MLLMs that accept audio inputs,
like PandaGPT and Video-LLaMA, show no standout performance, suggesting inef ciencies in



extracting rich emotional content from audio. Emotion-LLaMA excels beyond these models across
both Clue Overlap and Label Overlap evaluation metrics, highlighting our model's unparalleled
ability to extract direct emotional features and engage in logical emotional reasoning. The scoring
criteria and cases are presented in the Appendix C.1.

Multimodal Emotion Recognition Results. Table 2 presents the comparison results on the DFEW
dataset. In the zero-shot scenario, Emotion-LLaMA demonstrates superior capabilities compared
to all other MLLMSs, showcasing its strong generalization ability. Notably, the majority of MLLMs
scored zero in the disgust category, with GPT-4V achieving only 10.34%. This may be attributed
to safety constraints on the term "disgust" within large language models, indicating a need for
further exploration. Additionally, different MLLMs tend to favor predicting a speci ¢ emotion
category, resulting in higher scores for those categories but lower recall scores overall. In contrast,
Emotion-LLaMA maintains a more balanced prediction across all categories, ultimately achieving the
highest WAR score of 59.37%. After ne-tuning, Emotion-LLaMA achieves the highest Unweighted
Average Recall (UAR) and Weighted Average Recall (WAR) scores, further indicating its exceptional
performance in emotion recognition tasks. These results highlight the effectiveness of our model in
adapting to new datasets and accurately identifying emotions across various modalities. Overall, the
results of Emotion-LLaMA's performance highlight the effectiveness of our approach in accurately
recognizing emotions from multimodal data.

Table 2: Comparison of multimodal emotion recognition results on DFEW. The upper part shows
zero-shot performance, while the lower part shows results after ne-tuning.

Method Hap Sad Neu Ang Sur Dis Fea UAR WAR
Zero-Shot

Qwen-Audio [22] 2597 1293 67.04 2920 6.12 0.00 3536 2523 31.74
LLaVA-NEXT [64] 57.46 79.42 3895 0.00 0.00 0.00 0.00 2512 33.75
MiniGPT-v2 [10] 84.25 47.23 2228 2069 204 0.00 055 2529 3447

Video-LLaVA(image) [63] 37.09 27.18 26.97 58.85 1297 0.00 3.31 20.78 31.10
Video-LLaVA(video) [63] 51.94 39.84 29.78 5885 0.00 0.00 276 26.17 35.24

Video-Llama [97] 20.25 67.5580.15 529 476 000 9.39 26.77 35.75
GPT-4V [61] 62.35 70.45 56.18 50.69 32.19 10.381.11 47.69 54.85
Emotion-LLaMA (ours) 7198 76.25 61.99 7195 33.67 0.00 3.31 4559 59.37
Fine-tuning

EC-STFI [45] 79.18 49.05 57.85 60.98 46.15 2.76 2151 4535 56.51
Former-DFER [102] 84.05 62.57 67.52 70.03 56.43 345 31.78 53.69 65.70
IAL [52] 87.95 67.21 70.10 76.06 62.22 0.00 26.44 5571 69.24
MAE-DFER [82] 92,92 77.46 7456 76.94 60.9918.62 42.35 63.41 74.43
VideoMAE [84] 93.09 78.78 7175 7874 6344 17.93 4146 63.60 74.60
S2D [12] 93.62 80.25 77.14 81.09 6453 138 3471 6182 76.03

Emotion-LLaMA (ours) 93.05 79.42 7247 84.14 7279 345 4420 64.21 77.06

4.4 Multimodal Emotion Recognition Challenge

To further validate the effectiveness of our proposed Emotion-LLaMA model, we conducted ex-
periments on the MER2023 and MER2024 Challenge, comparing it with previous state-of-the-art
methods.The results, presented in Table 3, demonstrate that our model, which maps audio and visual
features to the textual space, achieves the highest F1 score across various modalities. This approach
signi cantly enhances the context of the textual modality by providing a more comprehensive under-
standing of the information, thereby outperforming other models. By integrating audio, visual, and
textual data, Emotion-LLaMA can better capture the nuances of emotional expression, leading to
more accurate and reliable emotion recognition.

The MER2024 Challenge introduced a new Open-Vocabulary Multimodal Emotion Recognition
(MER-OV) task. Unlike traditional tasks, MER-OV focuses on recognizing any number of labels
across diverse categories, aiming for a more nuanced and precise description of emotional states.
As shown in Table 4, Emotion-LLaMA outperforms other mainstream multimodal models, yielding

an 8.52% improvement in average accuracy and recall compared to GPT-4V, and achieving the
highest zero-shot score among all participating large multimodal models. These results showcase
the robustness and versatility of our approach in handling complex multimodal data for emotion
recognition tasks, making it a promising solution for real-world applications.



Table 3: Comparison of multimodal emotioMable 4: Performance (%) of Multimodal Large
recognition results on MER2023. The tableanguage Models on MER2024 Challenge track 3:
shows the performance of different modelSIER-OV. The “avg” column represents the average
across various modalities, with the highest Fif “Accuracys” and “Recalk”

scores achieved by our proposed method. ~podel Accuracys Recals  Avg
Method Modality F1 Score Empty 0.00 0.00 0.00
wav2vec 2.0 [4] A 0.4028 Random 13.42 2485 19.13
VGGish [38] A 0.5481 Ground Truth 93.37 5251 72.94
SESBEST[S? ] 5 O, Valley [67] 2016 1326 16.71
MAE [36] v 0.5547 Otter [51] 29.64 23.04 26.34
VideoMAE [84] Vv 0.6068 PandaGPT [81] 35.75 31.57 33.66
ROBERTa [66] T 0.4061 Video-LLaMA [97] 31.08 32.26 31.67
BERT [25] T 0.4360  VideoChat [54] 43.17 44.92  44.05
MacBERT [24] T 0.4632  VideoChat2 [55] 46.91 34.78  40.85
MER2023-Baseline [59] AV 0.8675 Video-ChatGPT [68] 46.20 39.33  42.77
MER2023-Baseline [59] A, V,T  0.8640 SALMONN [83] 42.20 4475 4347
Transformer [8] AV T 0.8853 Qwen-Audio [22] 55.12 3291 44.02
FBP [13] AV, T 0.8855 mPLUG-Owl [94] 44.80 46.54  45.67
VAT [26] AV 0.8911 AffectGPT [62] 66.14 46.56 56.35
Emotion-LLaMA AV 0.8905 GPT-4V [71] 56.19 58.97 57.58
Emotion-LLaMA AV, T 0.9036 Emotion-LLaMA 69.61 62.59 66.10

Table 5: An example of multimodal emotion reasoning comparing Emotion-LLaMA with other
MLLMs. Incorrect reasoning is marked in red, correct reasoning in blue, and hallucinations in gray.
An Example of Multimodal Emotion Reasoning

Subtitle (En) Are you really stupid or just pretending? Do | care about spending this money? It's just a joke.

Ground Truth In the video, although she had a smile on her face, she questioned the other person, “Are you really stupid or just
pretending?” expressing her dissatisfaction and anger towards the other person's act of pretending to be foolish.
Therefore, it can be inferred that his emotional state is angry.

PandaGPT The emotional state of this person appears to be positive and relaxed. They are smiling and laughing, indicating that
they nd the situation amusing or enjoyable. The woman's reaction to the man's joke suggests she is not offended
or angry but nds it funny or amusing. This means that the interaction between the two individuals is friendly, not
tense or uncomfortable.

\ﬁdeoChat-Embej Based on the video, the lady appears to be quite upset and angry. She discusses her nancial losses and how her

boyfriend seems indifferent to her feelings. She expresses a desire to spend money. The lady's facial expressions
and gestures, such as frowning and clutching her purse tightly...

From the video, we can infer that the woman might be in a neutral or mixed emotional state. In some scenes, she is
smiling or making amusing faces, suggesting she feels happy or amused. . .

Emotion-LLaMA | In the video, the woman's facial expressions, including a furrowed brow, lifted eyebrows, and a slightly lowered lip,
suggest a mix of emotions. Her tone and intonation convey a sense of frustration, and her words reveal that she
is questioning whether the other person is silly, indicating a sense of annoyance. Therefore, it is inferred that her
emotional state is anger.

Valley

4.5 Qualitative Analysis of Emotion Reasoning

To illustrate the qualitative performance of Emotion-LLaMA, we present a detailed comparison of
emotion reasoning results across different models. Table 5 displays the emotion reasoning results
of the four highest-scoring models. The video shows a person smiling while questioning another
individual, an expression of dissatisfaction that suggests an angry emotional state. Accurate emotion
reasoning for this sample necessitates integrating information from multiple modalities. PandaGPT
and Valley captured the correct visual features but failed to incorporate information from other
modalities, incorrectly classifying the emotion as happy. In contrast, VideoChat-Embed eventually
reached the correct inference, but its reasoning was compromised by hallucinations. Emotion-LLaMA
went a step further by recognizing the tone of the person and combining subtle facial expressions with
multimodal information for accurate emotion reasoning. This example demonstrates the superiority
of our model in understanding and integrating emotional cues from various modalities, resulting in
more precise and contextually relevant emotion recognition.



Figure 3: Visualization of the output probability distribution for multimodal emotion recognition by
different models. Each sample is represented by two bar graphs: the left graph displays the results
from other models, and the right graph shows the results from Emotion-LLaMA.

Figure 3 displays the recognition results of Emotion-LLaMA in comparison to other models. The
left samples show that even when characters exhibit subtle emotional uctuations lacking distinct
emotional features, our Emotion-LLaMA model accurately discerns the true intentions behind the
text. The right samples demonstrate that, unlike other language models, Emotion-LLaMA can
extract multimodal emotional features to enhance the text, thereby accurately understanding the true
emotions conveyed by the text. These qualitative results further illustrate the effectiveness of our
model in capturing and interpreting emotional nuances across different modalities, leading to a more
comprehensive and accurate understanding of human emotions.

4.6 Ablation Evaluation

We conducted a series of ablation experiments to explore the effectiveness of each component of the
proposed Emotion-LLaMA. More ablation experiments, which examine factors affecting instruction-
tuning performance, including data quantity and quality as well as hyperparameters, are presented in
Appendix C.

Investigation of Encoders We explore Table 6: Ablation Study Results for Different Encoders.
various combinations of encoders. As

shown in Table 6, the combinations listed Audio Encoder Visual Encoder F1 Score
in the upper part are fused by the part of Wav2Vec B} 0.4893
the modalities, while the rest capture all \ggish . 0.5944
the modalities. The best combination of \hisper . 0.5324
the audio and multiview visual encoders HuBERT - 0.8394
is the HUBERT+MAE+VideoMAE+EVA, - MAE 0.6366
which obtained a 0.891 F1 score. Two - VideoMAE 0.6762
observations are worth noting: 1) multi- - EVA 0.6635
ple modalities, including audio, static, and_" MAE, VideoMAE, EVA  0.7122
dynamic vision, are compensated for in HUBERT MAE 0.8800
the emotion capturing process; 2) the spa-HUBERT VideoMAE 0.8805
tial, spatial-context, and temporal infor- HUBERT EVA 0.8757
mation are fully considered by the mul- HUBERT MAE, VideoMAE 0.8880
tiview visual module, which exhibits a HUBERT MAE, EVA 0.8896
- . . . HUBERT VideoMAE, EVA 0.8802
signi cant improvement over single-view ., ae o MAE. VideoMAE, EVA  0.8910

approaches. These ndings highlight the
importance of incorporating diverse modalities and considering multiple aspects of visual information
for accurate emotion recognition.




In Table 7, we present the impact of different instruction data on the instruction-tuning of Emotion-
LLaMA. 'Raw' refers to the direct concatenation of visual and audio descriptions as instructions for
training Emotion-LLaMA, which yielded the poorest performance. When trained using the coarse-
grained set from the MERR dataset, Emotion-LLaMA achieved scores of 7.41 and 5.56 for clue and
label overlap, respectively. This marks an improvement of 1.87 and 1.25 over the 'Raw' approach,
demonstrating that coarse-grained annotations generated by the LLaMA-3 model effectively integrate
emotional cues to capture genuine emotional expressions. Notably, further instruction-tuning using
the ne-grained set from the MERR dataset resulted in additional gains of 0.42 and 0.69 in clue
and label overlap, respectively, indicating that ne-grained annotations offer higher quality data and
further enhance the performance of instruction-tuning.

To better understand the effect of the sample selection strategy, we compared our strategy against
traditional semi-supervised approaches, as shown in Table 8. Due to the limited size of the MER2023
training dataset, which contains only 3,373 samples, pre-training on this dataset can lead to dif culties
in tting models with transformer structures, resulting in a low F1 score of 0.7977. We then compared
traditional semi-supervised approaches, which involve assigning pseudo-labels to all unlabeled
samples or selectively giving pseudo-labels to those samples that exhibit high softmax scores during
inference. There are 73,148 and 36,490 samples selected by these two strategies, respectively. During
the pre-training phase, a substantial increase in data volume can signi cantly enhance performance,
even introducing considerable noise. Ultimately, the model tuning on our automatically annotated
MERR dataset achieves the best model performance. This demonstrates the effectiveness and
robustness of the proposed Emotion-LLaMA in leveraging large-scale, diverse datasets for improved
emotion recognition and reasoning.

Table 7: Ablation Study Results for Different Stagek2P'e 8:Sf\b:ati_on Study Results for Different
of the MERR Dataset Instructions. raining Strategies.

Stage Clue Overlap Label Overlap Strategy F1 Score
Standard Training 0.7917
Raw : 5.54 431 High-Con dence Training  0.8831
Coarse-grained 7.41 5.56 Pseudo-Label Traini 0.8950
Fine-grained 7.83 6.25 seudo-Label raining :
Instruction Tuning 0.9036

5 Ethics and Conclusion

Ethics. All datasets used in this study are governed by signed usage agreements, strictly restricting
their use to academic research. The MERR dataset is derived from MER2023 and includes over
70,000 unannotated samples from diverse movies and TV series. We have obtained the necessary End
User License Agreements (EULA) and explicit permissions from the original data providers. The
open-source MERR dataset contains only emotion description JSON les, intentionally excluding
source videos. Researchers must apply directly to the original providers and fully comply with the
EULA to access the dataset. We ensure that the MERR dataset exclusively comprises multimodal
emotion descriptions without any discriminatory or biased content.

Conclusion. We introducecEmotion-LLaMA a novel multimodal large language model designed to
accurately recognize and interpret human emotions in real-world scenarios. Utilizing robust open-
source tools, we automated the selection and annotation of the Multimodal Emotion Recognition and
Reasoning (MERR) dataset for pre-training purposes. Instruction-tuning on comprehensive datasets
such as MER2023 and DFEW enabled us to achieve state-of-the-art performance metrics. Com-
parative analyses with other advanced multimodal large language models (MLLMs) demonstrated
Emotion-LLaMA's superior generalization capabilities in emotion recognition and reasoning tasks.
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A MERR Dataset Details

A.1 Emotion Categories and Annotations

The Multimodal Emotion Recognition and Reasoning (MERR) dataset covers a diverse range of
emotion categories, including some that are often overlooked or challenging to distinguish, as shown
in Figure 4 and Figure 5. The dataset includes nine emotion categories: neutral, happy, angry, worried,
surprise, sad, fear, doubt, and contempt. While the rst seven categories are commonly addressed
in most emotion datasets, MERR stands out by also focusing on doubt and contempt. These two
categories are often underrepresented due to the dif culty in collecting suf cient samples and the
potential for confusion with other emotions. Doubt, for example, can easily be mistaken for worry,
as both emotions involve a sense of uncertainty and concern. However, there are subtle differences
in facial expressions and contextual cues that can help distinguish between the two. Doubt often
involves a more questioning or skeptical facial expression, with raised eyebrows and a slight frown,
whereas worry tends to have a more anxious or apprehensive appearance, with furrowed brows and a
downturned mouth. Contempt, on the other hand, is frequently misclassi ed as happiness due to the
presence of a smile. However, the smile associated with contempt is often a scornful or dismissive
one, accompanied by a slight sneer or a raised upper lip. The context and manner in which the smile
is displayed can help differentiate between genuine happiness and contemptuous expression.

To accurately categorize these challenging emotions, the MERR dataset relies on rich multimodal
descriptions that provide a comprehensive understanding of the emotional state and its context. These
descriptions go beyond simple categorical labels and offer detailed insights into the facial expressions,
body language, vocal cues, and situational factors that contribute to the emotional interpretation.
Table 12 presents a template for the multimodal descriptions used in MERR, showcasing the different
components that are captured for each sample. The descriptions include a visual expression compo-
nent that focuses on the speci c facial movements and action units associated with the emotion, a
visual objective component that describes the overall scene and context, an audio tone component
that captures the vocal cues and intonation, and a textual component that provides the transcribed
speech or dialogue. To further illustrate the value of these detailed annotations, Tables 13 and 14
provide speci c examples of annotated samples for doubt and contempt, respectively.

A.2 Data Filtering and Pseudo-Labeling

To create a high-quality dataset for multimodal emotion recognition and reasoning, we employed a
data ltering and pseudo-labeling process. This process aimed to identify video segments with strong
emotional expressions and assign them initial emotion labels based on facial cues.

First, we used OpenFatw extract faces from the video segments. OpenFace is a state-of-the-art
tool for facial behavior analysis that can detect and track facial landmarks, head pose, eye gaze, and
facial action units (AUs). AUs are a widely used system for describing facial muscle movements,
with each AU corresponding to a speci ¢ muscle or group of muscles. After extracting the faces, we
aligned them to a canonical pose to facilitate accurate AU detection. OpenFace then analyzed the
aligned faces to identify the presence and intensity of various AUs throughout each video segment.
Next, we utilized the detected AUs to assign pseudo-labels to the video segments. As shown in
Table 10, certain combinations of AUs are strongly correlated with speci c emotions. For example,
the combination of AUO5 (upper lid raiser) and AU26 (jaw drop) is often associated with the emotion

of surprise. Similarly, the presence of AU04 (brow lowerer) and AU15 (lip corner depressor) is
indicative of sadness. By leveraging these known AU combinations, we created a rule-based system
to assign pseudo-labels to the video segments. If a segment exhibited a speci ¢ combination of AUs
with suf cient intensity, it was assigned the corresponding emotion label. This process allowed us
to identify samples that displayed strong emotional expression characteristics based on facial cues
alone. Through this data Itering and pseudo-labeling process, we selected a total of 28,618 samples
from the initial pool of video segments. These samples were assigned pseudo-labels corresponding
to the nine emotion categories in the MERR dataset: neutral, happy, angry, worried, surprise, sad,
fear, doubt, and contempt. It is important to note that while the pseudo-labels provided a valuable
starting point for annotation, they were not relied upon as ground truth. In subsequent stages of the
dataset construction process, human annotators reviewed and re ned these labels, taking into account
additional context from the visual, audio, and textual modalities.

Shttps://github.com/TadasBaltrusaitis/OpenFace
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A.3 Instruction Collection and Multimodal Annotation

To provide rich, multimodal annotations for the MERR dataset, we collected instructions and
descriptions from various sources, focusing on four key aspects: visual expression, visual context,
audio tone, and multimodal integration.

Visual Expression Description.In videos, natural actions such as blinking and speaking can lead to
different combinations of Action Units (AUs) being extracted from various frames. To accurately
represent the current emotion, it is crucial to determine the most relevant AUs. As illustrated in
Figure 6, our approach involves analyzing the amplitude values of the AUs to identify the “emotional
peak frame”, which captures the most intense emotional expression.

The speci ¢ steps for identifying the emotional peak frame are as follows:

1. Identify the AUs present in all frames of the video segment.

2. Sum the amplitude values of these AUs for each frame.

3. Determine whether the combinations of these AUs match the pseudo-label.

4. Select the frame with the highest total amplitude as the emotional peak frame.

Once the emotional peak frame is determined, its corresponding AUs are mapped to visual expression
descriptions using the guidelines provided in Table 11. These descriptions provide a detailed account
of the facial movements and expressions associated with the emotion displayed in the peak frame.

Visual Objective Description. To provide a comprehensive understanding of the emotional context

in each video, we utilize the MiniGPT-vZ (] model to generate descriptions of the visual scene. By
inputting the complete emotional peak frame, which captures the most intense emotional expression,
MiniGPT-v2 can analyze and describe various aspects of the video, such as the environment, character
actions, and object interactions. These visual objective descriptions offer valuable insights into the
situational context surrounding the emotional expression. For example, if a character is shown in a
dimly lit room with a concerned facial expression, the model might generate a description like “The
scene takes place in a dark, shadowy room. The character appears to be sitting alone, with a worried
look on their face, dgeting with their hands.” This description provides additional information about
the setting and the character's body language, which can help in interpreting their emotional state.
Moreover, the model can also identify and describe relevant objects or elements in the scene that may
contribute to the emotional context. For instance, if a character is holding a letter and appears upset,
the model might mention the presence of the letter in its description, suggesting that the content of
the letter could be related to the character's emotional response.

Audio Tone Description. In addition to visual cues, audio plays a crucial role in conveying emotional
information. The tone, intonation, and prosodic features of a speaker's voice can provide valuable
insights into their emotional state, often revealing subtle nuances that may not be apparent from visual
cues alone. To capture these audio cues, we employ the Qwen-Aitiimddel, which is speci cally
designed to analyze and describe the emotional content of speech. By processing the audio track of
each video segment, it can generate detailed descriptions of the speaker's tone and intonation. For
example, if a character is speaking with a trembling voice and a high pitch, the model might generate
a description like “The speaker's voice is shaky and high-pitched, indicating a sense of fear or anxiety.
There are noticeable pauses and hesitations in their speech, suggesting uncertainty or distress.” This
description captures the emotional nuances conveyed through the speaker's vocal delivery, providing
additional context for understanding their emotional state. Moreover, Qwen-Audio can also identify
and describe other relevant audio cues, such as sighs, laughter, or changes in speaking rate, which
can further contribute to the emotional interpretation. For instance, if a character is speaking rapidly
and laughing, the model might generate a description like “The person in the video speaks with a
cheerful tone.”

Multimodal Description. To generate initial coarse-grained emotional descriptions, we concatenate
the information obtained from all modalities (visual expression, visual context, audio tone, and
textual content). These surface-level descriptions for the 28,618 pseudo-labeled samples are used in
the rst stage of pre-training to help the model align emotional features with the textual semantic
space. We input all the collected emotional clues into the LLaMA-3 model for further re nement.
LLaMA-3 sifts through the clues, identi es the most relevant ones, and combines them to generate a
comprehensive emotional description. This process helps to lter out any erroneous or contradictory
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descriptions that may have been present in the initial set of emotional clues. Additionally, we
remove duplicate or overabundant samples to ensure a balanced and diverse dataset. Through these
re nement processes, the nal MERR dataset contains 4,487 samples, each accompanied by a detailed
multimodal description. Table 12 presents an example of the annotation format used for each sample
in the dataset. Finally, four domain experts manually review the re ned descriptions and use a voting
process to select ne-grained samples, assessing whether the video descriptions are reasonable and if
the emotional reasoning is accurate. By collecting and integrating instructions and descriptions from
multiple modalities, we have created a rich and informative dataset that captures the complexities
of emotional expressions in real-world scenarios. The multimodal annotations in MERR enable
models to learn more comprehensive and nuanced representations of emotions, leading to improved
performance on emotion recognition and reasoning tasks.

A.4 Data Statistics and Comparisons

Video Duration Distribution. Figure 7 presents the distribution of video durations in the MERR
dataset. The majority of the samples have a length between 2 and 4 seconds, which aligns with the
typical duration of short, emotionally expressive video clips. This duration range strikes a balance
between capturing suf cient context for emaotion recognition and maintaining a manageable data size
for processing and annotation. Shorter clips may lack the necessary context to fully understand the
emotional state, while longer clips can be more challenging to annotate and may contain multiple or
changing emotions. The concentration of samples in the 2-4 second range also re ects the natural
temporal dynamics of emotional expressions. Most emotions are conveyed through relatively brief,
intense bursts of facial movements, vocalizations, and body language. By focusing on this duration
range, the MERR dataset captures the core expressive moments while minimizing the inclusion
of neutral or ambiguous segments. Furthermore, the consistent duration range across the dataset
facilitates the development of emotion recognition models that can operate on xed-length input
sequences. This consistency simpli es the data preprocessing and model architecture design, as the
models can be optimized for the speci c temporal scale of the emotional expressions.

Comparison with Previous Datasets.To highlight the unique features and contributions of the
MERR dataset, we compare it with several related datasets in Table 15. The MER2Da&d

DFEW [45] datasets primarily focus on discrete emotion category labels, providing a classi cation-
oriented perspective on emotion recognition. While these datasets are valuable for developing
models that can predict speci c emotion categories, they lack the detailed descriptions and contextual
information necessary for deeper emotion understanding. On the other hand, datasets like £thoSet [
and EmoVIT P2 offer visual descriptions of emotional expressions, capturing the facial cues and
body language associated with different emotions. However, these datasets do not include information
from other modalities, such as audio or text, which can provide crucial insights into the emotional
context and help disambiguate complex or subtle expressions. The EME&afaset stands out

as one of the few existing datasets that contain multimodal emotion descriptions, incorporating
information from visual, audio, and textual modalities. However, due to the high cost and effort
involved in manual annotation, EMER is limited to only 100 samples, which may not be suf cient
for training robust and generalizable emotion recognition models.

In contrast, the MERR dataset offers a comprehensive and large-scale resource for multimodal
emotion recognition and reasoning. With 28,618 coarse-grained and 4,487 ne-grained annotated
samples, MERR provides a diverse range of emotional expressions across nine categories, including
challenging ones like doubt and contempt. The extensive multimodal descriptions in MERR, en-
compassing visual expressions, visual context, audio tone, and textual information, enable a holistic
understanding of emotional states and their situational context. Moreover, the MERR dataset's
inclusion of detailed emotion reasoning annotations sets it apart from other datasets. By capturing the
thought process and rationale behind the emotion labels, these annotations facilitate the development
of models that can not only recognize emotions but also explain and justify their predictions. This
level of interpretability is crucial for building trust and transparency in human-computer interaction
scenarios. As such, MERR has the potential to advance the eld of affective computing and contribute
to the development of more intelligent and empathetic human-computer interaction systems.
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Assessing the Quality of Dataset Instructions\We conducted a human evaluation of the annotation
process by randomly selecting 20 video samples from each of the nine emotion categories. We
then randomly shuf ed the ne-grained annotations. Five volunteers evaluated the consistency and
relevance of the video descriptions by scoring them. Each volunteer rated a total of 180 descriptions
on a scale from 0 to 5. The evaluation criteria included:

1. Accuracy of the visual modality description.
Accuracy of the audio modality description.
Accuracy of the textual modality description.
Correctness of the reasoning process.
Correctness of the reasoning result.

a s~ DN

As shown in the Table 9, the average score for the human evaluation of the MERR dataset is
4.258, indicating that the annotations are of high quality and align with real-world logic. Secondly,
the "Neutral" category received the lowest score among all categories, suggesting that when a
character's emotion is neutral, the facial and audio cues are weaker, making automatic annotation
more challenging. We will address these ndings and discuss related limitations in future work.
Details of the human evaluation, including the code and assessment results, can be accessed through
the code repository.

Table 9: The scores from manual evaluation of the MERR datasets for ne-grained annotation. The
scores range from 0 to 5, with the Mean representing the average score across all categories.

Volunteer Angry Happy Surprise Fear Sad Worry Neutral Doubt Contempt Mean

Human-1  4.23 4.33 431 419 427 433 4.04 4.55 4.79 4.34
Human-2  4.54 4.78 4.88 481 460 4.62 4.65 4.55 4.68 4.67
Human-3  3.92 4.11 4.25 450 4.00 4.24 3.78 4.27 4.05 412
Human-4  3.69 3.94 3.62 3.69 393 419 3.39 4.00 4.53 3.90
Human-5  3.92 4.72 4.25 406 4.00 4.19 4.17 4.32 4.58 4.26
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Table 10: Correspondence between facial expression labels and Action Units (AUs). Each expression
label is associated with a unique combination of AUs, allowing for accurate mapping between facial
movements and emotional categories.

7

“happy”: [ “AU06", “AU12", “AU14"]

“angry”: [ “AUO04”, “AU05", “AU07”, “AU23", “AU10", “AU17"]
“worried”: [ "“AU28", “AU20"]

“surprise”™ [ “AUO1", “AU02", “AU05", “AU26"]

“sad”: [ "AU04", “AU01", “AU14", “AU15"]

“fear”: [ "AUOL", “AU02", “AU04", “AU05", “AU07”", “AU20", “AU26"]
“doubt”: [ “AU25"]

“contempt”: [ “AU12", “AU10", “AU15", “AU17"]

Table 11: Mapping of Action Units (AUS) to their corresponding textual descriptions. Each AU repre-
sents a speci c facial muscle movement, and the textual descriptions provide a human-interpretable
explanation of the visual cues associated with each AU.

7

“AUO01": [“Inner brow raiser”, “Frown”, “Eyebrow raised”, “Head lifting wrinkles”, “Lift
eyebrows”]

“AU02": [“Outer brow raiser”, “Outer brow lift", “Elevate outer brow”, “Outer brow arch”]
“AU04": [“Brow Lowerer”, “Frowns furrowed”, “Lower eyebrows”, “A look of disapprroval”]

“AUO05": [“Upper Lid Raiser”, “Pupil enlargement”, “Eyes widened”, “Lift upper eyelids”,
“Raise upper eyelids”]

“AU06": [“Cheek Raiser”, “smile, Pleasure”, “Slight decrease in eyebrows”, “Eyes narrowing
“Slightly lower eyebrows”]

“AUOQ7”: [“Lid Tightener”, “Facial tightness”, “Tightening of eyelids”]

“AU09": [“Nose Wrinkler”, “Wrinkle the nose”, “Curl the nose”, “Make a face”, “Pucker the
nose”]

“AU10": [“Upper Lip Raiser”, “Curl the lips upwards”, “Upper lip lift”, “Lips apart showing
teeth”]

“AU12": [“Lip Corner Puller”, “Toothy smile”, “Grinning”, “Big smile”, “Show teeth”]

“AU14": ["Dimpler”, “Cheek dimple”, “Indentation when smiling”, “Hollow on the face when
smiling”]

“AU15": [“Lip Corner Depressor”, “Downturned corners of the mouth”, “Downward mouth
curvature”, “Lower Lip Depressor”]

“AU17": [“Chin Raiser”, “Lift the chin”, “Chin held high”, “Lips arching”, “Lips forming an
upward curve”]

“AU20": [“Lip stretcher”, “Tense lips stretched”, “Anxiously stretched lips”, “Nasal aring”,
“Nostrils enlarge”]

“AU23": [“Lip Tightener”, “Tighten the lips,' 'Purse the lips”, “Press the lips together”]
“AU25": [“Lips part”, “Open the lips”, “Slightly puzzled”, “lips slightly parted”]

“AU26": [“Jaw Drop”, “Mouth Stretch”, “Open mouth wide”, “Wide-mouthed”, “Lips elon-
gated”]

“AU28”: [“Lip Suck”, “Purse lips”, “Pucker lips”, “Draw in lips”, “Bring lips together”]
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Figure 4: Distribution and analysis of Action Units (AUs) in the MERR dataset. The top part displays
the frequency of different AUs across all samples, highlighting the most prevalent facial movements.
The bottom part presents a statistical breakdown of the top ve most frequent AUs for each of the nine
facial expression categories, providing insights into the facial patterns associated with each emotion.
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