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Abstract

Precise image segmentation provides clinical study with instructive information.
Despite the remarkable progress achieved in medical image segmentation, there is
still an absence of a 3D foundation segmentation model that can segment a wide
range of anatomical categories with easy user interaction. In this paper, we propose
a 3D foundation segmentation model, named SegVol, supporting universal and
interactive volumetric medical image segmentation. By scaling up training data to
90K unlabeled Computed Tomography (CT) volumes and 6K labeled CT volumes,
this foundation model supports the segmentation of over 200 anatomical categories
using semantic and spatial prompts. To facilitate efficient and precise inference
on volumetric images, we design a zoom-out-zoom-in mechanism. Extensive
experiments on 22 anatomical segmentation tasks verify that SegVol outperforms
the competitors in 19 tasks, with improvements up to 37.24% compared to the
runner-up methods. We demonstrate the effectiveness and importance of specific
designs by ablation study. We expect this foundation model can promote the
development of volumetric medical image analysis. The model and code are
publicly available at: https://github.com/BAAI-DCAI/SegVol.

1 Introduction

Volumetric medical segmentation, involving extracting 3D regions of interest, such as organs, lesions,
and tissues, plays a pivotal role in medical image analysis by accurately modeling the 3D structural
information of the human body from volumetric medical images such as CT or MRI. The accurate
segmentation can benefit numerous clinical applications including tumors monitoring[1, 2], surgical
planning[3, 4], disease diagnosis[5], therapy optimization[6, 7], etc.

Compared to 2D medical image segmentation[8, 9, 10, 11, 12, 13, 14, 15, 16, 17], volumetric
image segmentation is notably more challenging due to the labor-intensive annotation and resource-
consuming computation. Recently, the research of volumetric medical image segmentation has
garnered substantial attention, leading to a series of advancements[18, 19, 20, 21, 22, 23]. However,
existing volumetric medical segmentation methods have several key limitations which prevent their
application in challenging tasks, e.g., liver tumor or colon cancer segmentation[24, 25, 26, 27], and
real-world tasks, e.g., human-interactive segmentation[28, 29, 30, 31, 32].

Firstly, the publicly available volumetric medical image datasets usually consist of a small number of
mask annotations from a few varying categories. Due to the different label spaces, the traditional
task-specific segmentation models trained on one dataset have difficulty in generalizing to others. For
example, the CT-ORG dataset[33, 34, 24, 35] contains the ‘lungs’ category, while this category is
split into two sub-classes and named ‘left lung’ and ‘right lung’ in the LUNA16 dataset[36]. Hence,
a universal segmentation model has to understand the semantics of anatomical categories. Secondly,
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Figure 1: Overview of SegVol model architecture. SegVol produces precise segmentation of 3D
anatomical structures from volumetric inputs with easy user interactions, including point, bounding
box, and text prompts. Zoom-out-zoom-in mechanism: SegVol initially produces a rough prediction
mask with zoom-out inference, then re�nes it with zoom-in inference on the identi�ed ROI.

traditional segmentation models have inferior performance when segmenting complex structures,
such as tumors and cysts[37]. This is because these models are trained on insuf�cient data and are
also not able to leverage the spatial information through user interaction. Thirdly, previous solutions
are computationally expensive in the inference process. They typically employ a sliding window to
infer the whole volumetric input. This strategy is not only time-consuming but also short-sighted, as
the sliding window contains only local information. Recently, there have been some works[29, 38, 39]
that introduce spatial-prompt into medical image segmentation, shown in Table 1. However, most
of them lack the ability to process the 3D input directly and naturally, and none of them is able to
understand the semantics of anatomical categories.

In this paper, we propose the �rst foundation model for volumetric medical image segmentation –
SegVol. The proposed model enables universal and interactive 3D segmentation of more than 200
anatomical categories, supporting both spatial and semantic prompts. SegVol can also be driven by
the combination of multi-prompt, like `bounding box+text' or `point+text' prompts, achieving high-
precision segmentation and semantic disambiguation. To enable ef�cient and precise segmentation
of volumetric images, we develop a zoom-out-zoom-in mechanism that enables the model to be
ef�cient and precise. We evaluate the proposed SegVol on 22 volumetric medical image segmentation
tasks and the results demonstrate our method surpasses other SAM-like interactive segmentation
methods[28, 38, 39, 29] by a large margin. Extensive case studies and ablation experiments are
also carried out to prove the advantages of SegVol and the effectiveness of the zoom-out-zoom-in
mechanism and multi-prompt combination.

We summarize our key contributions as follows:

1. Collect and process 25 public volumetric medical segmentation datasets, encompassing over
200 anatomical categories. The pseudo label is introduced to relieve the spurious correlation
in the training data.
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Table 1: The different settings and functions of SAM-like interactive segmentation methods.
Prompt Type

Method Image Domain Dimension Training Point Bbox Text Inference Input

SAM[28] Natural 2D Full-Param ! ! ! 1024� 1024
MedSAM[29] Medical 2D Decoder % ! % 1024� 1024
SAM-Med2D[38] Medical 2D Adapter ! ! % 1024� 1024
SAM-Med3D[39] Medical 3D Full-Param ! % % 128� 128� 128
OURS Medical 3D Full-Param ! ! ! Full Resolution

2. Implement massive 3D pre-training on 96K CT volumes and supervised �ne-tuning on the
6k labeled datasets.

3. Support spatial-prompt, semantic-prompt, and combined-prompt segmentation, achieving
high-precision segmentation and semantic disambiguation.

4. Design a zoom-out-zoom-in mechanism that signi�cantly reduces the computational cost,
meanwhile preserving precise segmentation.

2 Methodology

2.1 Dataset Construction

One of the main challenges of training a universal volumetric medical segmentation model is the
absence of large-scale publicly available volumetric medical data, especially CTs with segmentation
annotations. Doing our utmost, we collected 25 open-source segmentation CT datasets, including
CHAOS[40, 41, 42], HaN-Seg[43], AMOS22[44], AbdomenCT-1k[45], KiTS23[46], KiPA22[47,
48, 49, 50], KiTS19[51], BTCV[52], Pancreas-CT[53, 54, 35], 3D-IRCADB[55], FLARE22[56, 57],
TotalSegmentator[58], CT-ORG[33, 34, 24, 35], VerSe19, VerSe20[59, 60, 61], SLIVER07[62],
QUBIQ[63], six MSD datasets[56], LUNA16[36], and WORD[64]. Their detailed information
and availability are shown in the Section A. These CTs originate from various medical institutions,
captured by different machines with varying parameter settings and scanning regions. To standardize
these datasets, we use the mean voxel value of each volume to �lter the background and then perform
normalization on the foreground voxels.

Volumetric segmentation datasets suffer from the notorious problem of partial labels. Most of these
datasets have annotations of only a few segmentation targets, e.g., several organs. Therefore, the
deep models may learn the spurious correlation between datasets and segmentation targets, and thus
produce inferior results during the inference phase. To relieve this problem, we introduce the pseudo
labels by utilizing the Felzenswalb-Huttenlocher (FH)[65] algorithm to generate pseudo masks for
each CT scan. Pseudo masks can supplement unlabeled categories in a dataset, therefore relieving the
spurious correlation problem. To restrain the noise and numerous tiny masks in pseudo labels, we
employ the following strategies: 1) The pseudo masks are replaced with ground truth masks when
applicable. 2) We �lter out tiny structures smaller than 1‰ of the whole volume size. 3) Each mask
is re�ned by dilation and erosion operations.

2.2 Model Architecture

Motivated by the recent advance in 2D nature image segmentation, Segment Anything (SAM)[28],
we design a novel model for interactive and universal volumetric medical image segmentation, named,
SegVol. The model is illustrated in Figure 1. SegVol supports three types of prompts for interactive
segmentation: `bounding box(bbox)' prompt, including the coordinates of two diagonal vertices;
`point' prompt, composed of a set of positive and negative points; and `text' prompt, such as `liver'
or `cervical spine C2'. The model consists of four modules: image encoder, text encoder, prompt
encoder, and mask decoder.

We employ 3D ViT (Vision Transformer)[66, 67] as the image encoder, which exhibits remarkable
advantages over convolutional models[68] when pre-trained on large-scale datasets. The 3D ViT
structure is designed as follows: patch size=(4, 16, 16), layers number=12, heads number=12, hidden
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size=768. We �rst pre-train 3D ViT using SimMIM algorithm[69] on the collected 96K CTs, and
then conduct further supervised �ne-tuning on the 6K CTs with 150K labeled segmentation masks.

One of the main limitations of traditional segmentation models is that the models learn dataset-speci�c
labels encoded as integers which cannot generalized to unseen datasets or tasks, preventing their
real-world applications. We enable universal segmentation across datasets by leveraging the text
encoder from CLIP model[70] to encode the input text prompt, as CLIP[70] has been trained to align
image and text embeddings on web-scale image-text pairs. Given a word or phrase as the text prompt,
we complete it using the template `A computerized tomography of a [text prompt]'[ 71] and then
encode it into text embedding. The off-the-shelf text encoder is frozen during training due to the
limited text data in CT datasets. Following SAM[28], we obtain the spatial-prompt embedding using
positional encoding[72] on point and bbox prompt.

After obtaining the image embedding and prompt embedding, we input them into the mask decoder
and predict the mask. We use self-attention and cross-attention in two directions to fuse the image
embedding and prompt embedding, and then employ the transposed convolutions and interpolation
operations to generate masks. Since text embedding is the key to universal segmentation and it is
also challenging to learn the correlation between text and volumetric regions, we enhance the text
information by introducing a parallel text input branch beside the joint prompt embedding.

2.3 Prompt Generation

SegVol accepts multiple types of prompts, including individual point, bbox, and text prompts, and
also their combinations. To make full use of the segmentation training data, we generate kinds of
prompts for each datum and construct kinds of prompt-mask data pairs for training.

The point prompt is built from ground truth or pseudo masks, consisting of three kinds of points,
namely, positive point, negative point, and ignored point. Positive point means that it is within the
target mask region, while negative points are those outside. Ignored points are utilized to ensure
a uniform length of the point prompts for input completion. Notably, these ignored points are not
considered by the model.

The bbox prompt is generated based on the ground truth or pseudo masks, integrated with random
jitter to enhance the model's robustness. When generating the bbox prompt for some pseudo mask,
the bbox may also cover other masks due to the irregular 3D shapes. To address this problem, we
compute the Intersection over Union (IoU) between the generated bbox and the included pseudo
masks. Any mask with an IoU greater than 0.9 will also be integrated and considered as part of the
target mask corresponding to this bbox prompt.

The text prompts are constructed based on their category names. As pseudo masks produced by the
unsupervised FH algorithm[65] do not have the semantic information, we only use point and bbox
prompts for training on masks of pseudo labels.

2.4 Zoom-out-zoom-in Mechanism

SAM-like interaction with large-volume images is laborious for users, especially in the scene where
the sliding window has to be used due to the limited view of those 3D models. To provide users
with an easy SAM-like interface, we design a zoom-out-zoom-in mechanism, which is ef�cient and
precise, consisting of zoom-out-zoom-in inference and multi-size training. As demonstrated in Figure
1, the zoom-out process involves resizing a volumetric image, which is input into the model with user
prompts to generate a coarse segmentation mask. Then, the Region of Interest (ROI) from the original
image is cropped for zoom-in analysis. In the zoom-in process, a sliding window is used to perform
precise inference driven by prompts generated from the coarse segmentation mask. After that, the
ROI prediction mask will be back-�lled to the coarse segmentation mask to �nish the �nal prediction.
Besides, multi-size training involves augmenting the input data by resizing CTs for the zoom-out
view and cropping them into cubes for the zoom-in view. The zoom-out-zoom-in mechanism realizes
the computational cost reduction meanwhile producing precise segmentation of the ROI.
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2.5 Loss Function

We apply SimMIM algorithm[69] to pre-train the image encoder of SegVol with the masked image
modeling lossL pre-training(� IE; D1). The loss function is as follows:

L pre-training(� IE; D1) =
1


( aM)
jjbM � aM jj1; (1)

where� IE is the parameter set of SegVol's image encoder.a; b 2 RD � H � W are the input voxel
values and predicted values, respectively.M denotes the set of masked voxels,
( �) is the number of
elements, andD1 is the pre-training dataset.

We combine the Binary Cross-Entropy (BCE) loss and Dice loss as the supervised �ne-tuning loss
functionL �ne-tuning(� ; D2) to train the model with trainable parameters� (text encoder frozen).D2 is
the supervised �ne-tuning dataset andx ; y 2 RD � H � W are the predicted mask and ground-truth
mask, respectively.F (�; � ) is the forward function of SegVol. The loss function is as follows:

L BCE(� ; D2) = � E(x ;y ) �D 2 [hy ; log(F (x ; � )) i + h1 � y ; log(1 � F (x ; � )) i ] (2)

L Dice(� ; D2) = 1 � E(x ;y ) �D 2 [
2 � hy ; F (x ; � )i

kyk1 + kF (x ; � )k1
] (3)

L �ne-tuning(� ; D2) = L BCE(� ; D2) + L Dice(� ; D2) (4)

The detailed �ne-tuning algorithm of SegVol is presented in Section B.

3 Experiments

In this section, we conduct extensive experiments on 22 volumetric medical image segmentation
tasks to compare SegVol with other SAM-like medical image segmentation methods[28, 38, 39, 29].
Ablation studies are also carried out to prove the effectiveness of the zoom-out-zoom-in mechanism
and provide more insights about dataset scale and multi-prompt combination. Detailed case studies are
conducted to discuss the disambiguation ability of semantic-prompt and the capability of identifying
the segmentation results with spatial-prompt.

3.1 Experimental Setup

During the pre-training, we follow SimMIM algorithm[69] to train the 3D ViT encoder of SegVol
on the collected 96K CTs for 2000 epochs. In the supervised �ne-tuning stage, we train SegVol
(with the text encoder frozen) on the labeled 25 volumetric medical image segmentation datasets
for 270 epochs with batch size 32 and input size (32, 256, 256), using AdamW optimizer[73].
SimMIM pre-training takes about20 � 8 GPU hours, while �ne-tuning takes about300� 8 GPU
hours. All the above training process is implemented on 8 NVIDIA A100-SXM4-40GB. Three
external datasets[44, 74, 75] and 20% testing data preserved from 25 collected datasets are used in
the following experiments.

3.2 Compared with SAM-like Interactive Methods

Several efforts have been made to construct a SAM-like interactive medical image segmentation
model. However, some of these works, such as MedSAM[29] and SAM-MED2D[38], focus on 2D
tasks and cannot process 3D input directly. The other 3D-based methods, such as SAM-MED3D[39],
only support small cropped input and do not support semantic-prompt segmentation, which are still
far from building a comprehensive foundation model for volumetric medical image analysis.

Competitors and con�gures. In this experiment, MedSAM[29] and SAM(bounding box)[28] use
bounding box prompts. SAM(5 clicks)[28], SAM-MED2D[38] and SAM-MED3D[39] use point
prompts and a �ve-step correction procedure, which means that the point prompt in each step will
be given according to the previous-step output and ground truth, rather than giving all at once. In
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Table 2: Quantitative comparative experiment results for SegVol and other 5 SAM-like interactive
segmentation methods settings in terms of the median value of Dice score.

Dataset Category
SAM(Point)

[28]
SAM(Bbox)

[28]
SAM-MED2D

[38]
SAM-MED3D

[39]
MedSAM

[29] OURS

AMOS22
[44]

Aorta 0.7267 0.4362 0.8704 0.8102 0.3387 0.9273
Bladder 0.4162 0.6281 0.8417 0.4338 0.6799 0.9120
Duodenum 0.1554 0.3192 0.5066 0.3820 0.3066 0.7402
Esophagus 0.2917 0.3541 0.5500 0.5174 0.3610 0.7460
Gallbladder 0.2831 0.6161 0.7999 0.5643 0.6609 0.8763
Adrenal gland(L) 0.0555 0.4222 0.5068 0.4584 0.3766 0.7295
Left kidney 0.8405 0.8274 0.9325 0.8723 0.7909 0.9489
Liver 0.7477 0.5124 0.6904 0.8801 0.6137 0.9641
Pancreas 0.2127 0.3392 0.5656 0.5391 0.3217 0.8295
Postcava 0.2042 0.5251 0.4436 0.6683 0.5211 0.8384
Prostate uterus 0.2344 0.6986 0.7518 0.6231 0.77390.8557
Adrenal gland(R) 0.0452 0.3642 0.1681 0.3708 0.38550.6994
Right kidney 0.8459 0.8215 0.9077 0.8632 0.7851 0.9505
Spleen 0.5936 0.6536 0.9267 0.8591 0.7038 0.9589
Stomach 0.4229 0.3883 0.5399 0.4576 0.4378 0.9123
Average 0.4050 0.5271 0.6668 0.6200 0.5371 0.8593

ULS23
[74]

DeepLesion3D 0.3686 0.7473 0.3258 0.2386 0.7680 0.7065
BoneLesion 0.4461 0.6671 0.1947 0.4447 0.68960.6920
PancreasLesion 0.0675 0.5579 0.5548 0.5526 0.65610.7265
Average 0.2941 0.6574 0.3584 0.4120 0.7046 0.7046

SegTHOR
[75]

Aorta 0.2744 0.3894 0.8077 0.7703 0.3278 0.8439
Esophagus 0.0348 0.2046 0.3578 0.6394 0.2196 0.7201
Heart 0.6695 0.8876 0.6012 0.8325 0.8924 0.8172
Trachea 0.9147 0.1611 0.8306 0.8485 0.1261 0.8807
Average 0.4734 0.4107 0.6493 0.7727 0.3915 0.8155

Figure 2: Violin plots for quantitative comparison experiment results of SegVol and SAM-like
interactive methods[28, 38, 39, 29]. The vertical axis represents the Dice score.

this experiment, SegVol uses bounding box and text prompt which performs better than other kinds
of prompt combinations. Detailed ablation study on prompt combination is demonstrated in Figure
3 (b). In addition, we compare SegVol with traditional task-speci�c segmentation models, e.g.,
3DUX-NET[23], SwinUNETR[20], and nnU-Net[22], in Section C, though the direct comparison is
unsuitable due to the different settings and objectives.

Testing data. To compare with these SAM-like interactive segmentation models, we evaluate the
models on 1,778 cases from the validation set of AMOS22[44], the whole novel annotated set of Uni-
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Table 3: Ablation experiment on the zoom-out-zoom-in mechanism.

Mechanism Dice Score Avg." Time Per Case Avg.#

Resize 0.4509 65 ms
Sliding window 0.6529 3331 ms
Zoom-out-zoom-in 0.7298 190 ms

(a) (b)

Figure 3: (a) The performance of SegVol improves as the training data scales up. (b) The quantitative
experimental results on 19 anatomical segmentation tasks of split 20% test data demonstrate that
using the combination of semantic and spatial prompts can achieve better performances.

versal Lesion Segmentation Challenge 23(ULS23)[74], and the released labeled set of SegTHOR[75].
The validation set of AMOS22 contains 120 cases annotated with 15 major organs. The novel
annotated ULS23 dataset is composed of three subsets, namely, DeepLesion3D, Radboudumc Bone,
and Radboudumc Pancreas. The DeepLesion3D subset contains 200 abdominal lesions, 100 bone
lesions, 50 kidney lesions, 50 liver lesions, 100 lung lesions, 100 mediastinal lesions, and 150 assorted
lesions cases. There are 744 bone lesion cases in the Radboudumc Bone subset and 124 pancreas
lesion cases in the Radboudumc Pancreas subset. The 40 cases from SegTHOR, which are contoured
manually by an experienced radiotherapist, focus on the heart, trachea, aorta, and esophagus that
surround the tumor and must be preserved from irradiations during radiotherapy.

Quantitative results. The quantitative results of comparative experiments are shown in Table 2,
which verify our method is the best in most of the tasks including both lesions and organs, compared
to other SAM-like interactive models[28, 38, 39, 29]. Speci�cally, our method outperforms the
second-ranked SAM-MED2D on the AMOS22 dataset by a signi�cant improvement of 19.25%
(average Dice score). On the SegTHOR dataset, our method surpasses the runner-up – SAM-MED3D
by an average Dice score improvement of 4.28%. The ULS23 dataset, characterized by small patch-
like masks, presents a unique challenge. In this scenario, SegVol still exhibits good performance,
comparable to MedSAM, which excels in using bbox prompts for segmenting small objects. We
visualize the Dice score distributions of all methods in all the tasks as violin plots, depicted in Figure
2. More detailed results and visualization are present in Section C.

3.3 Ablation Studies

Zoom-out-zoom-in mechanism. One of the key designs of SegVol is the zoom-out-zoom-in
mechanism. We compare it with the intuitive resize strategy and the popular sliding window algorithm
on the split 20% test data, 48 cases covering 15 major organs with a variety of sizes, belonging to
the AMOS22[44] dataset. Two evaluation dimensions, i.e., performance (Dice score) and inference
time cost (per case), are compared, as shown in Table 3. The zoom-out-zoom-in mechanism achieves
the best average Dice score and a very competitive inference speed compared to the simple resize
strategy. The reason for computational cost reduction is that the traditional sliding window method
requires scanning the entire 3D CT and processing thousands of windows. In contrast, the proposed
zoom-out-zoom-in mechanism only requires one global inference of 3D CT and then scanning the
ROI with dozens of windows. Detailed experiment results are shown in Section C.
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Scaling up training data. The success of scaling up training data has been witnessed in multiple
computer vision tasks [28, 70]. We conduct an ablation study to investigate the importance of scaling
up training images and masks. The split 20% test data of BTCV dataset[52], which includes 13
main organs, is set as an anchor to evaluate the model trained separately on 1, 2, and 8 datasets
for 500 epochs, as well as the �nal model trained on 25 datasets. The detailed results are shown in
Figure 3 (a). As a lightweight model, the performance of SegVol is weak when only one dataset is
used. However, with the increase of training data, the Dice score increases rapidly, especially in the
text prompt setting. The results indicate that our method is scalable and better performance can be
achieved if more training data is available.

Multi-prompt combination. As a universal model, our approach achieves precise segmentation
for over 200 organs, tissues, and lesions using both spatial and semantic prompts. In Figure 3
(b), we quantitatively analyze the mutually supportive relationship between semantic-prompt and
spatial-prompt in 19 segmentation tasks of the 20% split test data. On the one hand, spatial-prompt
allows the model to locate the speci�c part in the 3D space. According to Figure 3 (b), the average
Dice score of the `bbox+text' prompt is boosted by 5.85% compared to the `text' prompt on average.
On the other hand, semantic-prompt clari�es the reference to the anatomical structure, eliminating
the ambiguity of spatial-prompt and the plausible masks of multiple categories. This is re�ected in
Figure 3 (b) as the average Dice score of `point+text' prompts is 4.62% higher than using `point'
prompts alone. Spatial and semantic prompts mutually support each other, ultimately endowing the
model with powerful segmentation capabilities.

3.4 Case Studies

Disambiguation via semantic-prompt. It is a notorious problem in interactive segmentation that
one spatial-prompt may correspond to multiple plausible outputs [28]. As illustrated in the images on
the top left in Figure 4, three of them correspond to three anatomical concepts, namely, kidney tumor,
left kidney, and the whole kidneys, while they are all plausible to the same point prompt. Similarly, in
the bottom left three images, the bounding box selects the region of the liver. However, liver tumors,
hepatic vessels, and the liver itself are also plausible target structures. In these cases, SAM chooses
to return multiple masks to match different levels of plausible results. Unlike SAM's solution, we
use semantic-prompt to clarify the targets. As shown in Figure 4, the captions below the images
are the text prompts, and the masks in the images are the predictions of SegVol, which show that
semantic-prompt can effectively disambiguate the spatial-prompt.

Identifying the spatial-prompt segmentation. Furthermore, we study the capability of SegVol to
identify the semantic category of the spatial-prompt results. Figure 5 reveals that SegVol can give
accurate semantic categories based on the spatial-prompt results. In the top left image in Figure 5,
the spatial-prompt on the liver results in a 0.997 prediction score for the liver. The top right image in
the sub-�gure shows if the spatial-prompt is the point on the liver tumor, SegVol will output a 0.619
prediction score for the tumor category and a 0.339 prediction score for the liver based on the spatial
relationship of liver tumor and liver. We implement this identi�cation experiment by decoding the
semantic prompts from a category set. The softmax function is applied to the decoding results to get
the prediction probabilities of different categories. The probabilities on the initial predicted mask,
driven by the spatial-prompt, are used to calculate the �nal classi�cation result.

4 Discussion

Scalability. The scaling law of foundation models has been veri�ed in multiple CV and NLP tasks.
Since SegVol uses a transformer-based architecture and self-supervised pre-training algorithm, it
has strong data and architecture scalability. In this work, we achieve the success of scaling law in
3D medical segmentation by the design of universal prompts and pseudo masks for joint learning
on datasets with inconsistent annotations. The ablation study of scaling up training data shows that
1) the performance improves signi�cantly with more training data in the 3D segmentation task, 2)
SegVol has not yet reached its ceiling if more training data is provided. We believe the performance
of SegVol can be continuously improved when more data and computational resources are used.
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Figure 4: The four cases demonstrate that semantic-prompt can clarify the ambiguity of spatial-
prompt and avoid multi-plausible outputs. Each image shows the segmentation result of SegVol using
the spatial-prompt, i.e. point or bounding box, and semantic-prompt, i.e. the caption below the image.

Figure 5: We identify the semantic categories of the spatial-prompt segmentation results. Each image
shows the spatial-prompt and the mask prediction. The bar charts rank the top 8 semantic categories
with the highest classi�cation probabilities. The results show that SegVol is capable of identifying
the anatomical category of the segmentation mask using spatial prompts.

Generalizability to unseen modality. Although we develop SegVol on Computed Tomography
(CT) data due to its advantages of easy acquisition, wide usage, and high resolution, we �nd that
SegVol can generalize to other medical image modality, like MRI. Namely, the SegVol model trained
only on CT data can be used to segment MRI with semantic and spatial prompts. This emerging
ability demonstrates that our foundation model understands the anatomical structure of human body.
We provide detailed experiments and analysis of this generalizability in Section C. The impressive
generalizability makes SegVol a versatile tool in medical image analysis. We leave the joint training
of SegVol on multi-modality data as the future work.

Limitations. Although SegVol shows remarkable semantic-prompt segmentation performance,
there still remains gap between it and the referring volumetric segmentation. A promising solution is
to construct the referring segmentation data with diverse semantic and spatial prompts, and then train
SegVol on it. We leave it as the future work. More discussions can be found in Section E.
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Broader impact. We contribute a foundation model for universal and interactive volumetric medical
image segmentation, which can bene�t numerous clinical study and applications. As a foundational
research work, we do not see any obvious negative societal impact of the proposed method and model.

5 Conclusion

In this paper, we propose SegVol, a universal and interactive volumetric medical image segmenta-
tion model, supporting both spatial-prompt and semantic-prompt segmentation of more than 200
anatomical categories. We construct a large-scale dataset, which consists of 90K unlabeled CTs and
25 open-source medical datasets, to train the foundation model. We design the zoom-out-zoom-in
mechanism to facilitate ef�cient and precise inference in the region of interest. Extensive experiments
on 22 segmentation tasks demonstrate the outstanding performance of our method. Detailed ablation
studies are also carried out to prove the effectiveness of the zoom-out-zoom-in mechanism, dataset
scale, and multi-prompt combination strategy. As a foundation model, we believe that SegVol will
advance the volumetric medical segmentation and bene�t numerous downstream tasks.
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A Dataset Details and Availability

In this work, we collect 25 open-source datasets for supervised �ne-tuning SegVol and some external
open-source datasets speci�cally for comparative experiments. The detailed information on anatomi-
cal categories and dataset scales of these open-source datasets is shown in Table 4. The availability of
these datasets is demonstrated in Table 5. Additionally, to avoid privacy concerns, we collect 90K
unlabeled CTs from publicly accessible professional medical websites: https://radiopaedia.org/.

The collected segmentation datasets include major regions of the human body, i.e., the head, neck,
thorax, abdomen, and pelvis, comprising over 200 categories of organs and tissues, and 28 lesion
tasks from different benchmarks. The detailed categories information are shown in Figure 6 and some
representative samples are shown in Figure 7.

Table 4: Information of datasets involved in supervised �ne-tuning and experiments.

Dataset Anatomical Targets
Category
Number

Trainset
Volumes

3D-IRCADB[55] Liver and liver tumor 47 20
AbdomenCT-1k[45] Liver, kidney, spleen, and pancreas 4 1000
AMOS22[44] Abdominal organs 15 240
BTCV[52] Abdominal organs 13 30
CHAOS[40, 41, 42] Abdominal organs 1 20
CT-ORG[33, 34, 24, 35] Brain, lung, bones, liver, kidney, and bladder 6 140
FLARE22[56, 57] Thoracic and abdominal organs 13 50
HaN-Seg[43] Organs of the head and neck 30 42
KiPA22[47, 48, 49, 50] Kidney, renal tumor, artery, and vein 4 70
KiTS19[51] Kidney and kidney tumor 2 210
KiTS23[46] Kidney, kidney tumor, and kidney cyst 3 489
LUNA16[36] Left lung, right lung, and trachea 3 888
MSD-Colon[56] Colon tumor 1 126
MSD-HepaticVessel[56] Hepatic vessel and liver tumor 2 303
MSD-Liver[56] Liver and liver tumor 2 131
MSD-lung[56] Lung tumor 1 63
MSD-pancreas[56] Pancreas and pancreas tumor 2 281
MSD-spleen[56] Spleen 1 41
Pancreas-CT[53, 54, 35] Pancreas 1 82
QUBIQ[63] Kidney, pancreas, and pancreas lesion 3 82
SegTHOR[75] Heart, trachea, aorta, and esophagus 4 40
SLIVER07[62] Liver 1 20
TotalSegmentator[58] Organs of the whole body 104 1203
ULS23(novel annotated set)[74] Various lesions - 1618
VerSe19[59, 60, 61] Vertebrae 28 80
VerSe20[59, 60, 61] vertebrae 28 61
WORD[64] Thoracic and abdominal organs 16 100

B Training Algorithm

Due to the complexity of the training steps, which include decoder reuse, the combination of different
datasets, and cooperative training of ground-truth and pseudo labels, we abstract the core training
code as Algorithm 1 and Figure 8 to clarify the training process of SegVol. As shown in Figure 8,
each case (training sample) consists of an Imagex , a Ground Truth(GT) Mask SetY , and a Pseudo
Mask SetZ . The training loss of each sample consists of the ground-truth loss and the pseudo loss.
The ground-truth loss is computed by inputting the image, the ground-truth mask (label), and the
sampled prompt into the model, while the pseudo loss is computed by inputting the image, the pseudo
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Figure 6: Overview of the collected datasets for supervised �ne-tuning. The joint dataset comprises
47 important regions, with each region containing one or multiple signi�cant anatomical structures
within that spatial area. Image of the human body by brgfx on Freepik[76].

Figure 7: The joint dataset encompasses various anatomical structures in major regions of the
human body. Several volume examples are demonstrated as 2D slices and 3D shapes in the images
respectively.
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Table 5: Availability of datasets involved in supervised �ne-tuning and experiments.

Dataset Link

3D-IRCADB[55] https://www.kaggle.com/datasets/nguyenhoainam27/3dircadb
AbdomenCT-1k[45] https://github.com/JunMa11/AbdomenCT-1K
AMOS22[44] https://amos22.grand-challenge.org/
BTCV[52] https://www.synapse.org/#!Synapse:syn3193805/wiki/217752
CHAOS[40, 41, 42] https://chaos.grand-challenge.org/

CT-ORG[33, 34, 24, 35]
https://wiki.cancerimagingarchive.net/
pages/viewpage.action?pageId=61080890

FLARE22[56, 57] https://�are22.grand-challenge.org/
HaN-Seg[43] https://han-seg2023.grand-challenge.org/
KiPA22[47, 48, 49, 50] https://kipa22.grand-challenge.org/
KiTS19[51] https://kits19.grand-challenge.org/
KiTS23[46] https://kits-challenge.org/kits23/
LUNA16[36] https://luna16.grand-challenge.org/Data/
MSD-Colon[56] http://medicaldecathlon.com/
MSD-HepaticVessel[56] http://medicaldecathlon.com/
MSD-Liver[56] http://medicaldecathlon.com/
MSD-lung[56] http://medicaldecathlon.com/
MSD-pancreas[56] http://medicaldecathlon.com/
MSD-spleen[56] http://medicaldecathlon.com/
Pancreas-CT[53, 54, 35] https://wiki.cancerimagingarchive.net/display/public/pancreas-ct
QUBIQ[63] https://qubiq.grand-challenge.org/
SegTHOR[75] https://competitions.codalab.org/competitions/21145
SLIVER07[62] https://sliver07.grand-challenge.org/
TotalSegmentator[58] https://github.com/wasserth/TotalSegmentator
ULS23[74] https://uls23.grand-challenge.org/
VerSe19[59, 60, 61] https://osf.io/nqjyw/
VerSe20[59, 60, 61] https://osf.io/t98fz/
WORD[64] https://paperswithcode.com/dataset/word

Table 6: Complexity comparison of popular methods.

Method Total Avg. Avg. Avg.
Parameters MACs Per Case# Time Per Case(s)# Dice Score"

SAM[28] 94M 1.3e+13 2.1764 0.5271
MedSAM[29] 94M 1.3e+13 2.1886 0.5371
SAM-MED2D[38] 271M 2.3e+12 3.5547 0.6668
SAM-MED3D[39] 101M 1.0e+11 0.1768 0.6200
SegVol 181M 6.7e+11 0.3283 0.8593

label, and the pre-designed prompt into the model. Finally, the model is optimized by minimizing the
weighted sum of the two losses.

Besides, we add a reinforcement branch for semantic-prompt in the mask decoder. We further
compute a similarity matrix between the up-scaled embedding from the transposed convolution
output and the text embedding. The element-wise multiplication of the similarity matrix with the
mask prediction is applied before interpolation, after which the model outputs the masks.
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Algorithm 1 SegVol training loop

Input: SegVol model, training imagex , ground truth mask setYx = f y i gn
i =1 , pseudo mask set

Z x = f z i gm
i =1

Output: SegVol model parameters
1: n ( 6 # Number of combinations of 3 prompt types: text, point, and bbox.
2: � ( 0:1 # Pseudo loss weight.
3: # Loop for each category of this case.
4: for i ( 1 to n do
5: f img ( model.ImageEncoder(x )
6: pt spatial, pt semantic, ( prompt_generate(y i )
7: lgt ( 0
8: # Loop for possible prompt combination types of ground truth mask.
9: for p ( 1 to n do

10: # Choose prompt combination type.
11: pt 0

spatial, pt 0
semantic( PromptStrategy(pt spatial, pt semantic)

12: f text ( model.TextEncoder(pt 0
semantic)

13: f prompt ( model.PromptEncoder(pt 0
spatial, f text)

14: pred gt ( model.Decoder(f img, f prompt, f text)
15: lgt ( lgt + DiceLoss(pred gt, y i ) + BCELoss(pred gt, y i )
16: end for
17: lpseudo( 0
18: # Loop for several pseudo masks.
19: for p ( 1 to n do
20: # Random select a pseudo mask of this case for training.
21: zp ( RandomSelect(Z x , [1; m])
22: pt spatial ( prompt_generate(zp)
23: f prompt ( model.PromptEncoder(pt spatial)
24: pred pseudo( model.Decoder(f img, f prompt)
25: lpseudo( lpseudo+ DiceLoss(pred pseudo, zp) + BCELoss(pred pseudo, zp)
26: end for
27: l ( lgt + � � lpseudo
28: update(model,l )
29: end for
30: return model

C Additional Experimental Analysis

Comparative experiments to compare with task-speci�c segmentation models.Task-speci�c
segmentation models mainly fall into two architectures, CNN-based models and Transformer-based
models. We conduct comparative experiments with representative CNN-based models i.e. 3DUX-
Net[23] and nnU-Net[22], and representative Transformer-based models i.e. SwinUNETR[20]. We
conduct additional comparative experiments on the split 20% test set of the datasets. 10 segmentation
tasks are selected from BTCV[52] and MSD-spleen[56] datasets, which focus on organ segmentation,
and from MSD-lung, MSD-colon, and MSD-liver datasets, which focus on lesion segmentation. We
train task-speci�c segmentation models on each dataset individually for each method.

The quantitative experimental results are summarized in Figure 9. Generally speaking, SegVol,
jointly trained on 25 datasets, outperforms traditional task-speci�c segmentation models trained on
a single dataset. Compared to these strong baselines, SegVol exhibits a narrower distribution of
Dice scores across the eight tasks, indicating its robustness and good generalization ability. This
mainly owes to the massive knowledge learned from diverse samples of the same categories but
different datasets. SegVol depicts excellent performance on lesion tasks which are more challenging
in semantic understanding and spatial locating. We present a detailed comparison to nnU-Net[22] on
lesion tasks. As shown in Table 7, the average Dice score of SegVol is 14.76% higher than that of
nnU-Net for lesion tasks. We visualize the prediction results of the two methods in Figure 10, which
intuitively show that SegVol performs more precise segmentation of the tumors than nnU-Net. The
detailed scores and visualization results are presented in Table 9 and Figure 11 12, and 13.
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Figure 8: The demonstration of the training algorithm. Speci�cally, each case (training sample)
consists of an Imagex, a Ground Truth(GT) Mask SetY, and a Pseudo Mask SetZ. The training
loss of each sample consists of the ground-truth loss and the pseudo loss. The ground-truth loss is
computed by inputting the image, the ground-truth mask (label), and the sampled prompt into the
model, while the pseudo loss is computed by inputting the image, the pseudo label, and the �xed
prompt into the model. Finally, the model is updated by minimizing the weighted sum of the two
losses.

Figure 9: Violin plots for comparing experiment results of SegVol and task-speci�c methods. The
vertical axis is the Dice score.

We analyze that there are mainly three factors that make SegVol more powerful than traditional task-
speci�c models: 1) Massive generative pre-training on unlabeled data endows SegVol with a complete
understanding of the volumetric structures and the discriminative feature representations, which is
much superior to learning from a small number of samples. 2) Learning from joint datasets with
semantic-prompt makes SegVol generalize better to unseen data and categories. For instance, SegVol
can learn from both the `left kidney' and `kidney' categories based on their semantic correlation,
while traditional task-speci�c models treat the two categories independently. 3) SegVol can be
prompted with (spatial) points/bboxes, which provide a precise spatial reference, and (semantic) texts,
which disambiguate the overlap of multiple categories in the same space. In contrast, traditional
methods are not able to understand semantics. This ability enables SegVol to perform better than
traditional methods in challenging tasks, e.g., segmenting lesions.
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