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Abstract

The Schrodinger Bridge (SB) problem offers a powerful framework for combining
optimal transport and diffusion models. A promising recent approach to solve the
SB problem is the Iterative Markovian Fitting (IMF) procedure, which alternates
between Markovian and reciprocal projections of continuous-time stochastic pro-
cesses. However, the model built by the IMF procedure has a long inference time
due to using many steps of numerical solvers for stochastic differential equations.
To address this limitation, we propose a novel Discrete-time IMF (D-IMF) proce-
dure in which learning of stochastic processes is replaced by learning just a few
transition probabilities in discrete time. Its great advantage is that in practice it
can be naturally implemented using the Denoising Diffusion GAN (DD-GAN), an
already well-established adversarial generative modeling technique. We show that
our D-IMF procedure can provide the same quality of unpaired domain translation
as the IMF, using only several generation steps instead of hundreds. We provide
the code at https://github.com/Daniil-Selikhanovych/ASBM.
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Figure 1: Our D-IMF approach performs unpaired image-to-image translation in just a few steps,
achieving results comparable to the hundred-step IMF [47]). Celeba [33]], male— female (128 x 128).
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1 Introduction

Recent generative models based on the Flow Matclfidipgnd Recti ed Flows[BO] show great
potential as a successor of classical denoising diffusion models such as DIBPNBfth these
approaches consider the same problem of learning an Ordinary Differential Equation (ODE) that
interpolates one given distribution to the other one, e.g., noise to data. Thanks to the close connection
to the theory of Optimal Transport (OT) probleB?], Flow Matching and Recti ed Flows approaches
typically have faster inference compared to classical diffusion ma@g)38§]. Also, it was shown

that they can outperform diffusion models on the high-resolution text-to-image synthesis: they even
lie in the foundation of the recent Stable Diffusion 3 modeél [8].

The extension of Flow Matching and Recti ed Flow approaches to the SDE are Bridge Matching
(Markovian projection) antterative Markovian tting (IMF) procedures36, /47, [35], respectively.
They also have a close connection with the OT theory. Speci cally, it is kn@wyids] that IMF
converges to the solution of the dynamic formulation of entropic optimal transport (EOT), also known
as the Schradinger Bridge (SB). However, learning continuous-time SDEs in IMF is non-trivial and,
unfortunately, leads tlwng inferencedue to the necessity to use many steps of numerical solvers.

Contributions. This paper addresses the above-mentioned limitation of the existing Iterative Marko-
vian Fitting (IMF) framework by introducing a novel approach to learn the Schrodinger Bridge.

1. Theory I. We introduce a Discrete Iterative Markovian Fitti(-IMF) procedureB.2,[3.3),
which innovatively applies discrete Markovian projection to solve the Schrddinger Bridge problem
without relying on Stochastic Differential Equations. This approach signi cantly simpli es the
inference process, enabling it to be accomplished (theoretically) in just a few evaluation steps.

2. Theory Il. We derive closed-form update formulas for the D-IMF procedure when dealing with
high-dimensional Gaussian distributions. This advancement permits a detailed empirical analysis
of our method's convergence rate and enhances its theoretical foundéidij4.1).

3. Practice. For general data distributions available by samples, we propose an algoigBiM)
to implement the discrete Markovian projection and our D-IMF procedure in pradficg)( Our
algorithm is based on adversarial learning and Denoising Diffusion (B8N Dur learned SB
model uses just evaluation steps for inferenchf.5) instead of hundreds of the basic IN#].

Notations. In the paper, we simultaneously work with the continuous stochastic processes and discrete
stochastic processes in tBedimensional Euclidean spa&® . We denote by (C([0; 1]); RP) the

set of continuous stochastic processes with tirBd0; 1], i.e., the set of distributions on continuous
trajectories : [0;1]! RP. We usedW, to denote the differential of the standard Wiener process.

To establish a link between continuous and discrete stochastic processesNwe Xintermediate
time moment® = tog <t; < <ty <tn+1 =1 together withtg =0 andty+; = 1. We con-
sider discrete stochastic processes with those time-moments as the elements d? {fRPsef! +2) )

of probability distributions orR® (N*2 | Among such discrete processes, we are speci cally
interested in subs@t,.oc (R (N*2) P (RP (N*2)) of absolutely continuous distributions on
RP (N+2) which have a nite second moment and entropy. For any P2 5.5 (RP (N*2)),

For continuous procesk, we denote byp' 2 P (RP (N*2)) the discrete process which is the
nite-dimensional projection off to time moment® = to <t; < <ty <tn+1 =1. Forcon-

variables. In what follows, KL is a short notation for the Kullback-Leibler divergence.

2 Background

We start with recalling the Bridge Matching and Iterative Propotional Fitting procedures developed
for continuous-time stochastic procesde®.1). Next, we discuss the Schrdodinger Bridge problem,
the solution to which is the unique xed point of Iterative Markovian Fitting procedivge2).

2.1 Bridge Matching and Iterative Markovian Fitting Procedures

Modern diffusion and ow generative modeling are mainly about the construction of a model that
interpolates one probability distributigy 2 P .2 (RP) to some another probability distribution

p1 2 P 2.2 (RP). One of the general approaches for this task is the Bridge Matching [29, 31, 3].

Reciprocal processes.The Bridge Matching procedure is applied to the processes, which are
represented as a mixture of Brownian Bridges. Considerﬁhe Wiener phacegsth the volatility
which start afpy, i.e., the process given by the SD; = © dW¢, X  po. Let W0, denote
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the stochastic proce$d conditioned on valuesg; x; at timest = 0; 1, respectively. This process
Wiy x is called the Brownian Bridgelf, Chapter 9]. For somea(Xo; X1) 2 P2.ac(RP 2) with
0(Xo) = Po(xo) andq(x1) = p1(X1) the procesdy get ijo;xldQ(Xo? X1) is called the mixture of
Brownian Bridges. Following47], we say that mixtures of Brownian Bridges formegiprocal class

of processes (for the Brownian Bridge). For brevity, we call these processes just reciprocal processes.

Bridge matching [29, 31]. The goal of Bridge Matching (with the Brownian Bridge) is tB construct
continuous-time Markovian procebs from pg to p; in the form of SDEdxX; = py(x;;t)dt+ "~ dW;.
This is achieved by using thdarkovian projectiorof a reciprocal procesk; = ijo;x1 dqg(Xo; X1),
which aims to nd the Markovian procedd which is the most similar td in the sense of KL:

projy (Tq) d:‘efarg min KL (TqkM);
M 2M

whereM P (C([0;1]); RP) is the set of all Markovian processes. For the Brownian Bridge
Wik it is known [47, 11] that the SDE and the dnftx;; t) of proj, (Ty) is given by:

X1 Xt Tq
ERES p

dx; = vixgdt+ D AW v(xct) = L

(x1jx¢)dxq;

wherep'a(x1jx;) the conditional distribution of the stochastic proc&gst time moments and1.
The processgrojy, (T) has the same time marginal distributiqais(x;) as the original Brownian
bridge mixtureT,. However, the joint distributiom™ (xo;x1) of T4 and the joint distribution
pProm (Ta) (x0:x1) of its projection praj, (Tq) do not coincide in the general case [6], see Figure 2.

Figure 2: Markovian projection of a reciprocal stochastic prodgss

Iterative Markovian Fitting [ 47, 35, 1]. The Iterative Markovian Fitting procedure introduces a
second type of projection of continuous-timg stochastic processes callBedigocal projection

For a process, itis is de ned by proj (T) = WJ.XO;depT (Xo; X1), see illustrative Figure 3.

R
Figure 3: Reciprocal projection of a stochastic processe., prok (T) = WJ.XO;depT (Xo0; X1).

The process prgj(T) is called a projection, since:
projp (T) = argmin KL (TkR);
R2R
whereR P (C([0; 1]); RP) is the set of all reciprocal processes. The Iterative Markovian Fitting
procedure is an alternation between Markovian and Reciprocal projections:
T2|+1 - prOjM (TZl), T2I+2 - pl'OjR (T2l+l ),

It is known that the procedure converges to the unique stochastic prbcesbich is known as a
solution to the Schrodinger Bridge (SB) problem betwpgandp;. Furthermore, the SB is the
only process starting @ and ending ap; that is both Markovian and reciprocal [25].
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2.2 Schrodinger Bridge (SB) Problem
Schrddinger Bridge problem. The Schrédinger Bridge problem4] was proposed in 1931/1932 by
Erwin Schrodinger. For the Wiener prit¢v - Schrédinger Bridge problem between two probability
distributionspy 2 P 2.ac (RP) andp; 2 P 2.5 (RP) is to minimize the following objective:
min KL (TKkW ); 1

T2F (po:p1) ( ) @
whereF (po; p1) P (C([0; 1]); RP) is the subset of stochastic processes which starts at distribution
Po (at the timet = 0) and end ap; (att = 1). The Scrhddinger Bridge has a unique solution, which
is a diffusion proces¥ described by the SDEIX; = v (X¢;t)dt+ = dW, [25]. The procesT
is calledthe Schrodinger Bridgandv : RP  [0;1]! RP is calledthe optimal drift

From the practical point of view, the solution to the SB problEmtends to preserve the Euclidean
distance between start poixg and endpoink,. The equivalent form of SB problem, the static
Schrédinger Bridge problem, explains this property more clearly.

Static Schrodinger Bridge problem.One may decomzpose KLjjw ) as [51, Appendix C:
KL(TiW )= KL p" (xo;x0)ip" (xo;X1) +  KL(TixouliWixou,)dP (X0iX1):  (2)

i.e.,KL divergence betweeh andW is a sum of two terms: the 1st represents the similarity of the
processes' joint marginal distributions at start and nish timhes0; 1, while the 2nd term represents
the average similarity of conditional proces3es .., andeXO;Xl. In [25, Proposition 2.3], the
authors show that it  solves(1), the”zjo;xl = W,,,«,- Hence, one may optimiz@) overT for
Which Tjxix, = Wy, foreveryxo;xy, i.e., over reciprocal processés

1)= min KL p" (xo;x2)jipV (Xo;x1) = min KL g(xo;x1)jip"V (xo;x1) ; (3
®=__ min & KL P (Xo; x1)IIP™ (Xo;X1) UL a(xo; x1)jip"™ (Xo;X1) 5 (3)
where ( po;p1) P 2ac(RP ?2) is the set of joint probability distributions with marginal distribu-
tionspp andp;. Thus, the initial Schrodinger Bridge problem can be solved by optimizing only
over a reciprocal process's joint distributigfxo; x1) att = 0; 1. This problem is called the Static
Schrédinger Bridge problem. In turn, the problem can be rewritten in the following W&a¥E[. 7]:

zZ . o
min KL(gjp™ (xo;x1))= min qu(xo;xl) Entropyg) + C; (4)
a2 ( po;p1) a2 ( Poip1) 2

i.e., as nding a joint distributiorg(xo; X1) which tries to minimize the Euclidian distanéézy—”2
betweenxy and x; (preserve similarity betweery and x;), but with the addition of entropy
regularizer Entropy(q) with the coef cient . Thus, the coef cient > 0, which is the same for all
problems considered above, regulates the stochastic or diversity of samplegfgm;): The last
problem (4) is also known as the entropic optimal transport (EOT) problem [4, 38, 25].

3 Adversarial Schrédinger Bridge Matching (ASBM)

The IMF framework 85, 47] works with continuougtime stochastic processes: it is built on the
well-celebrated result that the only process which is both Markovian and reciprocal is the Schrédinger
bridgeT [25. We derive an analogous theoretical result but for processdisdnetetime. We
provide proofdor all the theorems and propositions in Appendix B.

In MB.1, we give preliminaries on discrete processes with Markovian and reciprocal properties. In
MB.2, we present the main theorem of our paper, which is the foundation ddisarete-time
Iteratime Markovian Fitting (D-IMF) framework. InMB.3, we describe D-IMF procedure itself

and prove that it allows us to solve the Schrodinger Bridge probleB 4, we provide an analysis

of applying our D-IMF for solving the Schrédinger Bridge between Gaussian distributioh. 5n

we present the practical implementation of our D-IMF procedure using adversarial learning.

3.1 Discrete Markovian and reciprocal stochastic processes

Discrete reciprocal processesVe de ne the discrete reciprocal processes similarly to the continuous
case by considering the nite-time projection of the Brownian briﬂg;o «,» Which is given by:

(Xty 5005 Xey JX03 X1) = PV (Xt iXt, 1iX1); )
n=1



. . t t t t 1 t
BY (e xt, +iX0) = N (e e, o+ TPl x, ;S n D Ty g
1 tn 1 1 tn 1
This joint distributionp™ (xy,;:::; Xt }Xo0; X1) de nes a discrete stochastic process, which we call

a discrete Brownian bridge. In turn, we say that a distributi@P .o (R® (N 2)) is a mixture of
discrete Brownian bridges if it satis es

O(X0; Xty 5153 Xey s X1) = PV (Xey ;7105 Xey JX05 X2)A(Xo0; X1);
whereq(xp; X1) denotes its joint marginal distribution gfat times0; 1. That is, its "inner" part
at timesty;:::;ty is the discrete Brownian Bridge. We denote the set of all such mixtures as

R(N) P .4 (RP (N*2 ) and call them discrete reciprocal processes.

Discrete Markovian processesWe say that a discrete procasg P ... (RP (N*+2) ) is Markovian
if its density can be represented in the following form (recall that O;ty+1 = 1):

N{‘I—l
A(X0: Xty s Xtp5 1215 Xey 5 X1) = Q(X0)  AXt, Xty o) ()
n=1
We denote the set of all such discrete Markovian processils@$) P 2., (RP (N*2)),

3.2 Main Theorem

Theorem 3.1(Discrete Markovian and reciprocal process is the solution of static SBhsider
any discrete process$2 P4 (RP (N*2)), which is simultaneously reciprocal and markovian, i.e.
g2R(N)andg2 M (N) and has marginalsj(Xxg) = po(Xo) andq(xX1) = p1(X1):

N1
A(Xo; Xty 105 Xy s X1) = PV (Xey 30105 Xey JX0i X2)0(X0; X1) = A(Xo) a(Xt, JXt, 1)
n=1
Theng(Xo; Xt, ;0705 Xty 3 X1) = p’ (Xo0; Xty ;5705 Xty 3 X1), I.€., itis the nite-dimensional projection

of the Schrodinger Bridg€ to the considered times. Moreover, its joint margig&lo; x1) at times
t = 0; Lis the solution to thetatic SBproblem(4) betweerpy andpy, i.e.,q(Xo;X1) = p' (Xo;X1).

Thus, to solve the static SB problem, it is enough to nd a Markovian mixture of discrete Brownian
bridges. To do so, we propose the Discrete-time Iterative Markovian Fitting (D-IMF) procedure.

3.3 Discrete-time Iterative Markovian Fitting (D-IMF) procedure
Similar to the IMF procedure, our proposed Discrete-time IMF is based on two alternating projections
of discrete stochastic processes: reciprocal and Markovian. We start with the reciprocal projection.

De nition 3.2 (Discrete Reciprocal Projectionpssume that] 2 P,.oc (RP (N*2)) is a discrete
stochastic process. Then the reciprocal projegbiai, () is a discrete stochastic process with the
joint distribution given by:

Projg () (Xo; Xt, ;0105 Xy 5 X1) = pW (Xty ;10 Xty 1Xo0; X1)9(Xo; X1): (8)

This projection takes the joint distribution of start and end paifxs; X1) and inserts the Brownian
Bridge for intermediate time moments, see Figure 4. The prop. below justi es the projection’s name.

Figure 4: Reciprocal projection of a discrete stochastic progass.,
r(Xo; Xty o5 Xey 3 X1) = PV (Xe, 500 Xy, JX05 X1)A(Xo0; X1).



Proposition 3.3(Discrete Reciprocal projection minimizes KL divergence with reciprocal processes)
Under mild assumptions, the reciprocal projectipmojg () of a stochastic discrete procegs2
P2ac (RP (N*2)) s the unique solution for the following optimization problem:
projg (q) = arg min KL (gkr): 9)
r2R (N)
Similarly to the discrete reciprocal projection, we introduce discrete Markovian projection.
De nition 3.4 (Discrete Markovian Projection)Assume that] 2 P,.oc (RP (N *2)) is a discrete
stochastic process. The Markovian projectiomga$ a discrete stochastic procga®jy, (4) 2
P2.ac (RP (N*2)) whose joint distribution given by: w1
Projy (A (Xo;Xt,; 5 Xey 3 X1) = A(Xo)  O(Xt, JXt, ,): (10)
n=1
Despite it is possible to use any discrete stochastic pragassan input to a discrete markovian
projection, in the rest of the paper only discrete reciprocal processes are considered as an input. For
such cases, we provide a visualization of the markovian projection in Figure 5.

Figure 5: Markovian projection of a reciprocal discrete stochastic pragess

As with the reciprocal projection, our following proposition justi es the name of the projection.
Proposition 3.5(Discrete Markovian projection minimizes KL divergence with Markovian processes)
Under mild assumptions, the Markovian projectimojy, (q) of a stochastic discrete proceg®
P2ac (RP (N*2)) is a unique solution to the following optimization problem:

projy (@) = argmin KL (gkm) : (1))

m2M (N)

Now we are ready to de ne our D-IMF procedure. For two given distributign® P 2.4c (RP)
andp; 2 P2 (RP) at timest = 0 andt = 1, respectively, it starts with any discrete Brownian

mixturep”' (X, ;0075 Xty [Xo0; X1)d(Xo0; X1), whereg(Xo; X1) 2 ( Po; P1) \P 2:ac(RP 2). Then, it
constructs the following sequence of discrete stochastic processes:
¢ = projy (o7');  ¢?*? = projg (F'**): (12)

Theorem 3.6(D-IMF procedure converges to the the Schrédinger Bridg#&)der mild assumptions,
the sequencd constructed by our D-IMF procedure converges in Klipto . In particular, g (Xo; X1)
convergence to the solutigl (xg; x1) of the static SB. Namely, we have

Jim KL gdkp' =0; and  lim KL q (xo; x1)kp" (Xo;Xx1) =0:

3.4 Closed form Updates of D-IMF for Gaussian Distributions
In this section, we show that our D-IMF updatd®) can be derived in the closed form for the
Gaussian case. Lep = N (Xoj o; o) andps = N(X1j 1; 1) be Gaussians. Consider any initial
discrete Gaussian procesg P .o (RP (N*2)) that has joint distributiony(xo; X1) 2 ( Po; P1):
def X def def .
xa € 0 a® %5 = 2 dxoixa) TN (o o13)  (13)
1 1 cov 1

where 2 R?P 2D js positive de nite and symmetric and.o, is the covariance ofy andx;. In
this case, the result of updat@d<?) is always a discrete Gaussian processes with speci ¢ parameters.
To show thi&, we introduce twp auxiliar)bmatrickalsz RND 2D gndk 2 RNP ND .

1
(1 t1)|D t1lp tl(l t1)|D tl(l t2)|D L tl(l tN)|D
def 1 t)lp talp def ta(1 t2)lp t2(1 t2)lp :::t2(l tn)lo
U= . . , K= . . .
@ t.N)|D tn .|D t1(1 .tN)|D t2(1 IIN)|D tn (1 .tN)|D

Herelp is an identity matrix with the shage@ D. Below we present updates for both projections.



Theorem 3.7 (Reciprocal projection of a process whose joint marginal distribution is Gaussian)
Assume thag 2 P ».,c (RP (N*2)) has Gaussian joint distributiog(xo; x1) given by(13). Then

: Xin . U df K +U UT U
[projg cl(xini Xo:x1) = N.( b ] = % 5 R)i RS Ty (14)

Theorem 3.8 (Markovian projection of a discrete Gaussian proces&$sume thatq 2
P2ac (RP (N*2)) s a discrete Gaussian process wiffxo; X1) given by(13) and the density

A(Xin; X0; X1) = N ( ;((')”1 Ioe i8R i =6 )i
where i, and €g are some parameters gf Then its Markovian projection is given by:
N{l—l
[Projy al(Xin;Xo0;X1) = A(Xo)  A(Xt, X, 1)i A%ty X, )= N (X, jbr, (e, )i Pe,);

n=1

btn (th 1): tn +(eR)tn;tn l((eR)tn l;tn 1) 1(th 1 tn l)’
B = (CR)titn  (BR)titn +((BR)t 1ty 1) “((BR)Gytn )T
In turn, the joint distribution{proj,, dl(Xo;X1) is given by

. Xo 0 01 hiyt i
[projy cl(xo;x1) = N 2§ 0 (o) 1 0 o = (CR)tra ta (BR)tyita) * 0
n=1

Here(€Rr)t, 1; IS the submatrix ofr denoting the covariance of, andxy, , while ¢ and ; are
covariance matrices ofp andxq, respectively.

Thus, if we start D-IMF from some discrete proce@svith marginalsg®(xo) = po(Xo), a°(x1) =

p1(x1) and Gaussiag(xo; X1), then at each iteration of our D-IMF procedufewill be discrete
Gaussian process with the same marginals and eventually will conveggeltoMt.1, we use our
derived closed-form to perform an experimental analysis of D-IMF's convergence depending on the
number of intermediate time momerMsand the value of coef cient.

3.5 Practical Implemetation of D-IMF: ASBM Algorithm

To implement our D-IMF procedure in practice, one should choose the prgtass implement both
discrete Markovian and reciprocal projections. Note that one is usually not interested in the processes
density but only needs the ability to sample endpoxitéor trajectorieo; X, ;:::; Xt ; X1) given

a starting poinko (= Xt,). Thus, to solve SB betweg®i(xo) andp; (x1) one should choos# to

have start and end marginal¥(xo) = po(Xo) andg®(x1) = p(x1) accessible by samples.

Implementation of the discrete reciprocal projection. The reciprocal projectio(8) of a given
discrete procesy(Xo; Xin; X1) iS easy if one can sample fronixo; X1). To sample fronprojy (q) itis
enough to sample rsta pa(xo; X1)  d(Xo; X1) and then sample intermediate poirts; :::; X,

formula(5) where the involved distribution®) are simple Gaussians which are easy to sample from.

Implementation of the discrete Markovian projection via DD-GAN. To nd the Markovian
projection(10) of a reciprocal process 2 R (N ), one just needs to estimate the transition prob-
abilities between sequential time moments, i.e., thef get;, jx;, ,)d\-; and use the starting

marginal[projy, dl(Xo) = d(Xo) = Po(Xo). The natural way to nd transition probabilities is to set

to parametrize all these distributionsfag (x:, jx;, ,)d\-; and solve
DS
min Eqixi, ,)Daav (X, 1%ty iid (Xe, iXe, 1) 3 (15)
n=1

whereD 44y is Some distance or divergence between probability distributions. In this case, a minimum
of such loss is achieved when(x;, jXt, ,) = a(Xt,jXt, ,)foreachn 2f1;2;:::;N +1g.

We note that a related setting is considered in the Denoising Diffusion GANs (DD-GANK3ded.
4]. The difference is in the nature qf thereq comes from the standard noising diffusion process,
while in our case it is a given reciprocal process. Overall, the authors show that problefis)ike



can be ef ciently approached via time-conditioned GANs. Therefore, we naturallyQilckc AN
approach as the backbore learn our discrete Markovian projection and use their best practices.

In short, following DD-GAN, we parameterize (X, jX;, ,) Via a time-conditioned generator
networkG (X, ,:Z;tn 1). Asin DD-GAN, we use the non-saturating GAN lod9][as D 4qy,
which optimizes softened reverse KL-divergend§][ To optimize this loss, an additional conditional
discriminator networlD (X;, ,;Xt,:tn 1) is needed. We do not recall technical details here as they
are the same as in DD-GAN. For further detaitsDD-GAN learning, we refer to Appendix D.1.

Note that after learningqg (x:, jXt, 1)g,’¥=+11 the sampling assumes to take sample fipiixg) =

p(xo) and then sample frorg (x;, jx, ,)gh-1 . Hence it is guaranteed tha#(xo) = p(Xo), but

there may be an approximation error in estimatipfx1) p(X1). This is due to the asymmetry of
the de nition of Markovian projection, i.e., it can be written in two equivalent ways:

N+l N+l
Proju (@) (XoiXe 3 iXey i X1) = q(X0)  A(Xe,1Xe, o) = A(X1)  A(Xe, 4JXe, )

n=1 n=1

Analogously to the implementation of IMRT, Algorithm 1], we address this asymmetry in our
D-IMF by alternatively learning Markovian projection in forward and reverse directions. To learn

Markovian projection in the reverse direction, we just need to use starting magiog al(x1) =

p1(x1), parametrizé q (x;, ,jXt,)oh-i and solve:

X+l
min Eqxi,)Padv d(Xt, 10X, )iid (Xe, 10Xt,) (16)
n=1

In this casey(x1) = pi(Xy) is guaranteed, whilg(xo)  po(Xo).

Implementation of the D-IMF procedure (ASBM algorithm) . We start with initialization of® by
the reciprocal process. Depending on the setup we use initialization with the independent coupling,
i.e. 0°(Xo; X1) = po(Xo0)p1(X1) or a minibatch OT coupling [9, 39], see Appendix D.3 for details.

We follow the best practices of IME[] and in the Markovian projection steps, we alternately learn
models in the directiopg! p; and in the reverse directign! po by using functional¢15) and

(16) respectively to avoid the accumulation of errors due to the asymmetry in the de nition of the
Markovian projection. For details, see Appendix D.2. At the reciprocal projection steps, we use
the modely (Xo: Xin; X1) Or g (Xo; Xin: X1) learned to approximatg?'*! to sample paifxo; X1) and

then sample intermediate points from Brownian bridge. We use thedeten iteration (K ) for a
sequence of two reciprocal projections and two Markovian projections in different directions.

3.6 Relation to Prior Works

There exists a variety of algorithms for learning SB based on different underlying principles: dual
form entropic optimal transport algorithms, [34, 24, 11, 12, 45], iterative proportional tting (IPF)
algorithms p1, 7, 2], bridge matching49, 29] and iterative Markovian tting (IMF) algorithms

[47, 35, 28, 20], adversarial algorithm<fl], etc. We refer to 13] for a benchmark and td2@, Table

1] for a quick survey of many of them. In turn, in our paper, we speci cally focus on the advancement
of IMF-type algorithms 47, 35] as it they are not only theoretically well-grounded but also closely
connected to the recti ed ow approacB3(] which works well in large-scale generative modeling
[32, 54]. Below we discuss the relation of our contributiol)(to the prior works in IMF [47, 35].

Theory |. As we detailed invR, basic IMF operates with stochastic processes in continuous time
and iteratively performs Markovian and reciprocal projections. Our D-IMF proced@)edpes the
same but in the discrete time, so it migtgceptivelyseem like our D-IMF is just an approximation

of IMF. However, this is a misleading viewpoint. Indeed, the Markovian projection in the discrete
time, in general, does not match with the continuous time Markovian projection. Still our D-IMF
procedureprovablyconverges to SB. Furthermore, D-IMF procedure can theoretically work with
just one intermediate time step (whi¥n= 1). Overall, its convergence rate varies depending on the
number of intermediate points, sk#.1. Naturally, we conjecture that in the lilNt ! 1 (when

and continuous Markovian projections start to be close, see discussion in [47, Appendix E].

Theory 1. In MB.4, we derive the closed-form expression for our D-IMF updates in the Gaussian
case. For the continuous IMF, there exists an analogous r&8sulf.1]. However, unlike our result,



(a) Dependence on the number of time stdps  (b) Dependence on the variancef the prior process.
Figure 6: Dependence of convergenceof D-IMF procedure oiN and .

that one is not explicit in the sence that it requires solving the matrix-valued GREEf. 39] to get
the actual projection. The analytical solution is known only wBen 1, i.e., 1-dimensional case,
see also [47, Appendix D]. In contrast, our Gaussian D-IMF updates work in any diméhsion

Practice. Default continuous-time IMF47, 35] in practice is naturally implemented via the Bridge
Matching approach which learns an SDE. In our case, at each D-IMF step we learn several transi-
tional probabilities and do this via also well-established adversarial techniques. In this sense, our
practical implementation differs — each approach is based on its own backbone — bridge matching vs.
adversarial learning — and naturally inherits the bene ts/drawbacks of the respective backbone. They
are fairly well stated in the discussion of the generative learning trilemma in [53].

4 Experiments

We evaluate our adversarial SB matchiaéBM) algorithm, which implements our D-IMF procedure

on setups with Gaussian distributioM8t(1) for which we have closed form update formulls®.4)

and real image data distributiong(2). We additionally provide results for an illustrative 2D example

in Appendix C.1, results for the Colored MNIST dataset in Appendix C.3, and results on the standard
SB benchmark in Appendix C.2. The code for our algorithm and all experiments with it is written in
Pytorch , is available in the supplementary materials, and will be made public. We provide all the
technical details in Appendix D.

4.1 Gaussian-to-Gaussian Schrodinger Bridge

We analyze the convergence of our D-IMF procedure depending on the number of intermediate time
stepsN 1 (we uset, = n=N + 1) and the value> 0in the Gaussian case. In this case, the static

SB solutionp” (Xo; X1) is analytically known, see, e.g1§]. This provides us an opportunity to
analyse how fast KLd (Xo; X1)kp" (Xo;X1) decreases when 1

We conduct experiments by using our analytical formulas for D-IMF fi@wt. We follow setup from

[12] and consider Schrédinger Bridge problem with the dimensionBlity 16 and 2 f 1; 3; 10g

for centered Gaussiamg = N (0; o) andp; = N (0; 1). To construct o and , sample their
eigenvectors from the uniform distribution on the unit sphere and sample their eigenvalues from the
log uniform distribution orf log 2; log 2]. We use the sam@ andp; for all experiments.

We start our D-IMF procedure from the reciprocal process Wiixo; X1) = po(Xo)p1(X1), i.e.

from the independent joint distribution at times= 0;1. We present the convergence plots in
Figures 6a and 6b. In both plots, we usk 1° as a threshold corresponding to the exact matching of
distributions to prevent numerical instabilities. We see that our D-IMF procedure empirically shows
the exponential rate of convergence in all the cases. As we can see from Figure 6a, the convergence
speed dependence bhquickly saturates. Thus, even several time moments,N.g.5, provide

quick convergence speed. From Figure 6b, we clearly see that the convergence speed is highly
in uenced by the chosen value of the parametdfor instance, the transition from=1 to =10

requires ten times more D-IMF iterations. Thus, this hyperparameter may be important in practice.

4.2 Unpaired Image-to-image Translation

To test our approach on real data, we consider the unpaired image-to-image translation setup of
learningmale! femalefaces of Celeba datas&3. We usel0% of maleandfemaleimages as

the test set for evaluation. We train our ASBM algorithm based on the D-IMF procedure with

and = 10. Following the best practices of DD-GANJ|, we useN = 3, intermediate times

ty = %;tz = %;t3 = % andK =5 outer iterations of D-IMF. We provide qualitative results and

the FID metric [L4] on the test set in Figures 7b and 7e. Since weNise 3 intermediate time
moments, our algorithm requires orfynumber of function evaluations (NFE) at the inference stage.



(@x po (b) ASBM (ours), =1 (lower diversity) (c) DSBM [47], =1 (lower diversity)
FID =16:08 NFE=4. FID = 37:8, NFE= 100.

(d)yx po (e) ASBM (ours), =10 (higher diversity) (f) DSBM [47], =10 (higher diversity)
FID =17:44, NFE= 4. FID = 89:19, NFE= 100.
Figure 7: Results of Celebmald femaletranslation learned with ASBM (ours), and DSBM
learned on Celeba dataset with 128 resolution size fof 1; 10g.

We focus our comparison on the DSBM algorithm based on the IMF-procedidrsifice it is closely
related to our method. We train DSBM following the authatg jand useNFE = 100. As well as

for ASBM, we useb outer iterations of IMF, corresponding to the same number of reciprocal and
Markovian projections, but for continuous processes. We use approximately the same number of
parameters of neural networks used for models in Markovian projections for ASBM and DSBM (see
Appendix D.3). For other details, see Appendix D.4. We present results for DSBM in Figure 7c¢
and Figure 7f. Our algorithm provides better results while using drdyaluation steps. Further
additional results and measurements for ASBM and DSBM algorithms on the Celeba dataset are
presented in Appendix E.

Thus, our D-IMF procedure allows us to solve the Schrdédinger Bridge ef ciently without learning
the time-continuous stochastic process, which in turn speeds up inference by an order of magnitude.
This aligns with the results obtained in the Gaussian-to-Gaussian setups about exponentially fast
convergence of D-IMF even with several intermediate time moments.

5 Discussion

Potential impact. Beside the pure speed up of the inference of IMF, we want to point to another
great advantage of our developed D-IMF framework. In the continuous IMF, one is forced to do
Markovian projection via time-consuming learning of continuous-time SDEs (using procedures like
bridge matching). In our D-IMF framework, one needsdarn several transition probabilities. We

do this via adversarial learnind (], but actually this can be donesing almostany other generative
modeling technigue(moment matching46], normalizing ows [23, 41], energy-based model56],
score-based modeldd], etc.). We believe that this observation opens great possibilities for ML
community to further explore and improve generative modeling algorithms based on Schrédinger
Bridges, Markovian projections (bridge matching) and related techniques, e.g., ow matching [27].

Limitations and broader impaate discussed in Appendix A.
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A Limitations and Future Work

Adversarial training . It is a generic knowledge that the adversarial training may be non trivial to
conduct due to instabilities, mode collapse and related issues. Fortunately, our ASBM algorithm relies
on the already well-established and carefully tuned DD-GAS] fechnique as a backbone. The
latter is speci cally designed to address many such limitations and is known to score good metrics in
generative modeling.

Theoretical convergence rate We derive the generic convergence result for our D-IMF procedure
(Theorem 3.6) but without the particular convergence rate. Empirically we observe the exponentially
fast convergencev.1), but theoretically proving this rate is an important task for the future work.

Broader Impact. This paper presents work whose goal is to advance the eld of Arti cial Intelli-
gence, Machine Learning and Generative Modeling. There are many potential societal consequences
of our work, none which we feel must be speci cally highlighted here.

B Proofs

Here we provide the proof of our theoretical results one-by-one. Additionally, we introduce and prove
several auxiliary results to simplify the derivation of the main results.

B.1 Proofs for Statements in Section 3.2

In our view, the proof of our main Theorem here is the most interesting and insightful (among all the
proofs in the paper) as it uses some tricky mathematics, especially in its stage 2. In turn, stage 1 of
the proof is inspired by the recent insights &8] Theorem 3.2] about the characterization of static
Schradinger Bridge solutions [25] and manipulations with KL for SB in [24, 11].

Proof of Theorem 3.1We split the proof in 2 stages. The 1st is auxiliary for the 2nd.

Stage 1.Here we show that if Som&(Xo; X1) 2 P 2.ac (RP ?) with marginalspo(xo) = d(xo) and
p1(x1) = g(x1) has the density in the form

jiXx1  Xojj?

2
then it solves the Static SB between distributipgéxg) andp;(x1). It is known 25], that the
solutionqg (Xo; X1) gef P’ (Xo;X1) of Static SB betweepy andp; has the density:

a(x0; X1) = d(Xo)®(xo) exp b(x1);

iX1  Xojj2
q o= (xoexp TNy
Hence, the conditional density (x1jXg) is expressed as:
. X iX1  Xojj? ix1  Xojj?
g (i) = —oD gxp DX Xy o xgexp  BXLXAE (.
pogxo% 2 2
[={z=
£e (xo)

Thus, bothg(Xxg; X1) andq (Xo; X1) have their densities in the same functional form and the same

marginalsg(xo) = g (Xo) = po(Xo) andq(x1) = g (x1) = p1(X1). However, we want to prove

that in this case|(Xo; X1) andq (Xg; X1) are equal, i.e., Kltqg kg) = 0.

9 (XoiX1)

a(Xo; X1)
Po(X0)q (X1jXo)

0g——F————~
Po(Xo) d(X1jXo0)

Z| C (xo)exp X xel®  (x)
(0]

KL (g (Xo;X1)kq(Xo;X1)) =  log g (Xo; X1)dXodxy =

g (Xo; X1)dxodxy =

g o’ b g (Xo;X1)dXedxy =
O(xo)exp DX Xl Dbyy,)
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z

C (Xo) (x1) . _
) (log B(xo) +Zlog bxy) )d (Xo; X1)dXodxy =
log c (XO)q (Xo;X1)dxedx1 +  log (Xl)q (Xo; X1)dXodXx1 =
B(xo) 7 g(xl)
C (Xo) (X1)
log B(xo) Po(Xo)dxo +  log bxy) p1(x1)dxy =
c Z
log (XO)q(xo;xl)dxodxl + log (x1) A(Xo; X1)dXedxy =
A(xo) Z b(x,)
C (xo) (X1)
| | 1 X1)dXodXq =
(log %(XO) +log B(x,) )A(Xo; X1)dXodXy
C (Xo) (x1) . _
log WQ(XO,XDdXdel =
Z C(xgexp upeiit o (x))
log - = 0(Xo; X1)dXodXy =
B(xo)exp L Xl bx,)
q (X1jXo) . _
log WQ(XO, X1)dxodxy =
Po(X0)d (X1jXo) . _
Polo)alxsjxg) X0V
q (Xo;X1) . _
log WQ(XO,Xl)dXodxl =
log %q(xo;xgdxodxl = KL (g(xo; x1)kq (Xo;X1)) :

Thus, KL(g kg) = KL (gkq ). Since the KL divergence is non-negative, we derive tfratq .
Stage 2.In this stage, we prove the theorem itself. FirsiNif> 1, i.e., there is more than one

exceptt;. On the one hand, we get
Z

ad(Xo; Xt,; X1) = A(Xo; Xty 30005 Xey s X1)AXp, D1i0X,, =
Z

pW (Xty5 7005 Xty 1X05 X1)A(Xo; X1)dXt, 100X, = pW (Xt,JXo0; X1)d(X1; Xo): an

Z =a(xt, ;:::;?ltN ;xlixt{)

1
d(Xo; Xt;;X1) = d(X0)d(Xt, jXo) A(X, JXt, 1) dX, tridXey = 0(Xo)d(X,JXo0)A(X1jXt,): (18)
n=2
Combining (17) and (18) yields
(X)X, jXo)U(X1jXt,) = A(Xo; Xty 5 X1) = PV (Xi,jXo; X1)0(X1; Xo): (19)

Note that ifN = 1, then we already have (19) from the conditions of the theorem. Therefore,
PV (Xt,iX0;X1)A(X1; X0) = 0(X0)A(Xt, jX0)A(X1jXt,)

P (Xt,i%0; X1)a(X1jX0) A(X0) = d(X0) A(Xt, [X0) (XX, ):
From now on, we are interested only in 3 time mometys: 0;t; andty+1 = 1. To simplify the
notation, we will writet instead ot in the following proof. We take the logarithm and get

log q(x1jxo) = log q(x¢jxo) +log q(x1jx¢) logp" (X(jXo;X1)
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Then, we use the formula for the Brownian Bridge density:

logd(x1jXo) = log d(x¢jXo) +log q(x1jx;) C fixe (txa+(1  t)xo)jji* =

1
+

2t(1 t)

logq(x¢jxo) +log q(x1jx;) C+

m(J]XtJJ2+JltXl]JZ+JJ(1 Dxoji?  2tx{x1 21 t)x{Xo+2t(L t)x{x1)=
logq(xtjXo) +log q(x1jxt) C+
jixiji? +J'J'(l t)XoJ'J'Z+ jitx1jj X{ X1 XtTXo+X5X1:
2t(L ) 2t © 2t@ ) (@ 1t t
, jixeji® jitxaji? X{ X1
:OQQ(XﬂXt)*‘ 2t 1) {ZZt(l 0 a0 C+

® 3 (xe3x1)

i@ Uil xIXo , XX,

+1og q(XtjXo)

2t(1 t t
20 4 )
®, (x¢X0)
Thus,
- ) ) Xg X1,
logq(x1jXo) = f1(Xt;X1)+ fo(X;Xo) + ;
. Xgx
log q(x1jXo) 0L = £ (x;x1) + Fa(Xt;Xo);
| {z }
% 5 (xoix1)
fa(Xo;x1) = F1(Xe;x1) + Fa(Xt; Xo): (20)
Below, we prove thats(Xo; X1) = g1(Xo) + g2(X1) for some functiong; andg,. We note that
fa(xp;0) = f1(X¢;0) + fo(X¢;Xo) ) fo(Xt;Xo) = f3(X0;0)  f1(X¢;0): (22)
We substitute (21) to (20):
fa(Xo;X1) = f1(Xe;X1) + Is(Xo; 0){7 f1(X¢; 0})
=f2(Xt:Xo)
fa(Xo;X1) f3(X0;0) = f1(Xe;X1)  fa(X¢;0): (22)

Since there is no dependencexanin the right part of(22), we conclude thatt3(xo; X1)  f3(Xg;0)
is a function of onlyx;. We de negi (x1) £ fa(xo:x1)  fa(xo;0) andgs(xo) X' 3(xo; 0). Now
we have the desired result:

f3(XoiX1) = Gu(X1) + f3(X0;0) = cu(X1) + G2(Xo): (23)
Thus,

X X1

f3(Xo0:X1) = log q(X1jXo) = gi1(X1) + G2(X0):

Now, we can use this result about the separation of variables together with the result from the rst
stageto conclude the proof of the theorem.

XgX1 _

logq(x1jXo) = G1(X1) + g2(Xo) +

jixaji? lixoli® jixo  Xaji*

Gu(x1) + — O (Xo) + 5 5 ;
| - o Mg
q(X1iX0) = €Xp  Ga(Xo) + % exp ”0271” exp gu(x1) + % =
| {z } | {z }
£e o) £ ()
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jixo xajj?
2

jixo xajj?
2

d(X1jXo) = C(Xo) exp (x1);

a(Xo; X1) = d(Xo0)C(Xo) exp (x1):

Hence, from the rststageof this proof it follows thatg(xg; X1) is the solution to the Static SB
betweenqg(xo) = po(Xo) andq(x1) = pi(x1) with the coefcient . Thatis,p’ (Xo;X1) =

a(Xo; X1). Sinceq(Xy,;:::; Xty jX0;X1) = PV (X¢,:::05 Xy, JX0; X1) by the assumptions of the
current theorem, we also conclude th@to; X, ; 0 Xy ;X1) = P (Xo; Xy 55005 Xey 3 X1), 1-€., the
discrete processes coincide. O

B.2 Proofs for Statements in Section 3.3

The logic of our justi cation of D-IMF for discrete processes generally follows the respective logic
of the justi cation of IMF for continuous stochastic processes [47].

Proof of Proposition 3.3.The mild assumption here consists in the existence of at least one process
r 2 R (N) for whichKL (gkr) < 1 . The reciprocal process2 R (N) has its density in the form
F(Xo; Xy o0 Xey s X1) = PV (Xey 50003 Xey JX05 X1)1 (Xo; X1) (see(7)). Thus, we need to optimize
only the partr (Xg; X1). Below we show, that(Xg; X1) should be equal(Xg; X1) to minimize the
functional.

a(Xo; Xin; X1)
I (Xo; Xin; X1)
d(XinjXo; X1)d(Xo0; X1)
[(xinié&; r(Xo; X1)

pW  (XiniXo:X1)

Z
KL (gkr) = log A(Xo; Xin; X1)dXedXjndXx1 =

0(Xo; Xin; X1)dXodXindx1 =

a(Xo; X1)

a(XinjXo0; X1) iy )
I a(Xo; Xin; X1)dXodXjndx1 + log r(Xo: X1)

PV (XinjXo; X1)
Z
= d

a(Xo; Xin; X1)dXodXindXy =

MQ(Xoixl)dXodxl = Const+ KL (g(Xo; X1)Kr(Xo; X1))
r(X0§X1){Z }

=KL(q(xo:x1)Kr (X0:X1))

Const+  log

Hence, prgj (g) = argmin 55 (v KL (gkr) = PV (XinjXo; X1)a(Xo; X1). O

Proof of Proposition 3.5.Similar to the previous proposition, the mild assumption here consists
in the existence of at least one proces M (N) for which KL (gkm) < 1 . This proof is a

bit more technical than for the reciprocal projection. We need to de ne new nobe{tf@g .=

(Xtgs i3 Xt, 3 Xtn. 5505 Xty +, ) fOr @ vector of variables for all time moment except two time
moments, andt, ;1.

a(Xo; Xin; X1)
m(Xo; Xin; X1)
g(Xo; Xin; X1)

N4 .
I}](XO) E:;Ll m(thJth 1)

z
KL (gkm) = log
z
log

d(Xo; Xin; X1)dXodXindxy =

0(Xo; Xin; X1)dXodXindx1 =

X Xins X1]X
log ri((xoo)) A(Xo; Xin; X1)dXodxindxy +  log © N:?f( r'; (thnj J;’[) 5 A(Xo0; Xin; X1)dXodXindXy =

X Xin: X1jX
log r?](( 0)) g(xo)dxo+ log QN?;E in 1J.o) A(Xo: Xin: X1)dxXo =
| )i% } n=1 m(thJXIn 1)
KL(q(xo)km (x0))
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z .
Xin) X1jX
KL (g(xo)km(xo)) +  log QN?I( niXaX0) o Y dxodxindxg + (24)

n=1 m thJth 1)

N log wq(xm Xin; X1)OXodXindxy +  log A(Xo) 0(Xo; Xin; X1)dXodXinX1 = (25)
a(Xo; Xin; X1) a(xo)
I {z ol {z }
=0 =0
Z Q N +1

1 g(Xo; Xin) X
KL (a(xo)km(xo)) +  log ©2=% A0%o; Xin; X1) a(Xo; Xin; X1)dXodXindX1

n=1 m(thjxin 2)

Z
N logq(Xo; Xin; X1)A(Xo; Xin; X1)dXodXindxy +  logq(Xo)g(Xo)dXedXindx; =
IX+1Z

KL (a(xo)km(xo)) + log
n=1

A(Xo; Xin; X1)

qu(o; Xin; X1)dXodXindX1

Z
N logq(xo; Xin; X1)d(Xo; Xin; X1)dXodXindX1 + 109 Q(X0)d(Xo)dXedXindXxy =
| {z }

def
:ecl

KL (g(xo)km(xo)) Ci+
IX+1 Z
a(Xo; Xins X1)dXodXindXy =

q(thjXIn 1)q(th 1)Q(XP,?Etn 1thn;th 1)
log -
n=1 m(thJth 1)
N+ Z

KL (a(xo)km(xo)) Ci+ log a(xe, )a(X{%, iXt,:Xt, 1) G(Xo; Xin; X1)dXo0XindXy +
| - {z }

def
=C,

I+l Z

log a(Xt, JXt, )

m‘l(xo;Xin;Xl)dxodxindx1 -

n=1

a(Xt, JXt, ;)
m(Xt, jXt,

)+l Z
KL (a(xo)km(xo)) + Cz + log
n=1

a(Xt, jXt, )dXe, aA(Xt, ,)dxi, , =
}

KL(a(Xtq ixt, )km Xty jXe, 4))
IX+1 4
KL (q(xo)km(xo)) + KL q(ththn 1)km(xtnjxtn 1) q(th 1)dth 1 + Cz:

n=1
In the line (25), we add terms equal to zero, to match eat{x;, jx;, ,) by the separate term
g(Xo; Xin; X1) in the line(25). We need it to as we want to place each tenfx., jx;, ,) in the
separate KL-divergence in the nal expression. Hence, the minimizer of the objectiaM (N)
hasm (Xo) = q(xo) and all transitional distribution® (X, jX:, ,) = a(Xt,jXt, ,),i.€.is given

by

N+l

m (Xo; Xin; X1) = [ Projy (l(Xo; Xin; X1) = A(Xo) a(Xt, JXt, 1)
n=1

O

Proposition B.1 (Pythagorean theorems for projectiongssume that 2 R (N) andm 2 M (N).
IfKL (rkm) < 1 and KL(rkprojy, (r)) < 1 ,then

KL (rkm) = KL (rkprojy (r))+ KL (projy (r)km) (26)
and if KL(mkr) < 1 , KL (mkprojg (m)) < 1 then

KL (mkr) = KL (mkprojg (m)) + KL (projg (m)kr)

Proof of Proposition B.1.Before proving the rst equatio(26)we prove the additional property of
r2R(N)foranyn 2 [1;2;:::;N +1]:

[prOJM I’](th ;th 1) = I’(th ;th 1):
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[projy rl(Xt, X, 1) =[Projy ri(Xt, iXt, IProjy ri(Xt,) = r(Xe, jXe, )r(x,): (27)
Since[projy, r1(Xt, jXt, ) = r(Xt,jXt, ,) by the de nition and since Markovian projection pre-
serve all intermediate time marginals. Now we prove the rst equation (26).

r (Xo; Xin; X1)
M(Xo; Xin; X1)
r (Xo; Xin; X1)
mM(Xo; Xin; X1)
[Projy (NI(XoiXiniXa) | vy =

[projy (r)1(Xo; Xin: X3)
: )

KL (rkm) = log r (Xo; Xin; X1)dXodXjndX1 =

log r (Xo; Xin; X1)dXodXindXy +

I'(Xo; Xin; X
(X0iXiniX1) (o i xa)dXoClxindXa +

[projy (r)](Xo;Xin;>{<z1) }
KL (rkprojy (r))
[projy (r)1(Xo; Xin; X1)
M(Xo; Xin; X1)

log

log I (Xo; Xin; X1)dXodXindXy =

[projy (1](xo) E? [projy (N1(Xt, iXt, ;)
m(xo)wN T mxe, jxe, )

KL (rkprojy () + KL ([projy (r)](Xo)km(xo)) +
X2 [orojy (01(x, ixi, 1)

I (Xo; Xins X1)dXodXindXy =

Z
KL (rkprojy, (r))+ log

. log M, e, 1) r (Xo; Xin; X1)dXodXindX1 =
KL (rkprojy (r)) + KL ([projy (r)l(xo)km(xo)) +
%+ £ i i
log Lproly (r)](thJth ) r(Xt, ; Xty 12 dx, dxt, , =
- m(Xt, JXt, 1) | —{z

=Lprojy (MI(Xen Xty 1)
KL (rkprojyy (1)) + KL ([projy (N}(Xo)km(xo)) +
X g IProiu (D]0xt, x, )
m(Xt, JXt, 1)
KL (rkproly (1) + KL ([projy (NI(Xo)km(xo)) +

+1 Z . .
X o PO (10, i1, )
0og -
m(thJXtﬂ 1)

[prOJM (r)](th ;th 1)dxtn dX’(n 1 =

n=1

[projy (r)](Xo; Xin; X1)dXodXindXx, =

n=1

[projz J(a)(x0)

m(Xo) N [projg J(a)(xo)dxo +

z
KL (rkproj, (r))+ log
|

5 Q = KL([projy (r)l(xo)km (xo))
hea [Projy (N1(xe, ixt, )
|Og VN+1
-1 M(Xe, JXt, )
[pfOJM (r)1(Xo; Xins X1)
m(Xo,Xm,Xl)

[projy (r)](Xo; Xin; X1)dXedXindXq =

KL (rkproj, (r))+ log
|

[projy (r)](Xo; Xin; X1)dXedXindxq =

{z }

KL (projy (r)km)
KL (rkproj, (r))+ KL (projy (r)km):
That concludes the proof of the rst equati@®6). The proof for the second equati¢i7) is similar.

M(Xo; Xin; X1)

KL (mkr)=  log F(Xo: Xin: X1)
y ANy

M(Xo; Xin; X1)dXodXijndX1 +
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[Projg (M)](Xo; Xin; X1)
[Projg (m)¥ X0; Xin; Xli
=0

M(Xo; Xin; X1)
9 [proje (MI(xoi X )
KL(mkprojg (m))
[Projg (M)1(Xo; Xin; X1)
r(Xo; Xin; X1)

M(Xo; Xin; X1)dXodXindXy =

M(Xo; Xin; X1)dXodXindX 1 +

}

log M(Xo; Xin; X1)dXodXindXy =

. KL (mkprojg (m)) +

o P K proie (01

Pvt (%ir(jx%;s(\l)r(xo;xl)
[projg (M)](Xo; X1) (X X1 dxodxy =

r(Xo; X1) —1l—
=[ projg (m)](Xo0:x1)

M (Xo; Xin; X1)dXodXindXy =

log

[projg (M)1(Xo; X1)
r(Xo;X1)
[projg (M)1(Xo; X1)
r(Xo;X1)

PV (XinjXo; X1)[Projg (M)](Xo; X1)
PV (XinjXo; X1)r (Xo; X1)

g PrOle (M0 XinX1) i (m)(xo: Xini X1) Aot

I (Xo; Xins X1) {z )
=KL ([projz (m)](Xo:XinX1)Kr (Xo:Xin;X 1))
= KL (mkprojg (m)) + KL (projg (m)kr)

Z
KL (mkprojs (m)) + log [projg (M)](Xo; X1)dxodx1 =

Z
KL (mkproj; (m))+  log
Z
KL (mkprojg (m))+  log

[projg (m)I(Xo; Xin; X1)dXodXindx1 =

[projg (M)](Xo; Xin; X1)dXo0XindX1

KL (mkprojg (m))+ o
I

That concludes the proof of the second equation (27).
O

Proposition B.2. Assume that we have a sequence of procdspek,, from D-IMF procedure start-
ing fromq? for whichKL g°kq < 1 . Assume that for each reciprocal and Markovian projection in
a sequence KLdkg** < 1 .ThenKL d*kq KL gdkg andlim; KL gkg*' =0.

Proof of Proposition B.2We use the same technique as was used in the proof of IMF procetiyre [
Proposition 7], and for forward KL in [43]. We apply Proposition B.1 and for everg have:

KL dkq =KL dkd™ +KL d*kq

Since the KL divergence is non-negative, it follows tkat o ** kq KL dkq . Applying this
proposition foreach L 2 N, we have

b
KL o’kq = KL o°kq* + KL g'kq = KL dkqd* + KL g-*'kq
1=0

Since KL is non-negative and Klg’kqg < 1 ,we getim;n; KL dkgd*™ =0. O

Proof of Theorem 3.6The mild assumptions here are the assumptions of the Propositon B.2, i.e.
KL dkd*™ < 1 .To prove the current theorem, we follow the proof 47 Theorem 8] but do the
derivations for discrete stochastic processes instead of continuous. By our previous Proposition B.2
it holds thatKL g'kq KL ¢°kg < 1 for everyl. Hence the sequende), and its

subsequences of markovigm')L, = (¢?*1)L, and reciprocal process¢s ), = ()L,
are subsets of a sét] 2 P4 (RP (N*2) 1 KL (kg ) KL ¢’kq g which is compact§0,
Theorem 20]. Hencem)); contains a convergent subseque@é )l_, ! m . Inturn, the
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subsequenc@'v)i_, containes a convergent subseque@é@ )1-1:1 I r . Since sets of Markovian
M (N) and reciprocaR (N ) processes are closed under weak convergence, wetha2eM (N)
andr 2 R (N). From the lower semicontinuity of KL divergence in the weak topoldgy Theorem
19] andlim;; KL dkg** =0 (see Proposition B.2):

0 KL(mkr) lim inf KL m'ikr'i =0: (28)
j!

Thus,m = r 2" g™ We know thatd™ has the same margina(xo) = q(xo) and

p1(X1) = q(x1) since both Markovian and reciprocal projections preserve marginals. By our
Theorem 3.1 sincg™ 2 M (N)\R (N), theng™(xo;Xin;X1) = P" (Xo;Xin;X1). Finally,
limus KL g (Xo; Xin; X1)KP' (Xo; Xin; X1) = O follows using

_Ililm KL r's (X0; Xin; X1)KpT (X0; Xin;X1) =0
j!
and the mononotonicity of KLq kq , see Proposition B.2. O

B.3 Proofs of the Statements irv3.4

The proofs in this subsection are the most technical as there are a lot of manipulations with matrices.

Proof of Theorem 3.7From(6) and(5) follows that the discrete Brownian Bridg®’ (XinjXo;X1)
has also a Gaussian distribution. The covariance of the Brownian Bridge with coef ci¢times
s <t [17 Eq. 9.14]iss(1 t). Thus, the matrixK is a covariance matrix for all pairs of time

valueE[Xx:, jXo; x1] of Brownian Bridge at time,, is equal tat, X1 + (1  tn)Xo. Thus, the discrete
Brownian Bridge has the following distributiop?V (XinjXo;X1) = N (XinjUXo1; K ).

Recall that the reciprocal projection is given by:

[Projg al(Xin; Xo; X1) = PV (XinjXo; X1)0(Xo; X1): (29)

Since it is a product of two Gaussian distributions, which itself is also a Gaussian distribution, our
goal is to nd the mean vector and covariance matriXmbjg ol (Xin; Xo; X1). Further we denote
[projg dl(Xin; Xo; X1) asr(Xo; Xin; X1) for convenience.

Themean vectorof [projg al(Xin; Xo; X1) for eacht, is given by
VA

Er )Xt = EBr(xy, jxox 1) [Xt, 1X0; X2]d(Xo; X1)dXodX1 =
Z Z
Epw (x,, ixox 1) [Xta JX0; X1]0(X0; X1)dXodX1 = Xo + ta(X1  Xo) 0(Xo;X1)dXedXy =
Z A

(1 tn)  Xod(Xo;X1)dXodX1 + tn  X1G(Xo;X1)dXodX1 = ta 1+(1  tn) o
where o and ; are the means af(Xxg) and q(xi1), respectively. Thus, the mean vector of

[projg dl(Xin; Xo; X1) is given by(U o1; o; 1)-
Now, we are going to nd theovariance matrix r. We will rst nd the inverse covariance

1. A B
R = BT C

of [projg al(Xin; Xo; X1). HereA has shap®& D  ND as the matriX , while the matrixC has the
shape2D 2D as the matrix . MatricesA andC are symmetric since they are a part of the inversed
symmetric matrix g. We exploit the fact that the logarithm of a Gaussian distribution has the form
(by Constwe denote all terms that does not dependgror Xo;):

log [proj Al(Xin; Xo;X1) =

Const ((ximXor) (U osi o7 p(Omixor) (U ari on)) =
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Const %((Xin;xm) (U o1; o))" BAT E; ((Xin;X01) (U o015 o01)) =

Const %(Xin U o)"AXin U 01) %(Xm 01)' C(Xo1  o01)
Xin U 01)"B(Xox o01)=
Const %x%Axi,ﬁ(U 01) " AXin %X31CX01+ 01CXo1
XnBXor XnB o1 (U 01)"BXxor (U 01)"B 1=
Const %XLAXi,ﬁ(U 01)" AXin %xglcx01+ 01CXo1
XiBxXor XIB o1 (U 01)"Bxos:
In turn, from (29) we have:
log [projg cl(xin; Xo;X1) =log p" (XinjXo; X1) +10g q(xo; X1) =
Const %(Xin UXo1)" (K) *(Xin  Uxoz) %(Xm o)’ (Xo1 o) =
Const %XL(K) Xin + X7 (K) TUxos %(UXM)T(K) YUxo1

1
T 1 T 1 1 —
5"01 Xo1 * Xo1 01 5 01 01 =

1 1
Const =x| Xin+ XTI (K ) YUxor Zx§(UT(K) U+ Dxer+xd 1 oor
PP Y o RO QU e

By matching the formulas above, it follows:

A=(K)? B= (K); Cc=uU"(K) u+ =& (30)
Thus, we have:

1. A B _ (K) ! (K) 'u

R =™ BT C 7~ ((K)W' U(K)u+ *

By using the formula of block-wise matrix inversion [37, Section 9.1.3] :
A B 1_ Al+A1B(C BTA 'B) 'BTA'Y A 1B(C BTA 1B)!? - (31)
BT C - (C BTA 'B) IBTA ! (C BTA 'B) ! ‘

Applying this formula, we have:
(C BTA 'B) '=(UT(K) U+ * UT(K) Y(K)K)?)t=( Y=
Al+AB(C BTA B) IBTA 1=
K+ K(K) U P UTK(K) =K +U UT:
A B(C B"TA B) '= K(K)lu=uU
Thus, we obtain the desired result:

_ K+U U U
R — (U)T

O
Proof of Theorem 3.8Part 1.Since from the assumptions of the theorg(xi,; Xo; X1) has Gaussian

distribution, it follows that joint distribution of two time momeraéx;, ; X;, ,) is also Gaussian and
is given by:

(e
(e

ty (€

Rty itn R)tnitn 1y (32)

Xt ;X =N "
q( tn tn 1) ( th 1 J R)tn 1;tn (eR)tn 13t 1
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