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Abstract

The Schrödinger Bridge (SB) problem offers a powerful framework for combining
optimal transport and diffusion models. A promising recent approach to solve the
SB problem is the Iterative Markovian Fitting (IMF) procedure, which alternates
between Markovian and reciprocal projections of continuous-time stochastic pro-
cesses. However, the model built by the IMF procedure has a long inference time
due to using many steps of numerical solvers for stochastic differential equations.
To address this limitation, we propose a novel Discrete-time IMF (D-IMF) proce-
dure in which learning of stochastic processes is replaced by learning just a few
transition probabilities in discrete time. Its great advantage is that in practice it
can be naturally implemented using the Denoising Diffusion GAN (DD-GAN), an
already well-established adversarial generative modeling technique. We show that
our D-IMF procedure can provide the same quality of unpaired domain translation
as the IMF, using only several generation steps instead of hundreds. We provide
the code at https://github.com/Daniil-Selikhanovych/ASBM.

Figure 1: Our D-IMF approach performs unpaired image-to-image translation in just a few steps,
achieving results comparable to the hundred-step IMF [47]. Celeba [33], male→female (128× 128).
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1 Introduction
Recent generative models based on the Flow Matching [27] and Recti�ed Flows [30] show great
potential as a successor of classical denoising diffusion models such as DDPM [15]. Both these
approaches consider the same problem of learning an Ordinary Differential Equation (ODE) that
interpolates one given distribution to the other one, e.g., noise to data. Thanks to the close connection
to the theory of Optimal Transport (OT) problem [52], Flow Matching and Recti�ed Flows approaches
typically have faster inference compared to classical diffusion models [32, 39]. Also, it was shown
that they can outperform diffusion models on the high-resolution text-to-image synthesis: they even
lie in the foundation of the recent Stable Diffusion 3 model [8].
The extension of Flow Matching and Recti�ed Flow approaches to the SDE are Bridge Matching
(Markovian projection) andIterative Markovian �tting (IMF) procedures [36, 47, 35], respectively.
They also have a close connection with the OT theory. Speci�cally, it is known [47, 35] that IMF
converges to the solution of the dynamic formulation of entropic optimal transport (EOT), also known
as the Schrödinger Bridge (SB). However, learning continuous-time SDEs in IMF is non-trivial and,
unfortunately, leads tolong inferencedue to the necessity to use many steps of numerical solvers.

Contributions. This paper addresses the above-mentioned limitation of the existing Iterative Marko-
vian Fitting (IMF) framework by introducing a novel approach to learn the Schrödinger Bridge.

1. Theory I. We introduce a Discrete Iterative Markovian Fitting(D-IMF) procedure (M3.2, 3.3),
which innovatively applies discrete Markovian projection to solve the Schrödinger Bridge problem
without relying on Stochastic Differential Equations. This approach signi�cantly simpli�es the
inference process, enabling it to be accomplished (theoretically) in just a few evaluation steps.

2. Theory II. We derive closed-form update formulas for the D-IMF procedure when dealing with
high-dimensional Gaussian distributions. This advancement permits a detailed empirical analysis
of our method's convergence rate and enhances its theoretical foundation (M3.4, 4.1).

3. Practice. For general data distributions available by samples, we propose an algorithm(ASBM)
to implement the discrete Markovian projection and our D-IMF procedure in practice (M4.2). Our
algorithm is based on adversarial learning and Denoising Diffusion GAN [53]. Our learned SB
model uses just4 evaluation steps for inference (M3.5) instead of hundreds of the basic IMF [47].

Notations. In the paper, we simultaneously work with the continuous stochastic processes and discrete
stochastic processes in theD-dimensional Euclidean spaceRD . We denote byP(C([0; 1]); RD ) the
set of continuous stochastic processes with timet 2 [0; 1], i.e., the set of distributions on continuous
trajectoriesf : [0; 1] ! RD . We usedWt to denote the differential of the standard Wiener process.

To establish a link between continuous and discrete stochastic processes, we �xN � 1 intermediate
time moments0 = t0 < t 1 < � � � < t N < t N +1 = 1 together witht0 = 0 andtN +1 = 1 . We con-
sider discrete stochastic processes with those time-moments as the elements of the setP(RD � (N +2) )
of probability distributions onRD � (N +2) . Among such discrete processes, we are speci�cally
interested in subsetP2;ac (RD � (N +2) ) � P (RD � (N +2) ) of absolutely continuous distributions on
RD � (N +2) which have a �nite second moment and entropy. For any suchq 2 P 2;ac (RD � (N +2) ),
we writeq(x0; x t 1 ; : : : ; x t N +1 ) to denote its density at a point(x0; x t 1 ; : : : ; x t N ; x1) 2 RD � (N +2) .
For continuous processT, we denote bypT 2 P (RD � (N +2) ) the discrete process which is the
�nite-dimensional projection ofT to time moments0 = t0 < t 1 < � � � < t N < t N +1 = 1 . For con-
venience we also use the notationx in = ( x t 1 ; : : : ; x t N ) to denote the vector of all intermediate-time
variables. In what follows, KL is a short notation for the Kullback-Leibler divergence.

2 Background
We start with recalling the Bridge Matching and Iterative Propotional Fitting procedures developed
for continuous-time stochastic processes (M2.1). Next, we discuss the Schrödinger Bridge problem,
the solution to which is the unique �xed point of Iterative Markovian Fitting procedure (M2.2).

2.1 Bridge Matching and Iterative Markovian Fitting Procedures
Modern diffusion and �ow generative modeling are mainly about the construction of a model that
interpolates one probability distributionp0 2 P 2;ac (RD ) to some another probability distribution
p1 2 P 2;ac (RD ). One of the general approaches for this task is the Bridge Matching [29, 31, 3].

Reciprocal processes.The Bridge Matching procedure is applied to the processes, which are
represented as a mixture of Brownian Bridges. Consider the Wiener processW � with the volatility �
which start atp0, i.e., the process given by the SDE:dxt =

p
�dW t , x0 � p0. Let W �

j x 0 ;x 1
denote
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the stochastic processW � conditioned on valuesx0; x1 at timest = 0 ; 1, respectively. This process
W �

j x 0 ;x is called the Brownian Bridge [17, Chapter 9]. For someq(x0; x1) 2 P 2;ac (RD � 2) with

q(x0) = p0(x0) andq(x1) = p1(x1) the processTq
def=

R
W �

j x 0 ;x 1
dq(x0; x1) is called the mixture of

Brownian Bridges. Following [47], we say that mixtures of Brownian Bridges form areciprocal class
of processes (for the Brownian Bridge). For brevity, we call these processes just reciprocal processes.

Bridge matching [29, 31]. The goal of Bridge Matching (with the Brownian Bridge) is to construct
continuous-time Markovian processM from p0 to p1 in the form of SDE:dxt = v(x t ; t)dt +

p
�dW t .

This is achieved by using theMarkovian projectionof a reciprocal processTq =
R

W �
j x 0 ;x 1

dq(x0; x1),
which aims to �nd the Markovian processM which is the most similar toTq in the sense of KL:

projM (Tq) def= arg min
M 2M

KL (TqkM ) ;

whereM � P (C([0; 1]); RD ) is the set of all Markovian processes. For the Brownian Bridge
W �

j x 0 ;x 1
it is known [47, 11] that the SDE and the driftv(x t ; t) of projM (Tq) is given by:

dxt = v(x t ; t)dt +
p

�dW t ; v(x t ; t) =
Z

x1 � x t

1 � t
pTq (x1jx t )dx1;

wherepTq (x1jx t ) the conditional distribution of the stochastic processTq at time momentst and1.
The processprojM (Tq) has the same time marginal distributionspTq (x t ) as the original Brownian
bridge mixtureTq. However, the joint distributionpTq (x0; x1) of Tq and the joint distribution
pprojM (Tq ) (x0; x1) of its projection projM (Tq) do not coincide in the general case [6], see Figure 2.

Figure 2: Markovian projection of a reciprocal stochastic processTq.

Iterative Markovian Fitting [ 47, 35, 1]. The Iterative Markovian Fitting procedure introduces a
second type of projection of continuous-time stochastic processes called theReciprocal projection.
For a processT, it is is de�ned by projR (T) =

R
W �

j x 0 ;x 1
dpT (x0; x1), see illustrative Figure 3.

Figure 3: Reciprocal projection of a stochastic processT, i.e., projR (T) =
R

W �
j x 0 ;x 1

dpT (x0; x1).

The process projR (T) is called a projection, since:

projR (T) = arg min
R 2R

KL (TkR) ;

whereR � P (C([0; 1]); RD ) is the set of all reciprocal processes. The Iterative Markovian Fitting
procedure is an alternation between Markovian and Reciprocal projections:

T2l +1 = projM (T2l ); T2l +2 = projR (T2l +1 );

It is known that the procedure converges to the unique stochastic processT � , which is known as a
solution to the Schrödinger Bridge (SB) problem betweenp0 andp1. Furthermore, the SBT � is the
only process starting atp0 and ending atp1 that is both Markovian and reciprocal [25].
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2.2 Schrödinger Bridge (SB) Problem
Schrödinger Bridge problem. The Schrödinger Bridge problem [44] was proposed in 1931/1932 by
Erwin Schrödinger. For the Wiener priorW � Schrödinger Bridge problem between two probability
distributionsp0 2 P 2;ac (RD ) andp1 2 P 2;ac (RD ) is to minimize the following objective:

min
T 2F (p0 ;p1 )

KL (TkW � ) ; (1)

whereF (p0; p1) � P (C([0; 1]); RD ) is the subset of stochastic processes which starts at distribution
p0 (at the timet = 0 ) and end atp1 (at t = 1 ). The Scrhödinger Bridge has a unique solution, which
is a diffusion processT � described by the SDE:dX t = v� (X t ; t)dt +

p
�dW t [25]. The processT �

is calledthe Schrödinger Bridgeandv� : RD � [0; 1] ! RD is calledthe optimal drift.

From the practical point of view, the solution to the SB problemT � tends to preserve the Euclidean
distance between start pointx0 and endpointx1. The equivalent form of SB problem, the static
Schrödinger Bridge problem, explains this property more clearly.

Static Schrödinger Bridge problem.One may decompose KL(TjjW � ) as [51, Appendix C]:

KL(T jjW � ) = KL
�
pT (x0; x1)jjpW �

(x0; x1)
�

+
Z

KL(Tj x 0 ;x 1 jjW �
j x 0 ;x 1

)dpT (x0; x1); (2)

i.e.,KL divergence betweenT andW � is a sum of two terms: the 1st represents the similarity of the
processes' joint marginal distributions at start and �nish timest = 0 ; 1, while the 2nd term represents
the average similarity of conditional processesTj x 0 ;x 1 andW �

j x 0 ;x 1
. In [25, Proposition 2.3], the

authors show that ifT � solves(1), thenT �
j x 0 ;x 1

= W �
j x 0 ;x 1

. Hence, one may optimize(1) overT for
whichTj x 0 ;x 1 = W �

j x 0 ;x 1
for everyx0; x1, i.e., over reciprocal processesT:

(1) = min
T 2F (p0 ;p1 ) \R

KL
�
pT (x0; x1)jjpW �

(x0; x1)
�

= min
q2 �( p0 ;p1 )

KL
�
q(x0; x1)jjpW �

(x0; x1)
�
; (3)

where�( p0; p1) � P 2;ac (RD � 2) is the set of joint probability distributions with marginal distribu-
tionsp0 andp1. Thus, the initial Schrödinger Bridge problem can be solved by optimizing only
over a reciprocal process's joint distributionq(x0; x1) at t = 0 ; 1. This problem is called the Static
Schrödinger Bridge problem. In turn, the problem can be rewritten in the following way [12, Eq. 7]:

min
q2 �( p0 ;p1 )

� KL(qjjpW �
(x0; x1)) = min

q2 �( p0 ;p1 )

Z
jjx0 � x1jj2

2
dq(x0; x1) � � � Entropy(q) + C; (4)

i.e., as �nding a joint distributionq(x0; x1) which tries to minimize the Euclidian distancejj x � y jj 2

2
betweenx0 and x1 (preserve similarity betweenx0 and x1), but with the addition of entropy
regularizer� � Entropy(q) with the coef�cient� . Thus, the coef�cient� > 0, which is the same for all
problems considered above, regulates the stochastic or diversity of samples fromq(x0; x1): The last
problem (4) is also known as the entropic optimal transport (EOT) problem [4, 38, 25].

3 Adversarial Schrödinger Bridge Matching (ASBM)
The IMF framework [35, 47] works with continuoustime stochastic processes: it is built on the
well-celebrated result that the only process which is both Markovian and reciprocal is the Schrödinger
bridgeT � [25]. We derive an analogous theoretical result but for processes indiscretetime. We
provide proofsfor all the theorems and propositions in Appendix B.

In M3.1, we give preliminaries on discrete processes with Markovian and reciprocal properties. In
M3.2, we present the main theorem of our paper, which is the foundation of ourDiscrete-time
Iteratime Markovian Fitting (D-IMF) framework. InM3.3, we describe D-IMF procedure itself
and prove that it allows us to solve the Schrödinger Bridge problem. InM3.4, we provide an analysis
of applying our D-IMF for solving the Schrödinger Bridge between Gaussian distributions. InM3.5,
we present the practical implementation of our D-IMF procedure using adversarial learning.

3.1 Discrete Markovian and reciprocal stochastic processes
Discrete reciprocal processes.We de�ne the discrete reciprocal processes similarly to the continuous
case by considering the �nite-time projection of the Brownian bridgeW �

j x 0 ;x 1
, which is given by:

pW �
(x t 1 ; : : : ; x t N jx0; x1) =

NY

n =1

pW �
(x t n jx t n � 1 ; x1); (5)
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pW �
(x t n jx t n � 1 ; x1) = N (x t n jx t n � 1 +

tn � tn � 1

1 � tn � 1
(x1 � x t n � 1 ); �

(tn � tn � 1)(1 � tn )
1 � tn � 1

): (6)

This joint distributionpW �
(x t 1 ; : : : ; x t N jx0; x1) de�nes a discrete stochastic process, which we call

a discrete Brownian bridge. In turn, we say that a distributionq 2 P 2;ac (RD � (N � 2) ) is a mixture of
discrete Brownian bridges if it satis�es

q(x0; x t 1 ; : : : ; x t N ; x1) = pW �
(x t 1 ; : : : ; x t N jx0; x1)q(x0; x1);

whereq(x0; x1) denotes its joint marginal distribution ofq at times0; 1. That is, its "inner" part
at timest1; : : : ; tN is the discrete Brownian Bridge. We denote the set of all such mixtures as
R(N ) � P 2;ac (RD � (N +2) ) and call them discrete reciprocal processes.

Discrete Markovian processes.We say that a discrete processq 2 P 2;ac (RD � (N +2) ) is Markovian
if its density can be represented in the following form (recall thatt0 = 0 ; tN +1 = 1) :

q(x0; x t 1 ; x t 2 ; : : : ; x t N ; x1) = q(x0)
N +1Y

n =1

q(x t n jx t n � 1 ): (7)

We denote the set of all such discrete Markovian processes asM (N ) � P 2;ac (RD � (N +2) ).

3.2 Main Theorem
Theorem 3.1(Discrete Markovian and reciprocal process is the solution of static SB). Consider
any discrete processq 2 P 2;ac (RD � (N +2) ), which is simultaneously reciprocal and markovian, i.e.
q 2 R (N ) andq 2 M (N ) and has marginalsq(x0) = p0(x0) andq(x1) = p1(x1):

q(x0; x t 1 ; : : : ; x t N ; x1) = pW �
(x t 1 ; : : : ; x t N jx0; x1)q(x0; x1) = q(x0)

N +1Y

n =1

q(x t n jx t n � 1 );

Thenq(x0; x t 1 ; : : : ; x t N ; x1) = pT �
(x0; x t 1 ; : : : ; x t N ; x1), i.e., it is the �nite-dimensional projection

of the Schrödinger BridgeT � to the considered times. Moreover, its joint marginalq(x0; x1) at times
t = 0 ; 1 is the solution to thestatic SBproblem(4) betweenp0 andp1, i.e.,q(x0; x1) = pT �

(x0; x1).

Thus, to solve the static SB problem, it is enough to �nd a Markovian mixture of discrete Brownian
bridges. To do so, we propose the Discrete-time Iterative Markovian Fitting (D-IMF) procedure.

3.3 Discrete-time Iterative Markovian Fitting (D-IMF) procedure
Similar to the IMF procedure, our proposed Discrete-time IMF is based on two alternating projections
of discrete stochastic processes: reciprocal and Markovian. We start with the reciprocal projection.

De�nition 3.2 (Discrete Reciprocal Projection). Assume thatq 2 P 2;ac (RD � (N +2) ) is a discrete
stochastic process. Then the reciprocal projectionprojR (q) is a discrete stochastic process with the
joint distribution given by:

�
projR (q)

�
(x0; x t 1 ; : : : ; x t N ; x1) = pW �

(x t 1 ; : : : ; x t N jx0; x1)q(x0; x1): (8)

This projection takes the joint distribution of start and end pointsq(x0; x1) and inserts the Brownian
Bridge for intermediate time moments, see Figure 4. The prop. below justi�es the projection's name.

Figure 4: Reciprocal projection of a discrete stochastic processq, i.e.,
r (x0; x t 1 ; :::; x t N ; x1) = pW �

(x t 1 ; :::; x t N jx0; x1)q(x0; x1).

5



Proposition 3.3(Discrete Reciprocal projection minimizes KL divergence with reciprocal processes).
Under mild assumptions, the reciprocal projectionprojR (q) of a stochastic discrete processq 2
P2;ac (RD � (N +2) ) is the unique solution for the following optimization problem:

projR (q) = arg min
r 2R (N )

KL (qkr ) : (9)

Similarly to the discrete reciprocal projection, we introduce discrete Markovian projection.
De�nition 3.4 (Discrete Markovian Projection). Assume thatq 2 P 2;ac (RD � (N +2) ) is a discrete
stochastic process. The Markovian projection ofq is a discrete stochastic processprojM (q) 2
P2;ac (RD � (N +2) ) whose joint distribution given by:

�
projM (q)

�
(x0; x t 1 ; :::; x t N ; x1) = q(x0)

N +1Y

n =1

q(x t n jx t n � 1 ): (10)

Despite it is possible to use any discrete stochastic processq as an input to a discrete markovian
projection, in the rest of the paper only discrete reciprocal processes are considered as an input. For
such cases, we provide a visualization of the markovian projection in Figure 5.

Figure 5: Markovian projection of a reciprocal discrete stochastic processq.

As with the reciprocal projection, our following proposition justi�es the name of the projection.
Proposition 3.5(Discrete Markovian projection minimizes KL divergence with Markovian processes).
Under mild assumptions, the Markovian projectionprojM (q) of a stochastic discrete processq 2
P2;ac (RD � (N +2) ) is a unique solution to the following optimization problem:

projM (q) = arg min
m 2M (N )

KL (qkm) : (11)

Now we are ready to de�ne our D-IMF procedure. For two given distributionsp0 2 P 2;ac (RD )
andp1 2 P 2;ac (RD ) at timest = 0 andt = 1 , respectively, it starts with any discrete Brownian
mixturepW �

(x t 1 ; : : : ; x t N jx0; x1)q(x0; x1), whereq(x0; x1) 2 �( p0; p1) \ P 2;ac (RD � 2). Then, it
constructs the following sequence of discrete stochastic processes:

q2l +1 = projM (q2l ); q2l +2 = projR (q2l +1 ): (12)
Theorem 3.6(D-IMF procedure converges to the the Schrödinger Bridge). Under mild assumptions,
the sequenceql constructed by our D-IMF procedure converges in KL topT �

. In particular,ql (x0; x1)
convergence to the solutionpT �

(x0; x1) of the static SB. Namely, we have

lim
l !1

KL
�

ql kpT �
�

= 0 ; and lim
l !1

KL
�

ql (x0; x1)kpT �
(x0; x1)

�
= 0 :

3.4 Closed form Updates of D-IMF for Gaussian Distributions
In this section, we show that our D-IMF updates(12) can be derived in the closed form for the
Gaussian case. Letp0 = N (x0j� 0; � 0) andp1 = N (x1j� 1; � 1) be Gaussians. Consider any initial
discrete Gaussian processq 2 P 2;ac (RD � (N +2) ) that has joint distributionq(x0; x1) 2 �( p0; p1):

x01
def=

�
x0
x1

�
; � 01

def=
�

� 0
� 1

�
; � =

�
� 0 � cov

� T
cov � 1

�
; q(x0; x1) def= N (x01 j� 01; �) (13)

where� 2 R2D � 2D is positive de�nite and symmetric and� cov is the covariance ofx0 andx1. In
this case, the result of updates(12) is always a discrete Gaussian processes with speci�c parameters.
To show this, we introduce two auxiliary matricesU 2 RND � 2D andK 2 RND � ND :

U def=

0

B
B
@

(1 � t1)I D t1 I D

(1 � t2)I D t2 I D

...
...

(1 � tN )I D tN I D

1

C
C
A ; K def=

0

B
B
@

t1(1 � t1)I D t1(1 � t2)I D : : : t 1(1 � tN )I D

t1(1 � t2)I D t2(1 � t2)I D : : : t 2(1 � tN )I D

...
... : : :

...
t1(1 � tN )I D t2(1 � tN )I D : : : t N (1 � tN )I D

1

C
C
A

HereI D is an identity matrix with the shapeD � D . Below we present updates for both projections.
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Theorem 3.7(Reciprocal projection of a process whose joint marginal distribution is Gaussian).
Assume thatq 2 P 2;ac (RD � (N +2) ) has Gaussian joint distributionq(x0; x1) given by(13). Then

[projR q](x in; x0; x1) = N (
�

x in
x01

�
j
�

U� 01
� 01

�
; � R ); � R

def
=

�
�K + U� UT U�

(U�) T �

�
(14)

Theorem 3.8 (Markovian projection of a discrete Gaussian process). Assume thatq 2
P2;ac (RD � (N +2) ) is a discrete Gaussian process withq(x0; x1) given by(13)and the density

q(x in; x0; x1) = N (
�

x in
x01

�
j
�

� in
� 01

�
; e� R ); � in = ( � t 1 ; : : : ; � t N );

where� in and e� R are some parameters ofq. Then its Markovian projection is given by:

[projM q](x in; x0; x1) = q(x0)
N +1Y

n =1

q(x t n jx t n � 1 ); q(x t n jx t n � 1 ) = N (x t n jb� t n (x t n � 1 ); b� t n );

b� t n (x t n � 1 ) = � t n + ( e� R )t n ;t n � 1 (( e� R )t n � 1 ;t n � 1 ) � 1(x t n � 1 � � t n � 1 );

b� t n = ( e� R )t n ;t n � ( e� R )t n ;t n � 1 (( e� R )t n � 1 ;t n � 1 ) � 1(( e� R )t n ;t n � 1 )T :

In turn, the joint distribution[projM q](x0; x1) is given by

[projM q](x0; x1) = N (
�

x0
x1

�
j
�

� 0
� 1

�
;
�

� 0 � 01

(� 01)T � 1

�
); � T

01 =
hN +1Y

n =1

( e� R )t n +1 ;t n (( e� R )t n ;t n ) � 1
i
� 0:

Here( e� R )t i ;t j is the submatrix ofe� R denoting the covariance ofx t i andx t j , while � 0 and� 1 are
covariance matrices ofx0 andx1, respectively.

Thus, if we start D-IMF from some discrete processq0 with marginalsq0(x0) = p0(x0), q0(x1) =
p1(x1) and Gaussianq(x0; x1), then at each iteration of our D-IMF procedureql will be discrete
Gaussian process with the same marginals and eventually will converge toq� . In M4.1, we use our
derived closed-form to perform an experimental analysis of D-IMF's convergence depending on the
number of intermediate time momentsN and the value of coef�cient� .

3.5 Practical Implemetation of D-IMF: ASBM Algorithm
To implement our D-IMF procedure in practice, one should choose the processq0 and implement both
discrete Markovian and reciprocal projections. Note that one is usually not interested in the processes'
density but only needs the ability to sample endpointsx1 (or trajectoriesx0; x t 1 ; : : : ; x t N ; x1) given
a starting pointx0 (= x t 0 ). Thus, to solve SB betweenp0(x0) andp1(x1) one should chooseq0 to
have start and end marginalsq0(x0) = p0(x0) andq0(x1) = p(x1) accessible by samples.

Implementation of the discrete reciprocal projection. The reciprocal projection(8) of a given
discrete processq(x0; x in; x1) is easy if one can sample fromq(x0; x1). To sample fromprojR (q) it is
enough to sample �rst a pair(x0; x1) � q(x0; x1) and then sample intermediate pointsx t 1 ; : : : ; x t N

from the Brownian bridgepW �
(x t 1 ; : : : ; x t N jx0; x1). This can be straightforwardly done using the

formula(5) where the involved distributions(6) are simple Gaussians which are easy to sample from.

Implementation of the discrete Markovian projection via DD-GAN. To �nd the Markovian
projection(10) of a reciprocal processq 2 R (N ), one just needs to estimate the transition prob-
abilities between sequential time moments, i.e., the setf q(x t n jx t n � 1 )gN +1

n =1 and use the starting
marginal[projM q](x0) = q(x0) = p0(x0). The natural way to �nd transition probabilities is to set
to parametrize all these distributions asf q� (x t n jx t n � 1 )gN +1

n =1 and solve

min
�

N +1X

n =1

Eq(x t n � 1 ) Dadv
�
q(x t n jx t n � 1 )jjq� (x t n jx t n � 1 )

�
; (15)

whereDadv is some distance or divergence between probability distributions. In this case, a minimum
of such loss is achieved whenq� (x t n jx t n � 1 ) = q(x t n jx t n � 1 ) for eachn 2 f 1; 2; : : : ; N + 1g.

We note that a related setting is considered in the Denoising Diffusion GANs (DD-GAN), see [53, Eq.
4]. The difference is in the nature ofq: thereq comes from the standard noising diffusion process,
while in our case it is a given reciprocal process. Overall, the authors show that problems like(15)
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can be ef�ciently approached via time-conditioned GANs. Therefore, we naturally pickDD-GAN
approach as the backboneto learn our discrete Markovian projection and use their best practices.

In short, following DD-GAN, we parameterizeq� (x t n jx t n � 1 ) via a time-conditioned generator
networkG� (x t n � 1 ; z; tn � 1). As in DD-GAN, we use the non-saturating GAN loss [10] as Dadv,
which optimizes softened reverse KL-divergence [46]. To optimize this loss, an additional conditional
discriminator networkD(x t n � 1 ; x t n ; tn � 1) is needed. We do not recall technical details here as they
are the same as in DD-GAN. For further detailson DD-GAN learning, we refer to Appendix D.1.

Note that after learningf q� (x t n jx t n � 1 )gN +1
n =1 the sampling assumes to take sample fromq0(x0) =

p(x0) and then sample fromf q� (x t n jx t n � 1 )gN +1
n =1 . Hence it is guaranteed thatq0(x0) = p(x0), but

there may be an approximation error in estimatingq1(x1) � p(x1). This is due to the asymmetry of
the de�nition of Markovian projection, i.e., it can be written in two equivalent ways:

�
projM (q)

�
(x0; x t 1 ; :::; x t N ; x1) = q(x0)

N +1Y

n =1

q(x t n jx t n � 1 ) = q(x1)
N +1Y

n =1

q(x t n � 1 jx t n ):

Analogously to the implementation of IMF [47, Algorithm 1], we address this asymmetry in our
D-IMF by alternatively learning Markovian projection in forward and reverse directions. To learn
Markovian projection in the reverse direction, we just need to use starting marginal[projM q](x1) =
p1(x1), parametrizef q� (x t n � 1 jx t n )gN +1

n =1 and solve:

min
�

N +1X

n =1

Eq(x t n ) Dadv
�
q(x t n � 1 jx t n )jjq� (x t n � 1 jx t n )

�
: (16)

In this caseq(x1) = p1(x1) is guaranteed, whileq(x0) � p0(x0).

Implementation of the D-IMF procedure (ASBM algorithm) . We start with initialization ofq0 by
the reciprocal process. Depending on the setup we use initialization with the independent coupling,
i.e. q0(x0; x1) = p0(x0)p1(x1) or a minibatch OT coupling [9, 39], see Appendix D.3 for details.

We follow the best practices of IMF [47] and in the Markovian projection steps, we alternately learn
models in the directionp0! p1 and in the reverse directionp1! p0 by using functionals(15) and
(16) respectively to avoid the accumulation of errors due to the asymmetry in the de�nition of the
Markovian projection. For details, see Appendix D.2. At the reciprocal projection steps, we use
the modelq� (x0; x in; x1) or q� (x0; x in; x1) learned to approximateq2l +1 to sample pair(x0; x1) and
then sample intermediate points from Brownian bridge. We use the termouter iteration (K ) for a
sequence of two reciprocal projections and two Markovian projections in different directions.

3.6 Relation to Prior Works
There exists a variety of algorithms for learning SB based on different underlying principles: dual
form entropic optimal transport algorithms [5, 34, 24, 11, 12, 45], iterative proportional �tting (IPF)
algorithms [51, 7, 2], bridge matching [49, 29] and iterative Markovian �tting (IMF) algorithms
[47, 35, 28, 20], adversarial algorithms [21], etc. We refer to [13] for a benchmark and to [24, Table
1] for a quick survey of many of them. In turn, in our paper, we speci�cally focus on the advancement
of IMF-type algorithms [47, 35] as it they are not only theoretically well-grounded but also closely
connected to the recti�ed �ow approach [30] which works well in large-scale generative modeling
[32, 54]. Below we discuss the relation of our contributions (M1) to the prior works in IMF [47, 35].

Theory I . As we detailed inM2, basic IMF operates with stochastic processes in continuous time
and iteratively performs Markovian and reciprocal projections. Our D-IMF procedure (M3) does the
same but in the discrete time, so it mightdeceptivelyseem like our D-IMF is just an approximation
of IMF. However, this is a misleading viewpoint. Indeed, the Markovian projection in the discrete
time, in general, does not match with the continuous time Markovian projection. Still our D-IMF
procedureprovablyconverges to SB. Furthermore, D-IMF procedure can theoretically work with
just one intermediate time step (whenN = 1 ). Overall, its convergence rate varies depending on the
number of intermediate points, seeM4.1. Naturally, we conjecture that in the limitN ! 1 (when
the time stepst1; : : : ; tN densely �ll [0; 1]) our D-IMF behaves the same as IMF since the discrete
and continuous Markovian projections start to be close, see discussion in [47, Appendix E].

Theory II . In M3.4, we derive the closed-form expression for our D-IMF updates in the Gaussian
case. For the continuous IMF, there exists an analogous result [35, M6.1]. However, unlike our result,
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(a) Dependence on the number of time stepsN . (b) Dependence on the variance� of the prior process.
Figure 6: Dependence of convergence ofour D-IMF procedure onN and� .

that one is not explicit in the sence that it requires solving the matrix-valued ODE [35, Eq. 39] to get
the actual projection. The analytical solution is known only whenD = 1 , i.e., 1-dimensional case,
see also [47, Appendix D]. In contrast, our Gaussian D-IMF updates work in any dimensionD.

Practice. Default continuous-time IMF [47, 35] in practice is naturally implemented via the Bridge
Matching approach which learns an SDE. In our case, at each D-IMF step we learn several transi-
tional probabilities and do this via also well-established adversarial techniques. In this sense, our
practical implementation differs – each approach is based on its own backbone – bridge matching vs.
adversarial learning – and naturally inherits the bene�ts/drawbacks of the respective backbone. They
are fairly well stated in the discussion of the generative learning trilemma in [53].

4 Experiments
We evaluate our adversarial SB matching (ASBM) algorithm, which implements our D-IMF procedure
on setups with Gaussian distributions (M4.1) for which we have closed form update formulas (M3.4)
and real image data distributions (M4.2). We additionally provide results for an illustrative 2D example
in Appendix C.1, results for the Colored MNIST dataset in Appendix C.3, and results on the standard
SB benchmark in Appendix C.2. The code for our algorithm and all experiments with it is written in
Pytorch , is available in the supplementary materials, and will be made public. We provide all the
technical details in Appendix D.

4.1 Gaussian-to-Gaussian Schrödinger Bridge
We analyze the convergence of our D-IMF procedure depending on the number of intermediate time
stepsN � 1 (we usetn = n=N + 1 ) and the value� > 0 in the Gaussian case. In this case, the static
SB solutionpT �

(x0; x1) is analytically known, see, e.g., [18]. This provides us an opportunity to
analyse how fast KL

�
ql (x0; x1)kpT �

(x0; x1)
�

decreases whenl ! 1 .

We conduct experiments by using our analytical formulas for D-IMF fromM3.4. We follow setup from
[12] and consider Schrödinger Bridge problem with the dimensionalityD = 16 and� 2 f 1; 3; 10g
for centered Gaussiansp0 = N (0; � 0) andp1 = N (0; � 1). To construct� 0 and� 1, sample their
eigenvectors from the uniform distribution on the unit sphere and sample their eigenvalues from the
log uniform distribution on[� log 2; log 2]. We use the samep0 andp1 for all experiments.

We start our D-IMF procedure from the reciprocal process withq0(x0; x1) = p0(x0)p1(x1), i.e.
from the independent joint distribution at timest = 0 ; 1. We present the convergence plots in
Figures 6a and 6b. In both plots, we use10� 10 as a threshold corresponding to the exact matching of
distributions to prevent numerical instabilities. We see that our D-IMF procedure empirically shows
the exponential rate of convergence in all the cases. As we can see from Figure 6a, the convergence
speed dependence onN quickly saturates. Thus, even several time moments, e.g.,N = 5 , provide
quick convergence speed. From Figure 6b, we clearly see that the convergence speed is highly
in�uenced by the chosen value of the parameter� . For instance, the transition from� = 1 to � = 10
requires ten times more D-IMF iterations. Thus, this hyperparameter may be important in practice.

4.2 Unpaired Image-to-image Translation
To test our approach on real data, we consider the unpaired image-to-image translation setup of
learningmale! femalefaces of Celeba dataset [33]. We use10%of maleandfemaleimages as
the test set for evaluation. We train our ASBM algorithm based on the D-IMF procedure with� = 1
and� = 10. Following the best practices of DD-GAN [53], we useN = 3 , intermediate times
t1 = 1

4 ; t2 = 2
4 ; t3 = 3

4 andK = 5 outer iterations of D-IMF. We provide qualitative results and
the FID metric [14] on the test set in Figures 7b and 7e. Since we useN = 3 intermediate time
moments, our algorithm requires only4 number of function evaluations (NFE) at the inference stage.
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(a) x � p0 (b) ASBM (ours), � = 1 (lower diversity)
FID = 16 :08, NFE = 4 .

(c) DSBM [47], � = 1 (lower diversity)
FID = 37 :8, NFE = 100.

(d) x � p0 (e) ASBM (ours), � = 10 (higher diversity)
FID = 17 :44, NFE = 4 .

(f) DSBM [47], � = 10 (higher diversity)
FID = 89 :19, NFE = 100.

Figure 7: Results of Celeba,male! femaletranslation learned with ASBM (ours), and DSBM
learned on Celeba dataset with 128 resolution size for� 2 f 1; 10g.

We focus our comparison on the DSBM algorithm based on the IMF-procedure [47] since it is closely
related to our method. We train DSBM following the authors [47] and useNFE = 100. As well as
for ASBM, we use5 outer iterations of IMF, corresponding to the same number of reciprocal and
Markovian projections, but for continuous processes. We use approximately the same number of
parameters of neural networks used for models in Markovian projections for ASBM and DSBM (see
Appendix D.3). For other details, see Appendix D.4. We present results for DSBM in Figure 7c
and Figure 7f. Our algorithm provides better results while using only4 evaluation steps. Further
additional results and measurements for ASBM and DSBM algorithms on the Celeba dataset are
presented in Appendix E.

Thus, our D-IMF procedure allows us to solve the Schrödinger Bridge ef�ciently without learning
the time-continuous stochastic process, which in turn speeds up inference by an order of magnitude.
This aligns with the results obtained in the Gaussian-to-Gaussian setups about exponentially fast
convergence of D-IMF even with several intermediate time moments.

5 Discussion

Potential impact. Beside the pure speed up of the inference of IMF, we want to point to another
great advantage of our developed D-IMF framework. In the continuous IMF, one is forced to do
Markovian projection via time-consuming learning of continuous-time SDEs (using procedures like
bridge matching). In our D-IMF framework, one needs tolearn several transition probabilities. We
do this via adversarial learning [10], but actually this can be doneusingalmostany other generative
modeling technique(moment matching [26], normalizing �ows [23, 41], energy-based models [56],
score-based models [48], etc.). We believe that this observation opens great possibilities for ML
community to further explore and improve generative modeling algorithms based on Schrödinger
Bridges, Markovian projections (bridge matching) and related techniques, e.g., �ow matching [27].

Limitations and broader impactare discussed in Appendix A.
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A Limitations and Future Work

Adversarial training . It is a generic knowledge that the adversarial training may be non trivial to
conduct due to instabilities, mode collapse and related issues. Fortunately, our ASBM algorithm relies
on the already well-established and carefully tuned DD-GAN [53] technique as a backbone. The
latter is speci�cally designed to address many such limitations and is known to score good metrics in
generative modeling.

Theoretical convergence rate. We derive the generic convergence result for our D-IMF procedure
(Theorem 3.6) but without the particular convergence rate. Empirically we observe the exponentially
fast convergence (M4.1), but theoretically proving this rate is an important task for the future work.

Broader Impact. This paper presents work whose goal is to advance the �eld of Arti�cial Intelli-
gence, Machine Learning and Generative Modeling. There are many potential societal consequences
of our work, none which we feel must be speci�cally highlighted here.

B Proofs

Here we provide the proof of our theoretical results one-by-one. Additionally, we introduce and prove
several auxiliary results to simplify the derivation of the main results.

B.1 Proofs for Statements in Section 3.2

In our view, the proof of our main Theorem here is the most interesting and insightful (among all the
proofs in the paper) as it uses some tricky mathematics, especially in its stage 2. In turn, stage 1 of
the proof is inspired by the recent insights of [13, Theorem 3.2] about the characterization of static
Schrödinger Bridge solutions [25] and manipulations with KL for SB in [24, 11].

Proof of Theorem 3.1.We split the proof in 2 stages. The 1st is auxiliary for the 2nd.

Stage 1.Here we show that if someq(x0; x1) 2 P 2;ac (RD � 2) with marginalsp0(x0) = q(x0) and
p1(x1) = q(x1) has the density in the form

q(x0; x1) = q(x0) bC(x0) exp
�

�
jjx1 � x0jj2

2�

�
b� (x1);

then it solves the Static SB between distributionsp0(x0) andp1(x1). It is known [25], that the

solutionq� (x0; x1) def= pT �
(x0; x1) of Static SB betweenp0 andp1 has the density:

q� (x0; x1) =  � (x0) exp
�

�
jjx1 � x0jj2

2�

�
� � (x1):

Hence, the conditional densityq� (x1jx0) is expressed as:

q� (x1jx0) =
 � (x0)
p0(x0)
| {z }
def
= C � (x 0 )

exp
�

�
jjx1 � x0jj2

2�

�
� � (x1) = C � (x0) exp

�
�

jjx1 � x0jj2

2�

�
� � (x1):

Thus, bothq(x0; x1) andq� (x0; x1) have their densities in the same functional form and the same
marginalsq(x0) = q� (x0) = p0(x0) andq(x1) = q� (x1) = p1(x1). However, we want to prove
that in this caseq(x0; x1) andq� (x0; x1) are equal, i.e., KL(q� kq) = 0 .

KL (q� (x0; x1)kq(x0; x1)) =
Z

log
q� (x0; x1)
q(x0; x1)

q� (x0; x1)dx0dx1 =

Z
log � � �p0(x0 )q� (x1jx0)

� � �p0(x0) q(x1jx0)
q� (x0; x1)dx0dx1 =

Z
log

C � (x0)
� � � � � � � �
exp

�
� jj x 1 � x 0 jj 2

2�

�
� � (x1)

bC(x0)
� � � � � � � �
exp

�
� jj x 1 � x 0 jj 2

2�

�
b� (x1)

q� (x0; x1)dx0dx1 =

14



Z
(log

C � (x0)
bC(x0)

+ log
� � (x1)
b� (x1)

)q� (x0; x1)dx0dx1 =

Z
log

C � (x0)
bC(x0)

q� (x0; x1)dx0dx1 +
Z

log
� � (x1)
b� (x1)

q� (x0; x1)dx0dx1 =

Z
log

C � (x0)
bC(x0)

p0(x0)dx0 +
Z

log
� � (x1)
b� (x1)

p1(x1)dx1 =

Z
log

C � (x0)
bC(x0)

q(x0; x1)dx0dx1 +
Z

log
� � (x1)
b� (x1)

q(x0; x1)dx0dx1 =

Z
(log

C � (x0)
bC(x0)

+ log
� � (x1)
b� (x1)

)q(x0; x1)dx0dx1 =

Z
log

C � (x0)� � (x1)
bC(x0) b� (x1)

q(x0; x1)dx0dx1 =

Z
log

C � (x0) exp
�

� jj x 1 � x 0 jj 2

2�

�
� � (x1)

bC(x0) exp
�

� jj x 1 � x 0 jj 2

2�

�
b� (x1)

q(x0; x1)dx0dx1 =

Z
log

q� (x1jx0)
q(x1jx0)

q(x0; x1)dx0dx1 =
Z

log
p0(x0)q� (x1jx0)
p0(x0)q(x1jx0)

q(x0; x1)dx0dx1 =
Z

log
q� (x0; x1)
q(x0; x1)

q(x0; x1)dx0dx1 =

�
Z

log
q(x0; x1)
q� (x0; x1)

q(x0; x1)dx0dx1 = � KL (q(x0; x1)kq� (x0; x1)) :

Thus, KL(q� kq) = � KL (qkq� ). Since the KL divergence is non-negative, we derive thatq = q� .

Stage 2.In this stage, we prove the theorem itself. First, ifN > 1, i.e., there is more than one
intermediate time moment, we integrateq(x0; x t 1 ; : : : ; x t N ; x1) over all intermediate time moments
exceptt1. On the one hand, we get

q(x0; x t 1 ; x1) =
Z

q(x0; x t 1 ; : : : ; x t N ; x1)dxt 2 : : : dxt N =
Z

pW �
(x t 1 ; : : : ; x t N jx0; x1)q(x0; x1)dxt 2 : : : dxt N = pW �

(x t 1 jx0; x1)q(x1; x0): (17)

On the other hand, we derive

q(x0; x t 1 ; x1) =
Z

q(x0)q(x t 1 jx0)

= q(x t 2 ;:::;x t N ;x 1 j x t 1 )
z }| {
N +1Y

n =2

q(x t n jx t n � 1 ) dxt 2 : : : dxt N = q(x0)q(x t 1 jx0)q(x1jx t 1 ): (18)

Combining (17) and (18) yields

q(x0)q(x t 1 jx0)q(x1jx t 1 ) = q(x0; x t 1 ; x1) = pW �
(x t 1 jx0; x1)q(x1; x0): (19)

Note that ifN = 1 , then we already have (19) from the conditions of the theorem. Therefore,

pW �
(x t 1 jx0; x1)q(x1; x0) = q(x0)q(x t 1 jx0)q(x1jx t 1 )

pW �
(x t 1 jx0; x1)q(x1jx0)� � �q(x0) = � � �q(x0) q(x t 1 jx0)q(x1jx t 1 ):

From now on, we are interested only in 3 time moments:t0 = 0 ; t1 andtN +1 = 1 . To simplify the
notation, we will writet instead oft2 in the following proof. We take the logarithm and get

logq(x1jx0) = log q(x t jx0) + log q(x1jx t ) � logpW �
(x t jx0; x1)

15



Then, we use the formula for the Brownian Bridge density:

logq(x1jx0) = log q(x t jx0) + log q(x1jx t ) � C +
1

2�t (1 � t)
jjx t � (tx 1 + (1 � t)x0)jj2 =

logq(x t jx0) + log q(x1jx t ) � C +
1

2�t (1 � t)
(jjx t jj2 + jj tx 1jj2 + jj (1 � t)x0jj2 � 2tx T

t x1 � 2(1 � t)xT
t x0 + 2 t(1 � t)xT

0 x1) =

logq(x t jx0) + log q(x1jx t ) � C +

jjx t jj2

2�t (1 � t)
+

jj (1 � t)x0jj2

2�t (1 � t)
+

jj tx 1jj2

2�t (1 � t)
�

xT
t x1

� (1 � t)
�

xT
t x0

�t
+

xT
0 x1

�
=

logq(x1jx t ) +
jjx t jj2

2�t (1 � t)
+

jj tx 1jj2

2�t (1 � t)
�

xT
t x1

� (1 � t)
� C

| {z }
def
= f 1 (x t ;x 1 )

+

jj (1 � t)x0jj2

2�t (1 � t)
+ log q(x t jx0) �

xT
t x0

�t
| {z }

def
= f 2 (x t ;x 0 )

+
xT

0 x1

�
:

Thus,

logq(x1jx0) = f 1(x t ; x1) + f 2(x t ; x0) +
xT

0 x1

�
;

logq(x1jx0) �
xT

0 x1

�| {z }
def
= f 3 (x 0 ;x 1 )

= f 1(x t ; x1) + f 2(x t ; x0);

f 3(x0; x1) = f 1(x t ; x1) + f 2(x t ; x0): (20)

Below, we prove thatf 3(x0; x1) = g1(x0) + g2(x1) for some functionsg1 andg2. We note that

f 3(x0; 0) = f 1(x t ; 0) + f 2(x t ; x0) ) f 2(x t ; x0) = f 3(x0; 0) � f 1(x t ; 0): (21)

We substitute (21) to (20):

f 3(x0; x1) = f 1(x t ; x1) + f 3(x0; 0) � f 1(x t ; 0)
| {z }

= f 2 (x t ;x 0 )

f 3(x0; x1) � f 3(x0; 0) = f 1(x t ; x1) � f 1(x t ; 0): (22)

Since there is no dependence onx0 in the right part of(22), we conclude thatf 3(x0; x1) � f 3(x0; 0)

is a function of onlyx1. We de�neg1(x1) def= f 3(x0; x1) � f 3(x0; 0) andg2(x0) def= f 3(x0; 0). Now
we have the desired result:

f 3(x0; x1) = g1(x1) + f 3(x0; 0) = g1(x1) + g2(x0): (23)

Thus,

f 3(x0; x1) = log q(x1jx0) �
xT

0 x1

�
= g1(x1) + g2(x0):

Now, we can use this result about the separation of variables together with the result from the �rst
stageto conclude the proof of the theorem.

logq(x1jx0) = g1(x1) + g2(x0) +
xT

0 x1

�
=

g1(x1) +
jjx1jj2

2�
+ g2(x0) +

jjx0jj2

2�
�

jjx0 � x1jj2

2�
;

q(x1jx0) = exp
�

g2(x0) +
jjx0jj2

2�

�

| {z }
def
= C (x 0 )

exp
�

�
jjx0 � x1jj2

2�

�
exp

�
g1(x1) +

jjx1jj2

2�

�

| {z }
def
= � (x 1 )

=
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q(x1jx0) = C(x0) exp
�

�
jjx0 � x1jj2

2�

�
� (x1);

q(x0; x1) = q(x0)C(x0) exp
�

�
jjx0 � x1jj2

2�

�
� (x1):

Hence, from the �rststageof this proof it follows thatq(x0; x1) is the solution to the Static SB
betweenq(x0) = p0(x0) and q(x1) = p1(x1) with the coef�cient � . That is,pT �

(x0; x1) =
q(x0; x1). Sinceq(x t 1 ; : : : ; x t N jx0; x1) = pW �

(x t 1 ; : : : ; x t N jx0; x1) by the assumptions of the
current theorem, we also conclude thatq(x0; x t 1 ; : : : ; x t N ; x1) = pT �

(x0; x t 1 ; : : : ; x t N ; x1), i.e., the
discrete processes coincide.

B.2 Proofs for Statements in Section 3.3

The logic of our justi�cation of D-IMF for discrete processes generally follows the respective logic
of the justi�cation of IMF for continuous stochastic processes [47].

Proof of Proposition 3.3.The mild assumption here consists in the existence of at least one process
r 2 R (N ) for whichKL (qkr ) < 1 . The reciprocal processr 2 R (N ) has its density in the form
r (x0; x t 1 ; : : : ; x t N ; x1) = pW �

(x t 1 ; : : : ; x t N jx0; x1)r (x0; x1) (see(7)). Thus, we need to optimize
only the partr (x0; x1). Below we show, thatr (x0; x1) should be equalq(x0; x1) to minimize the
functional.

KL (qkr ) =
Z

log
q(x0; x in; x1)
r (x0; x in; x1)

q(x0; x in; x1)dx0dxindx1 =
Z

log
q(x injx0; x1)q(x0; x1)
r (x injx0; x1)
| {z }
pW � (x in j x 0 ;x 1 )

r (x0; x1)
q(x0; x in; x1)dx0dxindx1 =

Z
log

q(x injx0; x1)
pW � (x injx0; x1)

q(x0; x in; x1)dx0dxindx1

| {z }
= Const

+
Z

log
q(x0; x1)
r (x0; x1)

q(x0; x in; x1)dx0dxindx1 =

Const+
Z

log
q(x0; x1)
r (x0; x1)

q(x0; x1)dx0dx1

| {z }
= KL(q(x 0 ;x 1 )kr (x 0 ;x 1 ))

= Const+ KL (q(x0; x1)kr (x0; x1))

Hence, projR (q) = arg min r 2R (N ) KL (qkr ) = pW �
(x injx0; x1)q(x0; x1).

Proof of Proposition 3.5.Similar to the previous proposition, the mild assumption here consists
in the existence of at least one processm 2 M (N ) for which KL (qkm) < 1 . This proof is a
bit more technical than for the reciprocal projection. We need to de�ne new notationxnot

t n ;t n � 1
=

(x t 0 ; : : : ; x t n � 2 ; x t n +1 ; : : : ; x t N +1 ) for a vector of variables for all time moment except two time
momentstn andtn � 1.

KL (qkm) =
Z

log
q(x0; x in; x1)
m(x0; x in; x1)

q(x0; x in; x1)dx0dxindx1 =
Z

log
q(x0; x in; x1)

m(x0)
Q N +1

n =1 m(x t n jx t n � 1 )
q(x0; x in; x1)dx0dxindx1 =

Z
log

q(x0)
m(x0)

q(x0; x in; x1)dx0dxindx1 +
Z

log
q(x in; x1jx0)

Q N +1
n =1 m(x t n jx t n � 1 )

q(x0; x in; x1)dx0dxindx1 =

Z
log

q(x0)
m(x0)

q(x0)dx0

| {z }
KL(q(x 0 )km (x 0 ))

+
Z

log
q(x in; x1jx0)

Q N +1
n =1 m(x t n jx t n � 1 )

q(x0; x in; x1)dx0 =
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KL (q(x0)km(x0)) +
Z

log
q(x in; x1jx0)

Q N +1
n =1 m(x t n jx t n � 1 )

q(x0; x in; x1)dx0dxindx1 + (24)

N
Z

log
q(x0; x in; x1)
q(x0; x in; x1)

q(x0; x in; x1)dx0dxindx1

| {z }
=0

+
Z

log
q(x0)
q(x0)

q(x0; x in; x1)dx0dxinx1

| {z }
=0

= (25)

KL (q(x0)km(x0)) +
Z

log
Q N +1

n =1 q(x0; x in; x1)
Q N +1

n =1 m(x t n jx t n � 1 )
q(x0; x in; x1)dx0dxindx1 �

�
N

Z
logq(x0; x in; x1)q(x0; x in; x1)dx0dxindx1 +

Z
logq(x0)q(x0)dx0dxindx1

�
=

KL (q(x0)km(x0)) +
N +1X

n =1

Z
log

q(x0; x in; x1)
m(x t n jx t n � 1 )

q(x0; x in; x1)dx0dxindx1 �

�
N

Z
logq(x0; x in; x1)q(x0; x in; x1)dx0dxindx1 +

Z
logq(x0)q(x0)dx0dxindx1

�

| {z }
def
= C1

=

KL (q(x0)km(x0)) � C1 +
N +1X

n =1

Z
log

q(x t n jx t n � 1 )q(x t n � 1 )q(xnot
t n ;t n � 1

jx t n ; x t n � 1 )

m(x t n jx t n � 1 )
q(x0; x in; x1)dx0dxindx1 =

KL (q(x0)km(x0)) � C1 +
N +1X

n =1

Z
log

�
q(x t n � 1 )q(xnot

t n ;t n � 1
jx t n ; x t n � 1 )

�
q(x0; x in; x1)dx0dxindx1

| {z }
def
= C2

+

N +1X

n =1

Z
log

q(x t n jx t n � 1 )
m(x t n jx t n � 1 )

q(x0; x in; x1)dx0dxindx1 =

KL (q(x0)km(x0)) + C2 +
N +1X

n =1

� Z
log

q(x t n jx t n � 1 )
m(x t n jx t n � 1 )

q(x t n jx t n � 1 )dxt n

| {z }
KL(q(x t n j x t n � 1 )km (x t n j x t n � 1 ))

�
q(x t n � 1 )dxt n � 1 =

KL (q(x0)km(x0)) +
N +1X

n =1

Z
KL

�
q(x t n jx t n � 1 )km(x t n jx t n � 1 )

�
q(x t n � 1 )dxt n � 1 + C2:

In the line(25), we add terms equal to zero, to match eachm(x t n jx t n � 1 ) by the separate term
q(x0; x in; x1) in the line(25). We need it to as we want to place each termm(x t n jx t n � 1 ) in the
separate KL-divergence in the �nal expression. Hence, the minimizer of the objectivem� 2 M (N )
hasm� (x0) = q(x0) and all transitional distributionsm� (x t n jx t n � 1 ) = q(x t n jx t n � 1 ), i.e. is given
by

m� (x0; x in; x1) = [ projM (q)](x0; x in; x1) = q(x0)
N +1Y

n =1

q(x t n jx t n � 1 ):

Proposition B.1(Pythagorean theorems for projections). Assume thatr 2 R (N ) andm 2 M (N ).
If KL (r km) < 1 and KL(r kprojM (r )) < 1 , then

KL (r km) = KL (r kprojM (r )) + KL (projM (r )km) (26)

and if KL(mkr ) < 1 , KL (mkprojR (m)) < 1 then

KL (mkr ) = KL (mkprojR (m)) + KL (projR (m)kr )

Proof of Proposition B.1.Before proving the �rst equation(26) we prove the additional property of
r 2 R (N ) for anyn 2 [1; 2; : : : ; N + 1] :

[projM r ](x t n ; x t n � 1 ) = r (x t n ; x t n � 1 ):
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[projM r ](x t n ; x t n � 1 ) = [ projM r ](x t n jx t n � 1 )[projM r ](x t n ) = r (x t n jx t n � 1 )r (x t n ): (27)

Since[projM r ](x t n jx t n � 1 ) = r (x t n jx t n � 1 ) by the de�nition and since Markovian projection pre-
serve all intermediate time marginals. Now we prove the �rst equation (26).

KL (r km) =
Z

log
r (x0; x in; x1)
m(x0; x in; x1)

r (x0; x in; x1)dx0dxindx1 =
Z

log
r (x0; x in; x1)
m(x0; x in; x1)

r (x0; x in; x1)dx0dxindx1 +
Z

log
[projM (r )](x0; x in; x1)
[projM (r )](x0; x in; x1)

r (x0; x in; x1)dx0dxindx1

| {z }
=0

=

Z
log

r (x0; x in; x1)
[projM (r )](x0; x in; x1)

r (x0; x in; x1)dx0dxindx1

| {z }
KL(r kprojM ( r ))

+

Z
log

[projM (r )](x0; x in; x1)
m(x0; x in; x1)

r (x0; x in; x1)dx0dxindx1 =

KL (r kprojM (r )) +
Z

log
[projM (r )](x0)

Q N +1
n =1 [projM (r )](x t n jx t n � 1 )

m(x0)
Q N +1

n =1 m(x t n jx t n � 1 )
r (x0; x in; x1)dx0dxindx1 =

KL (r kprojM (r )) + KL ([projM (r )](x0)km(x0)) +
N +1X

n =1

Z
log

[projM (r )](x t n jx t n � 1 )
m(x t n jx t n � 1 )

r (x0; x in; x1)dx0dxindx1 =

KL (r kprojM (r )) + KL ([projM (r )](x0)km(x0)) +
N +1X

n =1

Z
log

[projM (r )](x t n jx t n � 1 )
m(x t n jx t n � 1 )

r (x t n ; x t n � 1 )
| {z }

=[ projM ( r )]( x t n ;x t n � 1 )

dxt n dxt n � 1 =

KL (r kprojM (r )) + KL ([projM (r )](x0)km(x0)) +
N +1X

n =1

Z
log

[projM (r )](x t n jx t n � 1 )
m(x t n jx t n � 1 )

[projM (r )](x t n ; x t n � 1 )dxt n dxt n � 1 =

KL (r kprojM (r )) + KL ([projM (r )](x0)km(x0)) +
N +1X

n =1

Z
log

[projM (r )](x t n jx t n � 1 )
m(x t n jx t n � 1 )

[projM (r )](x0; x in; x1)dx0dxindx1 =

KL (r kprojM (r )) +
Z

log
[projR ](q)(x0)

m(x0)
[projR ](q)(x0)dx0

| {z }
= KL([ projM ( r )]( x 0 )km (x 0 ))

+

Z
log

Q N +1
n =1 [projM (r )](x t n jx t n � 1 )

Q N +1
n =1 m(x t n jx t n � 1 )

[projM (r )](x0; x in; x1)dx0dxindx1 =

KL (r kprojM (r )) +
Z

log
[projM (r )](x0; x in; x1)

m(x0; x in; x1)
[projM (r )](x0; x in; x1)dx0dxindx1

| {z }
KL(projM ( r )km )

=

KL (r kprojM (r )) + KL (projM (r )km) :

That concludes the proof of the �rst equation(26). The proof for the second equation(27) is similar.

KL (mkr ) =
Z

log
m(x0; x in; x1)
r (x0; x in; x1)

m(x0; x in; x1)dx0dxindx1 +
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Z
log

[projR (m)](x0; x in; x1)
[projR (m)](x0; x in; x1)
| {z }

=0

m(x0; x in; x1)dx0dxindx1 =

Z
log

m(x0; x in; x1)
[projR (m)](x0; x in; x1)

m(x0; x in; x1)dx0dxindx1

| {z }
KL(m kprojR (m ))

+

Z
log

[projR (m)](x0; x in; x1)
r (x0; x in; x1)

m(x0; x in; x1)dx0dxindx1 =

KL (mkprojR (m)) +
Z

log ( ( ( ( ( ( (
pW � (x injx0; x1) [projR (m)](x0; x1)

( ( ( ( ( ( (
pW � (x injx0; x1) r (x0; x1)

m(x0; x in; x1)dx0dxindx1 =

Z
log

[projR (m)](x0; x1)
r (x0; x1)

m(x0; x1)
| {z }

=[ projR (m )]( x 0 ;x 1 )

dx0dx1 =

KL (mkprojR (m)) +
Z

log
[projR (m)](x0; x1)

r (x0; x1)
[projR (m)](x0; x1)dx0dx1 =

KL (mkprojR (m)) +
Z

log
[projR (m)](x0; x1)

r (x0; x1)
[projR (m)](x0; x in; x1)dx0dxindx1 =

KL (mkprojR (m)) +
Z

log
pW � (x injx0; x1)[projR (m)](x0; x1)

pW � (x injx0; x1)r (x0; x1)
[projR (m)](x0; x in; x1)dx0dxindx1 =

KL (mkprojR (m)) +
Z

log
[projR (m)](x0; x inx1)

r (x0; x in; x1)
[projR (m)](x0; x in; x1)dx0dxindx1

| {z }
= KL([ projR (m )]( x 0 ;x inx 1 )kr (x 0 ;x in;x 1 ))

=

= KL (mkprojR (m)) + KL (projR (m)kr )

That concludes the proof of the second equation (27).

Proposition B.2. Assume that we have a sequence of processesf ql g1
l =0 from D-IMF procedure start-

ing fromq0 for whichKL
�
q0kq�

�
< 1 . Assume that for each reciprocal and Markovian projection in

a sequence KL
�
ql kql +1

�
< 1 . Then KL

�
ql +1 kq�

�
� KL

�
ql kq�

�
andlim l !1 KL

�
ql kql +1

�
= 0 .

Proof of Proposition B.2.We use the same technique as was used in the proof of IMF procedure [47,
Proposition 7], and for forward KL in [43]. We apply Proposition B.1 and for everyl we have:

KL
�
ql kq� �

= KL
�
ql kql +1 �

+ KL
�
ql +1 kq� �

Since the KL divergence is non-negative, it follows thatKL
�
ql +1 kq�

�
� KL

�
ql kq�

�
. Applying this

proposition for eachl � L 2 N, we have

KL
�
q0kq� �

= KL
�
q0kq1�

+ KL
�
q1kq� �

=
LX

l =0

KL
�
ql kql +1 �

+ KL
�
qL +1 kq� �

:

Since KL is non-negative and KL
�
q0kq�

�
< 1 , we getlim l !1 KL

�
ql kql +1

�
= 0 .

Proof of Theorem 3.6.The mild assumptions here are the assumptions of the Propositon B.2, i.e.
KL

�
ql kql +1

�
< 1 . To prove the current theorem, we follow the proof of [47, Theorem 8] but do the

derivations for discrete stochastic processes instead of continuous. By our previous Proposition B.2
it holds thatKL

�
ql kq�

�
� KL

�
q0kq�

�
< 1 for every l . Hence the sequence(ql )1

l =0 and its
subsequences of markovian(ml )1

l =1 = ( q2l +1 )1
l =1 and reciprocal processes(r l )1

l =1 = ( q2l )1
l =1

are subsets of a setf q 2 P 2;ac (RD � (N +2) ) : KL (qkq� ) � KL
�
q0kq�

�
g which is compact [50,

Theorem 20]. Hence,(ml )1
l =1 contains a convergent subsequence(ml k )1

k=1 ! m� . In turn, the
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subsequence(r l k )1
k=1 containes a convergent subsequence(r l k j )1

j =1 ! r � . Since sets of Markovian
M (N ) and reciprocalR(N ) processes are closed under weak convergence, we havem� 2 M (N )
andr � 2 R (N ). From the lower semicontinuity of KL divergence in the weak topology [50, Theorem
19] andlim l !1 KL

�
ql kql +1

�
= 0 (see Proposition B.2):

0 � KL (m� kr � ) � lim inf
j !1

KL
�

ml k j kr l k j

�
= 0 : (28)

Thus, m� = r � def= qlim . We know thatqlim has the same marginalsp0(x0) = q(x0) and
p1(x1) = q(x1) since both Markovian and reciprocal projections preserve marginals. By our
Theorem 3.1 sinceqlim 2 M (N ) \ R (N ), then qlim(x0; x in; x1) = pT �

(x0; x in; x1). Finally,
lim l !1 KL

�
ql (x0; x in; x1)kpT �

(x0; x in; x1)
�

= 0 follows using

lim
j !1

KL
�

r l k j (x0; x in; x1)kpT �
(x0; x in; x1)

�
= 0

and the mononotonicity of KL
�
ql kq�

�
, see Proposition B.2.

B.3 Proofs of the Statements inM3.4

The proofs in this subsection are the most technical as there are a lot of manipulations with matrices.

Proof of Theorem 3.7.From(6) and(5) follows that the discrete Brownian BridgepW �
(x injx0; x1)

has also a Gaussian distribution. The covariance of the Brownian Bridge with coef�cient� at times
s < t [17, Eq. 9.14] is�s (1 � t). Thus, the matrix�K is a covariance matrix for all pairs of time
momentst; t 0 2 [t1; : : : ; tN ] of the considered discrete Brownian BridgepW �

(x injx0; x1). The mean
valueE[x t n jx0; x1] of Brownian Bridge at timetn is equal totn x1 + (1 � tn )x0. Thus, the discrete
Brownian Bridge has the following distribution:pW �

(x injx0; x1) = N (x injUx01; �K ).

Recall that the reciprocal projection is given by:

[projR q](x in; x0; x1) = pW �
(x injx0; x1)q(x0; x1): (29)

Since it is a product of two Gaussian distributions, which itself is also a Gaussian distribution, our
goal is to �nd the mean vector and covariance matrix of[projR q](x in; x0; x1). Further we denote
[projR q](x in; x0; x1) asr (x0; x in; x1) for convenience.

Themean vectorof [projR q](x in; x0; x1) for eachtn is given by

Er (x t n ) x t n =
Z

Er (x t n j x 0 ;x 1 ) [x t n jx0; x1]q(x0; x1)dx0dx1 =
Z

EpW � (x t n j x 0 ;x 1 ) [x t n jx0; x1]q(x0; x1)dx0dx1 =
Z �

x0 + tn (x1 � x0)
�
q(x0; x1)dx0dx1 =

(1 � tn )
Z

x0q(x0; x1)dx0dx1 + tn

Z
x1q(x0; x1)dx0dx1 = tn � 1 + (1 � tn )� 0:

where � 0 and � 1 are the means ofq(x0) and q(x1), respectively. Thus, the mean vector of
[projR q](x in; x0; x1) is given by(U� 01; � 0; � 1).

Now, we are going to �nd thecovariance matrix � R . We will �rst �nd the inverse covariance

� � 1
R =

�
A B

B T C

�

of [projR q](x in; x0; x1). HereA has shapeND � ND as the matrixK , while the matrixC has the
shape2D � 2D as the matrix� . MatricesA andC are symmetric since they are a part of the inversed
symmetric matrix� R . We exploit the fact that the logarithm of a Gaussian distribution has the form
(by Constwe denote all terms that does not depend onx in or x01):

log
�
[projR q](x in; x0; x1)

�
=

Const�
1
2

((x in; x01) � (U� 01; � 01))T � � 1
R ((x in; x01) � (U� 01; � 01)) =
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Const�
1
2

((x in; x01) � (U� 01; � 01))T
�

A B
B T C

�
((x in; x01) � (U� 01; � 01)) =

Const�
1
2

(x in � U� 01)T A(x in � U� 01) �
1
2

(x01 � � 01)T C(x01 � � 01) �

(x in � U� 01)T B (x01 � � 01) =

Const�
1
2

xT
inAx in + ( U� 01)T Ax in �

1
2

xT
01Cx01 + � T

01Cx01 �

xT
inBx 01 � xT

inB� 01 � (U� 01)T Bx 01 � (U� 01)T B� 01 =

Const�
1
2

xT
inAx in + ( U� 01)T Ax in �

1
2

xT
01Cx01 + � T

01Cx01 �

xT
inBx 01 � xT

inB� 01 � (U� 01)T Bx 01:

In turn, from (29) we have:

log
�
[projR q](x in; x0; x1)

�
= log pW �

(x injx0; x1) + log q(x0; x1) =

Const�
1
2

(x in � Ux01)T (�K ) � 1(x in � Ux01) �
1
2

(x01 � � 01)T � � 1(x01 � � 01) =

Const�
1
2

xT
in(�K ) � 1x in + xT

in(�K ) � 1Ux01 �
1
2

(Ux01)T (�K ) � 1Ux01 �

1
2

xT
01� � 1x01 + xT

01� � 1� 01 �
1
2

� 01� � 1� 01 =

Const�
1
2

xT
in (�K )

| {z }
= A

x in + xT
in (�K ) � 1U

| {z }
= B

x01 �
1
2

xT
01 (UT (�K ) � 1U + � � 1)

| {z }
= C

x01 + xT
01� � 1� 01:

By matching the formulas above, it follows:

A = ( �K ) � 1; B = � (�K ) � 1U; C = UT (�K ) � 1U + � � 1: (30)

Thus, we have:

� � 1
R =

�
A B

B T C

�
=

�
(�K ) � 1 � (�K ) � 1U

� (( �K ) � 1U)T UT (�K ) � 1U + � � 1

�

By using the formula of block-wise matrix inversion [37, Section 9.1.3] :
�

A B
B T C

� � 1

=
�

A � 1 + A � 1B (C � B T A � 1B ) � 1B T A � 1 � A � 1B (C � B T A � 1B ) � 1

� (C � B T A � 1B ) � 1B T A � 1 (C � B T A � 1B ) � 1

�
: (31)

Applying this formula, we have:

(C � B T A � 1B ) � 1 = ( UT (�K ) � 1U + � � 1 � UT (�K ) � 1(�K )( �K ) � 1U) � 1 = (� � 1) � 1 = � :

A � 1 + A � 1B (C � B T A � 1B ) � 1B T A � 1 =

�K + �K (�K ) � 1U�� � 1� UT �K (�K ) � 1 = �K + U� UT :

� A � 1B (C � B T A � 1B ) � 1 = �K (�K ) � 1U� = U� :

Thus, we obtain the desired result:

� R =
�

�K + U� UT U�
(U�) T �

�
:

Proof of Theorem 3.8.Part 1.Since from the assumptions of the theoremq(x in; x0; x1) has Gaussian
distribution, it follows that joint distribution of two time momentsq(x t n ; x t n � 1 ) is also Gaussian and
is given by:

q(x t n ; x t n � 1 ) = N (
�

x t n

x t n � 1

�
j
�

� t n

� t n � 1

� �
( e� R )t n ;t n ( e� R )t n ;t n � 1

( e� R )t n � 1 ;t n ( e� R )t n � 1 ;t n � 1

�
) (32)
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