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Abstract

Recovering the foreground color and opacity/alpha matte from a single image (i.e.,
image matting) is a challenging and ill-posed problem where data priors play a
critical role in achieving precise results. Due to the limited matting datasets, tradi-
tional methods usually struggle to produce high-quality estimation.To address this,
we explore the potential of leveraging vision priors embedded in pre-trained latent
diffusion models (LDM) for estimating foreground RGBA values in challenging
scenarios and rare objects. We introduce Drip, a novel approach for image matting
that harnesses the rich prior knowledge of LDM models. Our method incorporates
a switcher and a cross-domain attention mechanism to extend the original LDM for
joint prediction of the foreground color and opacity. This setup facilitates mutual
information exchange and ensures high consistency across both modalities. To
mitigate the inherent reconstruction errors of the LDM’s VAE decoder, we propose
a latent transparency decoder to align the RGBA prediction with the input image,
thereby reducing discrepancies. Comprehensive experimental results demonstrate
that our approach achieves state-of-the-art performance in foreground and alpha
predictions and shows remarkable generalizability across various benchmarks.

1 Introduction
Image matting aims to isolate the foreground object from composited images, a long-standing and
fundamental task in vision intelligence [1]. It is indispensable for various downstream applications,
such as media production, virtual reality, and image/video editing [2, 3]. Mathematically, image
matting begins with solving the inverse problem of the composition equation:

Imagei = αi · Foregroundi + (1− αi) ·Backgroundi, αi ∈ [0, 1], (1)

where i denotes the index of a pixel. Here, all quantities on the right-hand side are unknown, and the
prediction of the alpha matte α and foreground color represents an ill-posed problem.

In the past decade, advances in deep learning have significantly pushed the boundaries of image
matting, rapidly becoming the mainstream direction in this field [2, 4–7]. Despite their impressive
performance, two challenges remain unresolved in this domain: (i) high-quality foreground color
prediction. As illustrated in Fig. 1, most matting methods consist of two stages: namely, alpha
prediction with neural networks and foreground isolation via post-processing. These methods
typically struggle to generalize and recover high-fidelity foregrounds due to the accumulated errors
in alpha prediction and post-processing. (ii) accurate prediction of semi-transparent objects.
When the target to be predicted contains large areas of semi-transparency (e.g., a water glass) or
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(a) Previous Methods (b) Drip (ours)
Figure 1: (a) Matting methods [20, 4–7] commonly predict the alpha matte and then infer the
foreground color by post-processing [21], which often relies on empirical assumptions such as local
smoothing of the foreground and background, leading to the accumulation of errors.(b) In contrast,
our joint prediction approach estimates both the foreground and alpha simultaneously. By leveraging
LDM's [8] powerful natural vision prior, our predicted foreground is closer to natural images.

semi-transparent regions with high-frequency details (e.g., patterned semi-transparent fabric), existing
methods still struggle to predict the alpha matte accurately.

High-quality semitransparent matting data is dif�cult to annotate on a large scale. Therefore,how
can we enhance the algorithm's generalization capability for semi-transparent objects and achieve
high-quality foreground prediction with limited training data?Recently, with the emergence of
large pre-trained generative models [8–12], their data priors learned from billions of images (e.g.,
LAION [ 13]) are found to be useful for various downstream tasks [14–18]. Back to the challenging
image matting, we posit that the data priors learned from tons of natural images are also intuitively
bene�cial. Hence, our key insight is to unleash the data priors from the large pre-trained generative
models (LDM) to estimate alpha and foreground simultaneously.

To achieve this, we proposeDrip , the unleashingDiffusion priors for joint foreground and alpha
prediction method, which follows the diffusion paradigm and jointly generates the foreground and
alpha map conditioned on the image and trimap input. Speci�cally, we wisely design across-domain
switcher that leverages domain-aware embedding to unify the foreground and alpha generations
in a single-diffusion model. This design facilitates mutual information exchange and ensures high
consistency between foreground image and alpha. Besides, the pre-trained VAE compresses the
image into a compact latent space, signi�cantly reducing training consumption while inevitably
missing detailed information. To narrow the errors caused by VAE, we introduce an auxiliarylatent
transparency decoder, which is implemented by inserting the features from early layers in the
encoder into the decoder with several learnable zero-conv layers [19]. This latent transparency
decoder signi�cantly contributes to high-�delity foreground image and alpha prediction and also
effectively adapts the pre-trained LDM into image matting.

We extensively evaluate the performance of our method through extensive experiments and com-
parisons. The results demonstrate that our approach achieves state-of-the-art performance on the
Composition-1k test set and exhibits stronger generalizability on other benchmark datasets. Remark-
ably, Drip outperforms all the previous methods in the mainstream benchmark, Composition-1k,
whereDrip improves the SAD metric of alpha prediction by3:3% and foreground by12:1% and
MSE metric of alpha by6:1% and foreground by28:33%. In summary, the key contributions of this
paper are as follows.

• To our best knowledge, we introduce the �rst LDM-driven matting method,Drip , which effectively
unleashes the data priors learned from LDM into image matting.

• To enable joint prediction of foreground and alpha, we propose a switcher and a cross-domain
attention mechanism, facilitating mutual information exchange and ensuring high consistency.

• To mitigate the inherent reconstruction errors of the LDM's VAE decoder, we propose a latent
transparency decoder to align the RGBA prediction with the input image.

2 Related Work

Image Matting is aimed to extract the foreground objects from arbitrary natural images [22, 2].
Traditional methods always need the auxiliary user input like trimap [23, 4] and scribble [24, 25].
These methods basically only leverage low-level color or structure features, which limits their ability
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to distinguish foreground details from images. With the success of deep learning, researchers have
begun to use deep convolutional neural networks (CNNs) to predict the alpha map in an end-to-end
fashion [26, 20]. One type takes images and auxiliary trimap or scribble as input and outputs the alpha
map [5]. In order to alleviate the demand for trimap, trimap-free methods [27, 6, 28] are proposed
to directly predict alpha mattes from the input image, which increases ef�ciency while sacri�cing
performance. Although these existing methods achieve impressive results in alpha prediction,
accurately predicting foreground and background colors remains an essential yet challenging task
for high-quality matting. Tanget al. [29] and Aksoyet al. [30] �rstly proposed to address color
estimation by sequentially or directly predicting the background and foreground colors before alpha
prediction. Furthermore, recent method [31] uni�es foreground, background, and alpha matte into an
end-to-end framework. While, another line of works [32, 28] focuses on foreground human extraction
and alpha matte prediction. However, these methods are limited by the lack of high-quality labeled
data. Meanwhile, the explosion of generative models shows immense potential in providing priors
in different tasks. In this work, we explore unleashing diffusion priors within stable diffusion [8] to
improve the performance of image matting.

Diffusion Models have emerged as a powerful class of generative models, which learn a reverse
denoised process from the Gaussian noise to natural images [33]. In the vanilla DDPMs [33], the
sampling process is time-consuming due to the Markovian property. To speed up the sampling,
DDIMs [34] is proposed to provide a non-Markovian shortcut. Furthermore, LCM [35] just formulate
the diffusion process as one-step denoising via an ODE. Besides the speed, a series of works [36,
10, 37, 38] focus on increasing the controllability of diffusion models. For instance, Controlnet [19]
�ne-tunes a Stable Diffusion model with zero convolutions, which proves to be effective in adapting
the pre-trained diffusion models to different tasks by adding different conditions.

Diffusion Priors in Visual Perceptive Tasksare prevalent and hot topics. A series of works leverage
the diffusion priors in segmentation [17], image enhancement [39], depth estimation [40] and 3D
vision [41, 42]. In the context of image matting, Xuet al. [43] propose to formulate alpha prediction
as a denoised process, and train a condition generation model in DDPMs fashion. However, the vanilla
DDPMs have not been scaled-up training due to their expensive computational cost. On the contrary,
LDM [ 8] proposes to compress the features into a compact latent space, which obviously reduces the
computational cost. And based on it, Stable Diffusion is largely trained on the large-scale dataset [13].
However, LDM generates the image features in the latent space encoded by pretrained VAE. In order
to alleviate the domain gap, Marigold [16] �netunes UNet backbone of diffusion models to perform
af�ne invariant monocular depth estimation and exhibit strong generalization capability. Inspired by
this, we carefully discuss and propose a novel method to unleash the diffusion priors within stable
diffusion to improve the performance of image matting while preserving high-�delity details.

3 Drip

Overview. Drip is an LDM-based matting model designed to predict both foreground and alpha
values while ensuring high consistency between these two representations. Given an input image
(X ) and a trimap (T ri ) indicating the object to be matted, our goal is to estimate its corresponding
Foreground (F ) and alpha (� ). Initially, we explore the problem using the diffusion paradigm (see Sec.
§3.1). Subsequently, we present our LDM-based matting model (see Sec. §3.2). This model employs
a cross-domain switcher to simultaneously generate the foreground color and alpha map using a single
diffusion model. Moreover, through mutual information exchange, the model effectively enhances
boundary and texture consistency. To address the challenge of missing high-frequency information
caused by VAE compression, the model incorporates an auxiliary latent transparency decoder (see
Sec. §3.3). An overview of Drip is provided in Fig. 2.

3.1 Problem Formulation

The task of foreground and alpha estimation is to model the mappingf (�) : (X; T ri ) ! (F; � ),
whereF 2 RH � W � 3 represents the foreground and� 2 RH � W represents the alpha map. The input
conditions are an RGB imageX 2 RH � W � 3 and a trimapT ri 2 RH � W , which consists of three
values indicating the foreground, unknown, and background regions, respectively. However, unlike
prior works that adopt CNN or transformer as architecture, we employ a diffusion-based schemef (�)
to model the joint foreground and alpha distributionp(F; � ).

Diffusion Probabilistic Models [44, 33] de�ne a forward Markov chain that progressively transits the
samplex drawn from data distributionp(x) into noisy versionsx t 2 (1; T)jx t = � t x0 + � t � , where
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(a) Training (b) Inference
Figure 2: Overview of Drip . (a) During training, the input imageX , trimapT ri , ground-truth
foregroundF , and ground-truth alpha map� are �rst encoded into latent representationsZ X , Z T ri ,
Z F , andZ � respectively using the original Stable Diffusion VAE encoderE. After adding noise
to Z F andZ � , all the latents are fed into a U-Net, which generates the output in the foreground or
alpha domain guided by a switcher (§3.2.1). The U-Net is then �ne-tuned by optimizing the standard
diffusion objective(§3.2.3).(b) After executing the T-step denoising schedule, the resulting latents
Z F

0 andZ �
0 are decoded by a transparent latent decoder (§3.3).

� � N (0; I ), T is the timestep,� t and� t are the noisy scheduler terms that control sample quality. In
the reverse Markov chain, it learns a denoising network� � (�) parameterized by� usually structured as
U-Net [45] to transformx t into x t � 1 from an initial Gaussian samplexT through iterative denoising.

For the joint foreground and alpha distributionp(F; � ), given a conditional input imageX with its
corresponding trimapT ri , the foregroundF and the alpha map� can be obtained by the generative
formulation in Markov probabilistic form:

f (X; T ri ) = p
�

F̂T ; ^� T

� TY

t =1

p� ( ^Ft � 1; ^� t � 1jF̂t ; ^� t ; X; T ri ); F̂T ; ^� T � N (0; I ): (2)

To enhance computational ef�ciency and generate higher-resolution images, Stable Diffusion [8]
employs the latent diffusion model, where the diffusion steps are performed in the low-dimensional
latent space instead of directly operating on the original data. The latent space is formed within the
bottleneck of VAE [46], which is trained separately from the denoiser. This design allows latent
space compression and facilitates perceptual alignment with the data space.

To translate our formulation (Eq. 2) into the latent space, we obtain the corresponding latent code
for a given image using an encoder:z( i ) = E(i ), wherei 2 X; T ri; F; � . It's worth noting that we
triplicate the single-channel trimap and alpha map into three channels. Moreover, the denoiser� � (�)
is subsequently trained in the latent space. To obtain the desired outputs, given latent codeszF and
z� , the foreground and alpha can be reconstructed using the decoderD: F̂ = D(zF ) and�̂ = D(z� ).
It is worth noting that in the Matting task if the reconstructed image is obtained directly from the
latent representation of the foreground and alpha without making any modi�cations to the VAE, a
signi�cant error can occur.

3.2 LDM-Based Matting Model

We base our model on a pretrained text-to-image LDM (Stable Diffusion v2 [8]), which has learned
strong and generalizable image priors from LAION-5B [13]. In order to accept a given image and
trimap as conditions and simultaneously generate both foreground and alpha outputs, we quadruple
the input of the original U-Net and employ a switcher mechanism to expand the capabilities of the
original LDM model. Additionally, we incorporate cross-domain attention to enhance consistency.
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