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Abstract

Synthetic face recognition (SFR) aims to generate synthetic face datasets that
mimic the distribution of real face data, which allows for training face recogni-
tion models in a privacy-preserving manner. Despite the remarkable potential of
diffusion models in image generation, current diffusion-based SFR models strug-
gle with generalization to real-world faces. To address this limitation, we out-
line three key objectives for SFR: (1) promoting diversity across identities (inter-
class diversity), (2) ensuring diversity within each identity by injecting various
facial attributes (intra-class diversity), and (3) maintaining identity consistency
within each identity group (intra-class identity preservation). Inspired by these
goals, we introduce a diffusion-fueled SFR model termed ID3. ID3 employs an
ID-preserving loss to generate diverse yet identity-consistent facial appearances.
Theoretically, we show that minimizing this loss is equivalent to maximizing the
lower bound of an adjusted conditional log-likelihood over ID-preserving data.
This equivalence motivates an ID-preserving sampling algorithm, which operates
over an adjusted gradient vector field, enabling the generation of fake face recog-
nition datasets that approximate the distribution of real-world faces. Extensive
experiments across five challenging benchmarks validate the advantages of ID3.
Code is released at: https://github.com/hitspring2015/ID3-SFR.

1 Introduction

With the introduction of various regulations restricting the use of large-scale facial data in recent
years, such as GDPR, synthetic-based face recognition (SFR) (Boutros et al., 2023) has received
widespread attention from the academic community (Qiu et al., 2021; Wood et al., 2021; Wang
et al., 2023). The goal of SFR is to generate synthetic face datasets that mimic the distribution of
real face images, and use it to train a face recognition (FR) model such that the model can recognize
real face images as effectively as possible.

There exist numerous efforts to address SFR, which can be categorized into GAN-based models and
diffusion models. GAN-based models utilize adversarial training to learn to generate synthetic data
for FR training. Recently, with the empirical advantages of diffusion models over GANs, many
works have attempted to use diffusion models to generate synthetic face data in place of authentic
data. However, the reported results by these state-of-the-art (SoTA) SFR generative models (Bae
et al., 2023; Boutros et al., 2022; Kolf et al., 2023; Qiu et al., 2021; Boutros et al., 2023) show
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significant degradation in the verification accuracy in comparison to FR models trained by authentic
data. We deduce the degradation might be due to two reasons. First, while previous works adopt
diffusion models, they operate in the original score vector field without injecting the direction with
regards to identity information, which makes them unable to guarantee identity-preserving sampling.
Second, they fail to consider the structure of face manifold in terms of diversity during sampling.

We thus argue that the crux of SFR is to automatically generate a training dataset that has the fol-
lowing characteristics: (i) inter-class diversity: the training dataset covers sufficiently many distinct
identities; (ii) intra-class diversity: each identity has diverse face samples with various facial at-
tributes such as poses, ages, etc; (iii) intra-class identity preservation: samples within each class
should be identity-consistent. Also note that, critically, the SFR dataset generation process should
be fully automated without manual filtering or introducing auxiliary real face samples.

To this end, in this paper, we propose a novel IDentity-preserving-yet-Diversified Diffusion gen-
erative model termed ID3 and a sampling algorithm for inference. Jointly leveraging identity and
face attributes as conditioning signals, ID3 can synthesize diversified face images that conform to
desired attributes while preserving intra-class identity. Specifically, ID3 generates a new sample
based upon two conditioning signals: a target face embedding and a specific set of face attributes.
The target face embedding enforces identity preservation while face attributes enrich intra-class di-
versity. To optimize ID3, we propose a new loss function that involves an explicit term to preserve
identity. Theoretically, we show that with the addition of this term, minimizing the proposed loss
function is equivalent to maximizing the lower bound of the likelihood of an adjusted conditional
data log-likelihood. Consequently, this theoretical analysis motivates a new ID-preserving sampling
algorithm that generates desired synthetic face images. To generate an SFR dataset, we further pro-
pose a new dataset-generating algorithm. This algorithm ensures inter-class diversity by solving
the Tammes problem (Tammes, 1930), which maximally separates identity embeddings on the face
manifold. In the meantime, it encourages intra-class diversity by perturbing identity embeddings
randomly within prescribed areas. It works in conjunction with identity embeddings and diverse at-
tributes to ensure inter-/intra-class diversity while preserving identity. Extensive experiments show
that ID3 outperforms other existing methods in multiple challenging benchmarks.

To sum up, our major contributions are listed as follows:

• Model with Theoretical Guarantees: We propose ID3, an identity-preserving-yet-
diversified diffusion model for SFR. Theoretically, optimizing ID3 is equivalent to shifting
the original data likelihood to cover ID-preserving data.

• Algorithm Design: Motivated by this theoretical equivalence, we design a novel sampling
algorithm for face image generation, together with a face dataset-generating algorithm,
which effectively generates fake face datasets that approximate real-world faces.

• Effectiveness: Compared with SoTA SFR approaches, ID3 improves SFR performance by
� 2:4% on average across five challenging benchmarks.

2 Problem Formulation

The scope of this paper is synthetic-based face recognition (SFR), which focuses on generating
high-quality training data (i.e., face images) for FR models. Generally, we aim to address SFR
by generating face images that conform to diverse facial attributes while preserving identity within
each class, in an automated manner. Technically, we break down this objective into the following
two research questions (RQs) to be answered:

• RQ1: How can we effectively train a SFR generative model that preserves identity within
each class, while boosting inter-class and intra-class diversity?

• RQ2: Once the generative model is trained, what sampling strategy can be employed to
generate a synthetic face dataset that enables state-of-the-art face recognition models to
perform well on real face benchmarks?

The rest of the paper aims to answer these two questions, respectively, in order to improve synthetic
face recognition performance.
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Figure 1: The forward pass of ID3 in terms of loss computation. Given an image, its face attributes, and
its face embedding, ID3 obtains the image's noised version aftert diffusion steps and employs a denoising
network to denoise it. This denoising process is conditioned on the predicted attributes and the ID embedding.
Optimization proceeds by minimizing a loss function comprised of a denoising term, a one-step reconstruction
term, an inner-product term, and a constant.

3 Methodology

We propose ID3, a conditional diffusion model that generates diverse yet identity-preserving face
images. ID3 solves RQ1 by introducing two conditioning signals (identity embeddings and face
attributes) into a diffusion model which is trained using a novel loss function. The loss function,
together with identity embeddings, ensures intra-class identity preservation, while generation upon
various face attributes give rise to intra-/inter-class diversity of face appearances. Our theoretical
result regarding this loss function leads to an ID-preserving sampling algorithm and, further, an
effective dataset-generating algorithm.

Notations. Throughout the rest of the the paper, we letD denote a real face dataset that contains
face imagesx0 2 RH � W � 3. Let y denote a desired identity embedding ands be face attributes.

3.1 Diffusion Models

We build up our generative model, ID3, upon denoising diffusion probabilistic models (diffusion
models for short) (Ho et al., 2020; Song et al., 2022; Rombach et al., 2022) as they empirically
exhibit SoTA performance in the �eld of image generation. Diffusion models can be seen as a
hierarchical VAE whose optimization objective is to minimize the KL divergence between the true
data distribution and the model distributionp� , which is equivalent to minimizing the expected
negative log-likelihood (NLL),Ex �D [� logp� (x)]. However, directly minimizing the expected
NLL is intractable, therefore diffusion models instead maximize its evidence lower bound (ELBO),
where the ELBO term can further simply to a denoising task with several model assumptions:

logp(x) � Eq(x 1: T j x 0 )

�
log

p(x0:T )
q(x1:T jx0)

�

| {z }
ELBO

= Eq(x 1 j x 0 )

�
�

1
2

kx0 � x̂ � (x1; 1)k2
2

�
�

1
T � 1

TX

t =2

� t kx0 � x̂ � (x t ; t)k2
2

(1)

where� t := T � 1
2� 2

q ( t ) � �� t � 1 (1 � � t )2

(1 � �� t )2 ; �� t =
Q t

� =1 � � . Speci�cally, given a samplex0 (or interchange-
ably, x) from the image distribution, a sequencex1, x2, ..., xT of noisy images is produced by
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progressively adding Gaussian noise according to a variance schedule� 1; :::; � T . This process is
called the forward diffusion processq(x t jx t � 1). At the �nal time step,xT is assumed to be pure
Gaussian noise:xT � N (0; I ). The objective is to train a denoising networkx̂ � that is able to
predict the original image from the noisy imagex t and the time stept. To sample a new image, we
samplexT � N (0; I ) and iteratively denoise it, producing a sequencexT , xT � 1, ..., x1, x0. The
�nal image,x0, should resemble the training data.

Although the naive diffusion models are powerful in generating images, they do not deliver the
promise of generating face images of the same identity (i.e. identity preservation) without direct
corresponding information; nor are they aware of diverse desired facial attributes during inference.
To achieveintra-class diversityandintra-class identity preservation, we would like to gain control
of generating desired identities, each of which exhibits various attributes, including poses, ages and
background variations. Hence, our aim is to design a diffusion model that conditions on speci�c
identities and attributes throughout the generation of face images.

3.2 ID3 as Conditional Diffusion Models

We propose a conditional diffusion model, ID3 (see Figure 1 for details). Speci�cally, we extend the
denoising network by conditioning it on two sources of signals: identity signalsy and face attribute
signalss. The identity signals capture discernible faces in generated images, whereas face attribute
signals specify the identity-irrelevant attributes, including poses, ages, etc. We introduce how to
obtain these two conditioning signals, respectively, in the next two subsections.

3.2.1 Identity Conditioning Signal

To obtain identity conditioning signals, we assume access to a pretrained face recognition modelf � :
RH � W � 3 7! Sd� 1, which maps the domain of face images to a feature spaceSd� 1. This mapping
f � is parameterized by the learnable parameter� , which is obtained by training the model on a real
face dataset in the face recognition task. We follow the latest advancement of face recognition by
setting the output space to be a unit hypersphereSd� 1. Then, given a face imagex0 drawn from the
datasetD, we obtain its identity embeddingy 2 Sd� 1 by feeding it into a face recognition model
f � : y = f � (x0), which serves as the identity conditioning signals for ID3.

3.2.2 Face Attribute Conditioning Signal

Face attributes capture identity-irrelevant information about face images, such as age, face poses, etc.
To obtain face attribute as conditioning signals, we employ pretrained attribute predictors (Serengil
and Ozpinar, 2021) which output these attributes when given a face image as input. The pretrained
attribute predictors are a collection of ad-hoc domain experts in age estimation and pose estimation.
After obtaining each of these attribute values,sage 2 [0; 100], spose 2 [� 90� ; 90� ]3, we concatenate
them as the overall attributes = [ sage; spose] which is then fed into the diffusion model as condition-
ing signals.

3.3 Optimization Objective

Now the denoising network in Eq. (1) becomesx̂ � (x t ; t; y ; s) that takes as input the noisedx t , the
time stept, and the conditioning signalsy ands. To optimize ID3, we construct a training objec-
tive upon the ELBO oflogp(x jy ; s), ensuring that ID3 generates identity-preserving yet diversi�ed
faces:

min
�

E(x 0 ;y ;s) �D 0

�
L � ;� (x0; y ; s)

�
(2)

Here,� is the learnable parameter of the denoising network and the datapoint-wise loss is given by

L � ;� (x0; y ; s)

= Et �U [2;T ]

�
� t



 x0 � x̂ ( t )

0





2

2| {z }
denoising term

� � t � x 0 y T f �

�
x̂ ( t )

0

�

| {z }
inner-product term

�
+ Eq(x 1 j x 0 )

2

6
6
4
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2



 x0 � x̂ (1)

0





2

2| {z }
one-step reconstruction term

3

7
7
5 + C
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Algorithm 1: Training Algorithm
Input: The training face imagesx 0 � D ; The

pretrained face recognition modelf � (�).
Output: The denoising network̂x � .
Initialize D0  ;
for x 0 � D do

y  f � (x 0);
s  AttributePredictor( x 0);
D0  D 0 [ f (x 0 ; y ; s)g;

end
Solve Eq. (2) using batched Backpropagation
algorithm withD0;

return x̂ �

Algorithm 2: ID-Preserving Sampling Alg.
Input: Denoising network̂x � ; recognition

modelf � ; conditioning signalsy ands.
Output: A generated facex 0

x T  sample fromN (0; I );
for t  T to 1 do

Compute the score functionr log ~p(x t jy ; s)
as in Eq. (7);

Draw a Gaussian sample� � N (0; I );
Perform the update:
x t � 1  x t +  r log ~p(x t jy ; s) +

p
2� ;

end
return x 0

wherex̂ ( t )
0 is the output of the denoising network that takes as input the conditioning signalsy ; s,

the timet and thet-step noisi�ed imagex t :

x̂ ( t )
0 := x̂ � (x t ; t; y ; s): (4)

Symbolically,x̂ ( t )
0 denotes the denoised image predicted by the denoising network when given the

t-step noisi�edx t , the timet and the associated conditioning signalsy ; s. The coef�cients,� x 0 and
� t are scalars depending onx0 andt, respectively, andC is a constant that does not depend on the
learnable parameters� . The speci�c value ofC will be elaborated in Appendix A.

To summarize, our proposed loss function consists of four terms: the one-step reconstruction term,
the denoising term, the inner-product term, and a constant. Intuitively, the denoising term, along
with the one-step reconstruction term, aims to improve the generative quality by denoising thet-step
noisi�ed face images while the inner-product term encourages the face embedding of the denoisi-
�ed images to get close to the groundtruth identity embedding. To understand this loss function
systematically, we theoretically �nd that minimizing this proposed loss function is equivalent to the
maximization of the lower bound of an adjusted conditional log-likelihood over identity-preserving
face images, which further leads us to an ID-preserving sampling algorithm.

Theorem 3.1. Minimizing L with regard to� is equivalent to minimizing the upper bound of an
adjusted conditional data negative log-likelihood� log ~p(x jy ; s), i.e.:

min
�

L (x0; y ; s) � � log ~p(x jy ; s) (5)

where

~p(x jy ; s) / p(x jy ; s) � p(y ; sjx)
P T

t =2 � t
T � 1 (6)

Proof. The proof can be found in Appendix A.

Remark. We have just shown that our proposed loss is the upper bound of an adjusted conditional
negative data log-likelihood. This adjusted likelihood~p(x jy ; s) can be factorized into the original
likelihood p(x jy ; s) and a reversed likelihoodp(y ; sjx) with some positive power. We term it as
“adjusted” since the original likelihood is discounted by the reversed likelihood. Intuitively, the re-
versed likelihood shifts the original likelihood such that the adjusted likelihood covers ID-preserving
data, which is attributed to the inner-product term we introduce into the loss function in Eq. (2).

3.4 ID-Preserving Sampling

Theorem 3.1 provides insights for designing a novel sampling algorithm in the spirit of Langevin
dynamics applied on the adjusted conditional likelihood~p(x t jy ; s). We note that Langevin dynamics
can generate new samples from a probability densityp by virtue of its score function (i.e., the
gradient of the logarithm of the probability density w.r.t. the sample,r x logp). Motivated by this
observation, we aim to �nd the score function of the adjusted likelihood for sample generation.
Speci�cally, taking the logarithm and the gradient w.r.t.x on both sides of Eq. (6) yields

r log ~p(x jy ; s) = r logp(x jy ; s) +
P T

t =2 � t

T � 1
r logp(y ; sjx) (7)
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Algorithm 3: Synthetic Dataset Generation
Input: Denoising network̂x � ; recognition modelf � ; the

number of identitiesN .
Output: A synthetic datasetDsyn.
Dsyn  ; ;
Generatew 1 ; :::; w N 2 Sd� 1 by solving the Tammes
problem;

for i  1 to N do
Generates1i ; :::; smi � U [lb; ub);
CalculateY i by solving the optimization problemP i in
Eq. (9);

y �
i 1 ; :::; y �

im  unpack(Y i );
si 1 ; :::; sim  generate different attributes;
D i  ; ;
for j  1 to m do

x 0  Alg. 2(x̂ � ; f � ; norm(y �
ij ); sij );

D i  D i [ f (x 0 ; i )g;
Dsyn  D syn [ D i ;

end
end
return Dsyn

Figure 2: Qualitative comparison
of face images generated by the ad-
justed score functionr log ~p(x t jy ; s)
and the original score function
r log p(x t jy ; s).

Then, our ID-preserving sampling algorithm �rst draws a Gaussian samplexT � N (0; I ). After-
wards, sequentially, the algorithm performs the following update fort iterating fromT backwards
to 1:

x t � 1  x t +  r log ~p(x t jy ; s) +
p

2�

where

r log ~p(x t jy ; s) = r logp(x t jy ; s)
| {z }
original likelihood score

+
P T

t =2 � t

T � 1
r logp(y ; sjx t )| {z }

reversed likelihood score

(8)

Note that the original likelihood score in Eq. (8) can be evaluated by

r logp(x t jy ; s) =
p

�� tp
1 � �� t

�
x̂ � (x t ; t; y ; s) �

x tp
�� t

�

and the reversed likelihood score is given by a scaled inner product:

r logp(y ; sjx t ) = � x t y
T r f � (x t )

See Appendix B for the derivation of the above equations. As such, our ID-preserving sampling
algorithm performs sampling by searching a trajectory in the vector �eldr log ~p(x t jy ; s) that can
maximize the adjusted conditional likelihood~p(x t jy ; s). See Algorithm 2 for the speci�c procedure.

Remark. Our proposed adjusted likelihood score differs from the original score by adding an extra
scaled reversed likelihood score in Eq. (8). Consequently, as shown in Figure 2 , the resulting vector
�eld differs from the original vector �eld, which leads to different Langevin sampling trajectories
and thus different sampling quality.

3.5 Synthetic Dataset Generation

In terms of the second question (RQ2): after training ID3, with what sampling strategy is it possible
to generate a synthetic face dataset on which SoTA face recognition models can be trained and
perform well on challenging benchmarks?

Our proposed dataset-generating algorithm goes as follows: givenN target identities, we generate
N anchor embeddings distributed on the sphere:w1; w2; :::; wN 2 Sd� 1 as uniformly as possible
in the sense that each pair of the embeddings are maximally separated on the unit sphere#. For each
anchorw i , we would like to generatem identity embeddings perturbed aroundw i while ensuring

#This is known as the Tammes problem (Tammes, 1930) for which there exists no exact solution for hyper-
sphereSd� 1 ; d > 3. However, one can use the optimization technique introduced in (Mettes et al., 2019).
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