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Figure 1: Generated samples with 20 steps inference from stable-diffusion-xl-base-1.0 optimized by
Unified Feedback Learning (UniFL). The last three images of the third row are generated with 4 steps.

Abstract

Latent diffusion models (LDM) have revolutionized text-to-image generation,
leading to the proliferation of various advanced models and diverse downstream
applications. However, despite these significant advancements, current diffusion
models still suffer from several limitations, including inferior visual quality, inade-
quate aesthetic appeal, and inefficient inference, without a comprehensive solution
in sight. To address these challenges, we present UniFL, a unified framework that
leverages feedback learning to enhance diffusion models comprehensively. UniFL
stands out as a universal, effective, and generalizable solution applicable to various
diffusion models, such as SD1.5 and SDXL. Notably, UniFL consists of three key
components: perceptual feedback learning, which enhances visual quality; decou-
pled feedback learning, which improves aesthetic appeal; and adversarial feedback
learning, which accelerates inference. In-depth experiments and extensive user
studies validate the superior performance of our method in enhancing generation
quality and inference acceleration. For instance, UniFL surpasses ImageReward
by 17% user preference in terms of generation quality and outperforms LCM and
SDXL Turbo by 57% and 20% general preference with 4-step inference.
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1 Introduction

The emergence of diffusion models has led to remarkable advances in the field of text-to-image
(T2I) generation, marked by notable milestones like DALLE-3 [1], Imagen [2], Midjourney [3], etc,
elevating the generation quality of images to an unprecedented level. Particularly, the introduction
of open-source image generation models, exemplified by latent diffusion model (LDM) [4], has
inaugurated a transformative era of text-to-image generation, triggering numerous downstream
applications such as T2I personalization [5, 6, 7, 8], controllable generation [9, 10, 11] and text-to-
video (T2V) generation [12, 13, 14]. Nevertheless, despite these advancements achieved thus far,
current latent diffusion-based image generation models still exhibit certain limitations. i) Inferior
visual quality: The generated images still suffer from poor visual quality and lack authenticity.
Examples include characters with incomplete limbs or distorted body parts, as well as limited
fidelity in terms of style representation. ii) Inadequate aesthetic appeal: The generated image
tends to lack aesthetic appeal and often fails to align with human preferences, especially in the
abstract aesthetic concepts aspects such as color, lighting, atmosphere, etc. iii) Slow inference
speed: The iterative denoising process employed by diffusion models led to inefficiencies during
inference that significantly impede generation speed, thereby limiting the practicality of these
models in various application scenarios. Recently, numerous works have endeavored to address the
aforementioned challenges. For instance, RAPHAEL [15] resorts to the techniques of Mixture of
Experts) [16, 17, 18] boost the generation performance via stacking the space MoE and time MoE
block. Works [19, 20, 21, 22, 23] represented by ImageReward [23] propose incorporating human
preference feedback to guide diffusion models toward aligning with human preferences. SDXL
Turbo [24], PGD [25], and LCM [26, 27], on the other hand, targets on achieve inference acceleration
through techniques like distillation and consistency models [28]. However, these methods primarily
concentrate on tackling individual problems through specialized designs, which poses a significant
challenge to the elegant integration of these techniques. For example, MoE significantly complicates
the pipeline, making the acceleration method infeasible to apply, and the consistency models [28]
alter the denoising process of the diffusion model, making it arduous to directly apply the ReFL
preference tuning framework proposed by ImageReward [23]. Therefore, a natural question arises:
Can we devise a more effective approach that comprehensively enhances diffusion models in terms of
image quality, aesthetic appearance, and generation speed?

To tackle this issue, we present UniFL, a solution that offers a comprehensive improvement to latent
diffusion models through unified feedback learning formulation. UniFL aims to boost the visual
generation quality, enhance aesthetic attractiveness, and accelerate the inference process. To achieve
these objectives, UniFL features three novel designs upon the unified formulation of feedback learning.
Firstly, we introduce a pioneering perceptual feedback learning (PeFL) framework that effectively
harnesses the extensive knowledge embedded within diverse existing perceptual models to provide
more precise and targeted feedback on the potential visual defects of the generated results. Secondly,
we employ decoupled aesthetic feedback learning to boost the visual appeal, which breaks down the
coarse aesthetic concept into distinct aspects such as color, atmosphere, and texture, simplifying the
challenge of abstract aesthetic optimization. Furthermore, an active prompt selection strategy is also
introduced to choose the more informative and diverse prompt to facilitate more efficient aesthetics
preference learning. Lastly, UniFL develops adversarial feedback learning to achieve inference
acceleration by incorporating the adversarial objective in feedback tuning. We instantiate UniFL with
a two-stage training pipeline and validate its effectiveness with SD1.5 and SDXL, yielding impressive
improvements in generation quality and acceleration. Our contributions are summarized as follows:

• New Insight: Our proposed method, UniFL, introduces a unified framework of feedback
learning to optimize the visual quality, aesthetics, and inference speed of diffusion models.
To the best of our knowledge, UniFL offers the first attempt to address both generation
quality and speed simultaneously, offering a fresh perspective in the field.

• Novelty and Pioneering: In our work, we shed light on the untapped potential of leveraging
existing perceptual models in feedback learning for diffusion models. We highlight the sig-
nificance of decoupled reward models and elucidate the underlying acceleration mechanism
through adversarial training.

• High Effectiveness: Through extensive experiments, we demonstrate the substantial im-
provements achieved by UniFL across various types of diffusion models, including SD1.5
and SDXL, in terms of generation quality and inference acceleration.
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2 Related Works

Text-to-Image Diffusion Models. Text-to-image generation has gained unprecedented attention
over other traditional tasks [29, 30, 31, 32, 33]. Recently, diffusion models have gained substantial
attention and emerged as thede factomainstream method for text-to-image generation, surpassing
traditional image generative models like GAN [34] and VAE [35]. Numerous related works have been
proposed, including GLIDE [36], DALL-E2 [1], Imagen [2], CogView [37] etc.. Among these, Latent
Diffusion Models (LDM) [4] extend the diffusion process to the latent space and signi�cantly improve
the training and inference ef�ciency of the diffusion models, opening the door to diverse applications
such as controllable generation [9, 10], image editing [11, 38, 39], and image personalization [5, 7, 6]
and so on. Even though, current text-to-image diffusion models still have limitations in inferior visual
generation quality, deviations from human aesthetic preferences, and inef�cient inference. The target
of this work is to offer a comprehensive solution to address these issues.

Improvements on Text-to-Image Diffusion Models.Given the aforementioned limitations, re-
searchers have proposed various methods to tackle these issues. Notably, [40, 15, 41] focuses on
improving generation quality through more advanced training strategies. Inspired by the success of re-
inforcement learning with human feedback (RLHF) [42, 43] in the �eld of LLM, [ 20, 21, 44, 23, 45]
explore the incorporation of human feedback to improve image aesthetic quality. On the other hand,
[25, 24, 28, 27, 26] concentrate on acceleration techniques, such as distillation and consistency mod-
els [28] to achieve inference acceleration. While these methods have demonstrated their effectiveness
in addressing speci�c challenges, their independent nature makes it challenging to combine them
for comprehensive improvements. In contrast, our study uni�es the objective of enhancing visual
quality, aligning with human aesthetic preferences, and acceleration through the feedback learning
framework.

3 Preliminaries

Latent Diffusion Model. Text-to-image latent diffusion models leverage diffusion modeling to
generate high-quality images based on textual prompts, which generate images from Gaussian noise
through a gradual denoising process. During pre-training, a sampled imagex is �rst processed by a
pre-trained VAE encoder to derive its latent representationz. Subsequently, random noise is injected
into the latent representation through a forward diffusion process, following a prede�ned schedule
f � t gT . This process can be formulated aszt =

p
� t z +

p
1 � � t � , where� 2 N (0; 1) is the random

noise with identical dimension toz, � t =
Q t

s=1 � s and� t = 1 � � t . To achieve the denoising
process, a UNet� � is trained to predict the added noise in the forward diffusion process, conditioned
on the noised latent and the text promptc. Formally, the optimization objective of the UNet is:

L (� ) = Ez;�;c;t [jj � � � � (
p

� t z +
p

1 � � t �; c; t )jj2
2] (1)

Reward Feedback Learning.Reward feedback learning (ReFL) [23] is a preference �ne-tuning
framework that aims to improve the diffusion model via human preference feedback. It consists of two
phases: (1) Reward Model Training and (2) Preference Fine-tuning. In the Reward Model Training
phase, human preference data is collected to train a human preference reward model, which serves
as a proxy to provide human preferences. More speci�cally, considering two candidate generations,
denoted asxw (preferred generation) andx l (unpreferred one), the loss function for training the
human preference reward modelr � can be formulated as follows:

L rm (� ) = � E(c;x w ;x l ) �D [log(� (r � (c; xw ) � r � (c; xl )))] (2)

whereD denotes the collected feedback data,� (�) represents the sigmoid function, andc corresponds
to the text prompt. The reward modelr� is optimized to produce a reward score that aligns with
human preferences. In the Preference Fine-tuning phase, ReFL begins with an input promptc,
initializing a random latent variablexT . The latent variable is then progressively denoised until
reaching a randomly selected timestept. Then, the denoised imagex0

0 is directly predicted fromx t .
The reward model obtained from the previous phase is applied to this denoised image, generating the
expected preference scorer � (c; x0

0). ReFL maximizes such preference scores to make the diffusion
model generate images that align more closely with human preferences:

L re
 (� ) = Ec� p(c) Ex 0
0 � p(x 0

0 j c) [� r (x0
0; c)] (3)

Our method follows a similar learning framework to ReFL but devises several novel components to
enable comprehensive improvements.
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Figure 2:Overview of UniFL . We leverage a uni�ed feedback learning framework to enhance the
model performance and inference speed comprehensively. The training process of UniFL is divided
into two stages, the �rst stage aims to improve visual quality and aesthetics, and the second stage
speeds up model inference.

4 UniFL: Uni�ed Feedback Learning

Our proposed method, UniFL, aims to improve the latent diffusion models in various aspects,
including visual generation quality, human aesthetic quality, and inference ef�ciency. our method
takes a uni�ed feedback learning perspective, offering a comprehensive and streamlined solution. An
overview of UniFL is illustrated in Fig.2. In the following subsections, we delve into the details of
three key components: perceptual feedback learning to enhance visual generation quality (section 4.1);
decoupled feedback learning to improve aesthetic appeal (section 4.2); and adversarial feedback
learning to facilitate inference acceleration (section 4.3).

4.1 Perceptual Feedback Learning

Current diffusion models exhibit limitations in achieving high-�delity visual generation, for example,
object structure distortion. These limitations stem from the reliance on reconstruction loss(MSE
loss) solely in the latent space, which lacks structural supervision on the high-level visual quality.
To address this issue, we propose perceptual feedback learning (PeFL). Our key insight is that
various visual perception models already embed rich visual priors, which can be exploited to provide
feedback for visual generation and �ne-tune the diffusion model. The complete PeFL process is
summarized in Algorithm 1. In contrast to ReFL, which starts from a randomly initialized latent
representation and only considers the text prompt as a condition, PeFL incorporates image content as
an additional visual condition for perceptual guidance. Speci�cally, given a text-image pair,(c; x),
we �rst select a forward stepTa and inject noise into the ground truth image to obtain a conditional
latentx0 ! xTa . Subsequently, we randomly select a denoising time stept and denoising fromxTa ,
yielding xTa ! xTa � 1::: ! x t . Next, we directly predictx t ! x0

0. By incorporating the visual
condition input, the denoised image is expected to restore the same high-level visual characteristics,
such as object structure, and style, which existing perception models can capture. For instance,
in the case of object structure, the instance segmentation model can serve as a valuable resource
as it provides essential descriptions of object structure through instance masks. Consequently, the
feedback on the generation of such visual characteristics onx0

0 can be obtained by comparing it with
the ground truth segmentation mask via:

L struct
pe
 (� ) = Ex 0 �D ;x 0

0 � G(x t a ) L instance (mI (x
0

0); GT( x0)) (4)

wheremI is the instance segmentation model,GT( x0) is the ground truth instance segmentation
mask andL instance is the instance segmentation loss. Note that our PeFL differs from ReFL as
indicated by the red font in Algorithm 1. With the visual condition input and perception model, the
diffusion model is allowed to get a detailed and focused feedback signal on a speci�c aspect, instead
of the general quality feedback offered by ReFL. Moreover, the �exibility of PeFL allows us to
leverage various existing visual perceptual models, more examples can be found in the Appendix A.

4.2 Decoupled Feedback Learning

Decoupled Aesthetic Fine-tuning.Existing text-to-image diffusion models exhibit shortcomings
in images that satisfy human aesthetic preferences. While PeFL prioritizes objective visual quality,
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aesthetic quality is inherently subjective and abstract, requiring human aesthetic feedback to steer
the generation process. Despite ImageReward's attempt to incorporate human aesthetic preferences
through a reward model, its performance is hindered by oversimpli�ed modeling that fails to capture
the multidimensional nature of human aesthetic preferences. Generally, humans consider the aesthetic
attractiveness of an image from various aspects, such as color, lighting, etc, and con�ating these
aspects without distinguishing during preference tuning would encounter optimization con�icts as
evidenced in [46]. To address this issue, we follow [23] to achieve aesthetic preference tuning but
suggest decoupling the various aesthetic aspects when constructing preference reward models. Specif-
ically, we decomposed the general aesthetic concept into representative dimensions and collected the
corresponding annotated data, respectively. These dimensions include color, layout, lighting, and
detail. Subsequently, we train a separate aesthetic preference reward model for each annotated data
according to Eq.2. Finally, we leveraged these reward models for aesthetic preference tuning:

L aes(� ) =
KX

d

Ec� p(c) Ex 0
0 � p(x 0

0 j c) [ReLU(� d � r d(x0
0; c))] (5)

r d is the aesthetic reward model ond dimension,d 2 f color; layout; detail; lightingg, � d is the
dimension-aware hinge coef�cient, andK is the number of �ne-grained aesthetic dimension.

Algorithm 1 Perceptual Feedback Learning (PeFL)

1: Dataset: Captioned perceptual text-image dataset with
D = f (txt1 ; img1); :::(txtn ; imgn )g

2: Input: LDM with pre-trained parametersw0 , perceptual
modelm � , perceptual loss function� , loss weight�

3: Initialization: The number of noise scheduler time steps
T , add noise timestepTa , denoising time stept.

4: for perceptual data point(txti ; imgi ) 2 D do
5: x0  VaeEnc(imgi ) // From image to latent
6: xTa  AddNoise(x0) // Add noise to latent
7: for j = Ta ; :::; t + 1 do
8: no grad: x j � 1  LDMw i f x j g
9: end for

10: with grad: x t � 1  LDMw i f x t g
11: x

0

0  x t � 1 // Predict the denoised latent
12: img

0

i  VaeDec(x
0

0) // From latent to image
13: L pe�  � �( m(img

0

i ); GT( imgi ) // PeFL loss by per-
ceptual model

14: wi +1  wi // Update LDMw i using PeFL loss
15: end for

Active Prompt Selection. We observed
that when using randomly selected prompts
for aesthetic preference �ne-tuning, the dif-
fusion model tends to rapidly over�t the
reward model due to the limited seman-
tic richness, leading to diminished effec-
tiveness of the reward model. To address
this issue, we further propose an active
prompt selection strategy, which selects
the most informative and diverse prompt
from a prompt database. This selection
process involves two key components: a
semantic-based prompt �lter and nearest
neighbor prompt compression. By lever-
aging these techniques, the over�tting can
be greatly mitigated, achieving more ef�-
cient aesthetic reward �ne-tuning. More
details of this strategy are presented in the
Appendix.B.2.

4.3 Adversarial Feedback Learning

The inherent iterative denoising process of diffusion models signi�cantly hinders their inference
speed. To address this limitation, we introduce adversarial feedback learning to reduce the denoising
steps during inference. Speci�cally, to achieve inference acceleration, we exploit a general reward
modelr a(�) to improve the generation quality of fewer denoising steps. However, as studied in [23],
the samples under low inference steps tend to be too noisy to obtain the correct rewarding scores.
To tackle this problem, rather than freeze the reward model during �ne-tuning, we incorporate an
extra adversarial optimization objective by treatingr a(�) as adiscriminator and update it together
with the diffusion model. Concretely, we follow a similar way with PeFL to take an image as input
and execute the diffusion and denoising consecutively. Afterward, in addition to maximizing the
reward score of the denoised image, we also update the reward model in an adversarial manner. The
optimization objective is formulated as:

L G (� ) = Ec� p(c) Ex 0
0 � p(x 0

0 j c) [� r a(x0
0; c)];

L D (� ) = � E(x 0 ;x 0
0 ;c) �D train ;t � [1;T ][log � (r a(x0)) + log(1 � � (r a(x0

0)))] :
(6)

where� and� are the parameters of the diffusion model and discriminator. With the adversarial
objective, the reward model is always aligned with the distribution of the denoised images with
various denoised steps, enabling the reward model to function well across all the timesteps. Note that
our method is distinct from the existing adversarial diffusion methods like SDXL-Turbo [24]. These
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methods take theadversarial distillationmanner to accelerate the inference, which tends to require
another LDM as the teacher model to realize distillation, incurring considerable memory costs. By
contrast, we follow thereward feedback learningformulation, which integrates adversarial training
with the reward tuning and achieves the adversarial reward feedback tuning via the lightweight reward
model.

4.4 Training Objective

We employ a two-stage training pipeline to implement UniFL. The �rst stage focuses on improving
generation quality, leveraging perceptual feedback learning and decoupled feedback learning to boost
visual �delity and aesthetic appeal. In the second stage, we apply adversarial feedback learning to
accelerate the diffusion inference speed. To prevent potential degradation, we also include decoupled
feedback learning to maintain aesthetics. The training objectives of each stage are summarized as
follows:

L 1(� ) = L pe
 (� ) + L aes(� ); L 2(�; � ) = L G (� ) + L D (� ) + L aes(� ) (7)

5 Experiments

5.1 Implementation Details and Metrics

Dataset.We utilized the COCO2017 [47] train split dataset with instance annotations and captions
for structure optimization with PeFL. Additionally, we collected the human preference dataset for
the decoupled aesthetic feedback learning from diverse aspects (such as color, layout, detail, and
lighting). 100,000 prompts are selected for aesthetic optimization from DiffusionDB [48] via active
prompt selection. During the adversarial feedback learning, we use data from the aesthetic subset of
LAION [49] with image aesthetic scores above 5.

Training Setting. We utilize the SOLO [50] as the instance segmentation model. We utilize the
DDIM [ 51] scheduler with a total of 20 inference steps.Ta = 10 and the optimization stepst 2 [0; 5]
during PeFL training. For adversarial feedback learning, we initialize the adversarial reward model
with the weight of the aesthetic preference reward model of details. During adversarial training, the
optimization step is set tot 2 [0; 20] encompassing the entire diffusion process. Our training per
stage costs around 200 A100 GPU hours.

Baseline Models.We choose two representative text-to-image diffusion models with distinct gen-
eration capacities to comprehensively evaluate the effectiveness of UniFL, including (i) SD1.5 [4];
(ii) SDXL [ 40]. Based on these models, we pick up several state-of-the-art methods(i.e. Im-
ageReward [23], Dreamshaper [52], and DPO [22] for generation quality enhancement, LCM [27],
SDXL-Turbo [24], and SDXL-Lightning [53] for inference acceleration) to compare the effectiveness
of quality improvement and acceleration. All results of these methods are reimplemented with the
of�cial code provided by the authors.

Evaluation Metrics. We generate the 5K image with the prompt from the COCO2017 validation
split to report the Fréchet Inception Distance (FID) [54] as the overall visual quality metric. We also
report the CLIP score with ViT-B-32 [55] and the aesthetic score with LAION aesthetic predictor
to evaluate the text-to-image alignment and aesthetic quality of the generated images, respectively.
Given the subjective nature of quality evaluations, we further conducted comprehensive user studies
to obtain a more accurate evaluation.

5.2 Main Results

Quantitative Comparison. Tab.1 summarize the quantitative comparisons with competitive ap-
proaches on SD1.5 and SDXL. Generally, UniFL exhibits consistent performance improvement on
both architectures and surpasses the existing methods of focus on improving generation quality or
acceleration. Speci�cally, for the generation quality, UniFL surpasses both DreamShaper (DS) and
ImageReward (IR) across all metrics, where the former relies on high-quality training images while
the latter exploits the human preference for �ne-tuning. It is also the case when compared with the
recently proposed preference tuning method DPO. In terms of acceleration, UniFL also exhibits
notable performance advantages, surpassing the LCM with the same 4-step inference on both SD1.5
and SDXL. Surprisingly, we found that UniFL sometimes obtained even better aesthetic quality
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Figure 3:User studyabout UniFL and other methods with 10 users on the generation of 500 prompts
in generation quality (left) and inference acceleration (right).

Figure 4:Qualitive comparisonof the generation results of different methods based on SDXL.

with fewer inference steps. For example, when applied to SD1.5, the aesthetic score is �rst boosted
from 5.26 to 5.54 without acceleration, and then further improved to 5.88 after being optimized
by adversarial feedback learning. This demonstrates the superiority of our method in acceleration.

Model Step FID# CLIP Score" Aes Score"

SD1.5-Base 20 37.99 0.308 5.26
SD1.5-IR [23] 20 32.31 0.312 5.37
SD1.5-DS [52] 20 34.21 0.313 5.44

SD1.5-DPO [22] 20 32.83 0.308 5.22
SD1.5-UniFL 20 31.14 0.318 5.54
SD1.5-Base 4 42.91 0.279 5.16

SD1.5-LCM [27] 4 42.65 0.314 5.71
SD1.5-DS LCM [26] 4 35.48 0.314 5.58

SD1.5-UniFL 4 33.54 0.316 5.88

SDXL-Base 25 27.92 0.321 5.65
SDXL-IR [23] 25 26.71 0.319 5.81
SDXL-DS [52] 25 28.53 0.321 5.65

SDXL-DPO [22] 25 35.30 0.325 5.64
SDXL-UniFL 25 25.54 0.328 5.98
SDXL-Base 4 125.89 0.256 5.18

SDXL-LCM [27] 4 27.23 0.322 5.48
SDXL-Turbo [24] 4 30.43 0.325 5.60

SDXL-Lighting [53] 4 28.48 0.323 5.66
SDXL-UniFL 4 26.25 0.325 5.87

Table 1:Quantitative comparisonbetween our method and other meth-
ods on SD1.5 and SDXL architecture. The best performance is high-
lighted with bold font, and the second-best is underlined.

We also compared the two latest acceleration
methods on SDXL, including the SDXL Turbo
and SDXL Lightning. Although retaining the
high text-to-image alignment, we found that the
image generated by SDXL Turbo tends to lack
�delity, leading to an inferior FID score. SDXL
Lightning achieves the most balanced perfor-
mance in all of these aspects and reaches im-
pressive aesthetic quality in 4-step inference.
However, UniFL still obtains slightly better per-
formance on these metrics.

User Study. We conducted a comprehensive
user study using SDXL to evaluate the effec-
tiveness of our method in enhancing generation
quality and acceleration. As illustrated in Fig.3,
our method signi�cantly improves the original
SDXL in terms of generation quality with a 68%
preference rate and outperforms DreamShaper
and DPO by 36% and 25% preference rate, re-
spectively. Thanks to PeFL and decoupled aesthetic feedback learning, our method exhibits improve-
ment even when compared to the competitive ImageReward, and is preferred by 17% additional
people. In terms of acceleration, our method surpasses the widely used LCM by a substantial margin
of 57% with 4-step inference. Even when compared to the latest acceleration methods like SDXL-
Turbo and SDXL-Lightning, UniFL still demonstrates superiority and obtains more preference. This
highlights the effectiveness of adversarial feedback learning in achieving acceleration.

Qualitative Comparison. As shown in Fig.4, UniFL achieves superior generation results compared
with other methods. For example, when compared to ImageReward, UniFL generates images that
exhibit a more coherent object structure (e.g., the horse), and a more captivating aesthetic quality
(e.g., the cocktail). Notably, even with fewer inference steps, UniFL consistently showcases higher
generation quality, outperforming other methods. It is worth noting that SDXL-Turbo, due to its
modi�cation of the diffusion hypothesis, tends to produce images with a distinct style.
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Figure 5: (a) Illustration of PeFL with instance segmentation model (SOLO). (b) Effect of PeFL on
structure optimization.

Figure 6: (a) Design components ablation of UniFL. (b) Visualization of decoupled and non-decoupled
aesthetic feedback learning results.

5.3 Ablation Study

To validate the effectiveness of our design, we systematically remove one component at a time and
conduct a user study. The results are summarized in Fig.6 (a). In the subsequent sections, we will
further analyze each component. More results are presented in the Appendix.

Superiority of PeFL. As depicted in Fig.5 (a), PeFL leverages the instance segmentation model to
capture the overall structure of the generated object effectively. By identifying structural defects,
such as the distorted limbs of the little girl, the broken elephant, and the missing skateboard, PeFL
provides more precise feedback signals for diffusion models. Such �ne-grained �aws can not be
recognized well with ReFL due to its global and coarse preference feedback, instead, the exploited
professional visual perception provides more detailed and targeted feedback. As presented in Fig.5
(b), the PeFL signi�cantly boosts the object structure generation (e.g. the woman's glasses, ballet
dancer's legs). It is also demonstrated by the notable performance drop (71.9% vs 28.1%) when
disabling the PeFL.

Multiple Aspects Optimization with PeFL. PeFL exploits various perceptual models to improve
some particular visual aspects of the diffusion model and can easily be extended to multi-aspect
optimization. As illustrated in Fig.8, the simultaneous incorporation of two distinct optimization
objectives (style and structure optimization) does not compromise the effectiveness of each other.
Take the prompt a baby Swan, graf�ti as an example, integrating the style optimization via PeFL upon
the base model successfully aligns the image with the target style. Further integrating the structure
optimization objective preserves the intended style while enhancing the overall structural details (e.g.
the feet of the Swan).

Necessity of Decoupling Design.We conducted an experiment that �netuned the SD1.5 using the
same prompt set but a global aesthetic reward model trained with all dimensions' collected aesthetic
preference data. As depicted in Fig.6 (b), the generated images are more harmonious and have
an artistic atmosphere with the decoupled aesthetic reward tuning and are preferred by more 17%
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