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GAGAvatar 

Figure 1: Our method can reconstruct animatable avatars from a single image, offering strong
generalization and controllability with real-time reenactment speeds.

Abstract

In this paper, we propose Generalizable and Animatable Gaussian head Avatar
(GAGAvatar) for one-shot animatable head avatar reconstruction. Existing methods
rely on neural radiance fields, leading to heavy rendering consumption and low
reenactment speeds. To address these limitations, we generate the parameters of
3D Gaussians from a single image in a single forward pass. The key innovation
of our work is the proposed dual-lifting method, which produces high-fidelity
3D Gaussians that capture identity and facial details. Additionally, we leverage
global image features and the 3D morphable model to construct 3D Gaussians
for controlling expressions. After training, our model can reconstruct unseen
identities without specific optimizations and perform reenactment rendering at
real-time speeds. Experiments show that our method exhibits superior performance
compared to previous methods in terms of reconstruction quality and expression
accuracy. We believe our method can establish new benchmarks for future research
and advance applications of digital avatars. Code and demos are available at
https://github.com/xg-chu/GAGAvatar.

1 Introduction

One-shot head avatar reconstruction has garnered significant attention in computer vision and graphics
recently due to its great potential in applications such as virtual reality and online meetings. The
typical problem involves faithfully recreating the source head from one image while precisely
controlling expressions and poses. In recent years, many exploratory methods have achieved this goal
using 2D generative models and 3D synthesizers.

Some early 2D-based methods [Yin et al., 2022, Ren et al., 2021] typically combine estimated
deformation fields with generative networks to drive images. However, due to the lack of neces-
sary 3D constraints and modeling, these methods struggle to maintain multi-view consistency of
expressions and identities when head poses change significantly. Recently, Neural Radiance Fields
(NeRF) [Mildenhall et al., 2020] have shown impressive results in head avatar synthesis, providing
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solutions using 3D synthesizers to achieve realistic details such as accessories and hair. However,
some NeRF-based methods [Ma et al., 2023] require identity-speci�c training and optimization,
and some methods [Li et al., 2023a, Chu et al., 2024, Deng et al., 2024a] can't render in real-time
during inference, limiting their application in certain scenarios. With the emergence of 3D Gaussian
splatting [Kerbl et al., 2023], some methods [Xu et al., 2024] have achieved real-time rendering.
However, these methods still require speci�c training for each identity and fail to generalize to unseen
identities, leaving the modeling of generalizable 3D Gaussian-based head models unexplored.

To address these limitations, we introduce a novel 3D Gaussian-based framework for one-shot
head avatar reconstruction. Given a single image, our framework reconstructs an animatable 3D
Gaussian-based head avatar, achieving real-time expression control and rendering. Some examples
are shown in Fig. 1. The core challenge lies in faithfully reconstructing 3D Gaussians from a single
image, as a 3D Gaussian typically requires multi-view input and millions of Gaussian points for
detailed reconstruction. To address this, we propose a novel dual-lifting method that reconstructs
the 3D Gaussians from one image. Speci�cally, instead of directly estimating Gaussian points from
the image, we predict the lifting distances of each pixel relative to the image plane, and then map
the image plane and lifted points back to 3D space based on the camera position. By predicting
forward and backward lifting distances, we can form an almost closed Gaussian points distribution
and reconstruct the head as completely as possible. This approach leverages the �ne-grained features
of the input image and signi�cantly reduces the dif�culty of predicting 3D Gaussian positions. We
also utilize priors from 3D Morphable Models (3DMM) [Li et al., 2017] to further constrain the lifting
distance, helping the model obtain correct 3D lifting and capture details from the source image. We
then bind learnable features to the 3DMM vertices and construct expression Gaussians using image
global features, 3DMM learnable features, and 3DMM point positions to ensure expression control
capability. Finally, we use a neural renderer to re�ne the splatting-rendered results, producing the
�nal reenacted image. Our model is learned from a large number of monocular portrait images and
can be generalized to unseen identities after training. Experiments verify that our method performs
better than previous methods in terms of reconstruction quality and expression accuracy, and achieves
real-time reenactment and rendering speed.

Our major contributions can be summarized as follows:

• We propose GAGAvatar, which to our knowledge is the �rst generalizable 3D Gaussian head
avatar framework that achieves single forward reconstruction and real-time reenactment.

• To achieve this, we propose a dual-lifting method to lift Gaussians from a single image and
introduce a method that uses 3DMM priors to constrain the lifting process.

• We combine 3DMM priors and 3D Gaussians to accurately transfer expression information
while avoiding redundant computations.

2 Related Work

2.1 2D-based Talking Head Synthesis

The impressive performance of CNN and Generative Adversarial Networks (GAN) [Goodfellow
et al., 2014, Isola et al., 2017, Karras et al., 2020] has inspired many methods for direct head image
synthesis using 2D networks. A popular strategy of early works is inserting the expression and head
pose features of the driving image into the 2D generative network to achieve realistic and animatable
image generation. For example, these methods [Zakharov et al., 2019, Burkov et al., 2020, Zhou
et al., 2021, Wang et al., 2023] inject latent representations of expression into the U-Net backbone or
StyleGAN-like [Karras et al., 2019] generators to transfer driving expressions to reenacted images.
A recent trend in 2D-based talking head synthesis methods [Siarohin et al., 2019, Ren et al., 2021,
Drobyshev et al., 2022, Hong et al., 2022a, Zhang et al., 2023a] is to represent expressions and
head poses as warp �elds, performing expression transfer by deforming the source image to match
the driving image. However, due to the lack of explicit understanding of the 3D geometry of head
portraits, these methods often produce unrealistic distortions and undesired identity changes when
there are signi�cant pose and expression variations. Although some methods [Drobyshev et al., 2022,
Wang et al., 2021a, Ren et al., 2021, Yin et al., 2022, Zhang et al., 2023b] introduce 3D Morphable
Models (3DMM) [Blanz and Vetter, 1999, Paysan et al., 2009, Li et al., 2017, Gerig et al., 2018]
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into the 2D framework, they still lack the ability to control the viewpoint and achieve free-viewpoint
rendering. Additionally, there are some audio-driven 2D control methods [Guo et al., 2021, Tang
et al., 2022, Zhang et al., 2023b], while �exible to use, cannot explicitly control facial expressions
and poses, sometimes resulting in unsatisfactory outcomes. In contrast, our method uses an explicit
3D representation to enable free view control and realistic synthesis even under large pose variations.

2.2 3D-based Head Avatar Reconstruction

To achieve better 3D consistency in head avatars, many works have explored using 3D representations
for reconstruction. Early methods [Xu et al., 2020, Khakhulin et al., 2022] used 3DMM-based
meshes [Li et al., 2017, Gerig et al., 2018] to reconstruct head avatars. Since neural radiance �elds
(NeRF) [Mildenhall et al., 2020] have demonstrated excellent results, many recent methods [Li et al.,
2023b,a, Ma et al., 2023, Yu et al., 2023, Chu et al., 2024, Ye et al., 2024, Deng et al., 2024b,a, Park
et al., 2021a, Zheng et al., 2023, Bai et al., 2023a, Ki et al., 2024] have adopted NeRF for head
reconstruction. However, some approaches [Gafni et al., 2021, Park et al., 2021a, Tretschk et al.,
2021, Hong et al., 2022b, Athar et al., 2022, Park et al., 2021b, Gao et al., 2022, Guo et al., 2021,
Bai et al., 2023b, Kirschstein et al., 2023, Zheng et al., 2023, Bai et al., 2023a, Zhao et al., 2023,
Zhang et al., 2024] require multi-view or single-view videos of speci�c identities for training, limiting
generalization and raising privacy concerns due to the need for thousands of frames of personal image
data. Additionally, some methods [Xu et al., 2023a, Tang et al., 2023, Sun et al., 2022, Xu et al.,
2023b, Zhuang et al., 2022a, Sun et al., 2023] train generators to produce controllable head avatars
from random noise, followed by inversion [Roich et al., 2022, Xie et al., 2023] for identity-speci�c
reconstruction. These methods often suffer from inversion accuracy limitations, failing to preserve
the identity of the source image. There are also methods [Hong et al., 2022b, Zhuang et al., 2022b,
Ma et al., 2023] to perform test-time optimization on the source image to obtain reconstructions,
but the need for test-time optimization limits their applicability. To address these challenges, some
works [Yu et al., 2023, Li et al., 2023a,b, Ma et al., 2024a, Yang et al., 2024, Chu et al., 2024, Ye et al.,
2024, Ma et al., 2024a, Deng et al., 2024b,a] focus on one-shot head reconstruction without test-time
optimization. For example, GOHA [Li et al., 2023a] learns three tri-plane features to capture details.
HideNeRF [Li et al., 2023b] utilizes multi-resolution tri-planes and a deformation �eld to generate
reenactment images. GPAvatar [Chu et al., 2024] uses a point-based expression �eld and a multi
tri-plane attention module to reconstruct head avatars. Real3DPortrait [Ye et al., 2024] generates a
tri-plane from images and adds motion adapters to get reenactment images. CVTHead [Ma et al.,
2024a] reconstructs head avatars using point-based neural rendering and a vertex-feature transformer.
Portrait4D [Deng et al., 2024b] learns dynamic expression tri-plane from multi-view synthetic data,
while Portrait4D-v2 [Deng et al., 2024a] learns from pseudo multi-view videos, addressing the lack
of real video training in Portrait4D. However, these NeRF-based methods often face rendering speed
limitations, preventing real-time application. Methods [Xu et al., 2024, Li et al., 2024, Hu et al., 2023,
Wang et al., 2024a, Ma et al., 2024b, Wang et al., 2024b] utilizing 3D Gaussian splatting[Kerbl et al.,
2023] achieve excellent performance and rendering speed but require video data for identity-speci�c
training, lacking generalization capabilities. In this paper, we propose a one-shot 3D Gaussian head
avatar reconstruction method based on the dual-lifting method. Our method can generalize to unseen
identities, achieves real-time rendering, and surpasses previous works in image quality.

3 Method

An overview of the reenactment process of our method is shown in Fig. 2. Given a source imageI s,
we �rst use DINOv2 [Darcet et al., 2023, Oquab et al., 2023] to extract global and local features.
Using the local features, we apply our proposed dual-lifting methods to predict the parameters and
positions of two 3D Gaussians. Simultaneously, we assign learnable parameters to each vertex of the
3DMM [Li et al., 2017] model and predict another expression Gaussians using the combination of the
global feature and vertex features. We directly use the vertex positions of the 3DMM model as the
positions for expression Gaussians. Finally, we combine these 3D Gaussians and perform splatting
to produce a coarse result imageI c with the expression and pose of driving imageI d, which is then
further re�ned through a neural renderer to obtain the �ne result imageI f .

In the following subsections, we describe the reconstruction branch based on dual-lifting in Sec. 3.1,
explain the expression modeling and control branch in Sec. 3.2, and detail our neural renderer in
Sec. 3.3. Finally, we describe our lifting distance loss and the training objectives in Sec. 3.4.
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Figure 2: Our method consists of two branches: a reconstruction branch (Sec. 3.1) and an expression
branch (Sec. 3.2). We render dual-lifting and expressed Gaussians to get coarse results, and then use
a neural renderer to get �ne results. Only a small driving part needs to be run repeatedly to drive the
expression, while the rest is executed only once.

3.1 Dual-lifting and Reconstruction Branch

Given an input source image, our goal is to reconstruct a detailed 3D head avatar. To ensure stable
modeling and learning, we impose certain constraints on the reconstruction process. First, we assume
that the reconstructed head is always located at the origin in normalized 3D space. Second, the
rotation of the head is modeled through changes in camera pose to ensure that the head itself is
relatively stationary. We follow the same strategy when tracking 3DMM parameters and camera
parameters from training and testing data. These constraints allow the model to effectively utilize the
stable priors of the human head topology.

Leveraging the success of 3D Gaussians splatting [Kerbl et al., 2023] in synthesis quality and
rendering speed, we propose a dual-lifting method to reconstruct 3D Gaussians from a single image.
Reconstructing 3D Gaussians typically requires millions of points, but obtaining such a dense density
of Gaussian points from a single image is a challenging task, especially without test-time optimization.
To address this problem, we propose a novel reconstruction method: the dual-lifting method. Brie�y,
we �rst get the local feature planeFlocal by a frozen DINOv2 backbone, and then predict the offsets
of each pixel relative to the feature plane and the other necessary parameters (including color, opacity,
scale and rotation), instead of predicting the 3D Gaussians directly. We then map the plane back to
3D space based on the camera pose and place the plane through the origin, which provides the 3D
position and normal vector of the plane pixels. Finally, we can calculate the position of these 3D
Gaussians in 3D space based on the predicted offsets, positions and normal vector. This process can
be described as follows:

Gpos = [ ps + EConv 0(Flocal ) � ns; ps � EConv 1(Flocal ) � ns]; (1)

Gc;o;s;r = [ EConv 0(Flocal ); EConv 1(Flocal )]; (2)

wherepi is the initial points plane mapped based on the estimated camera pose ofI s and passes
through the origin. The size ofpi is 296� 296, which is consistent with the local featureFlocal .
EConv 0;1 are convolutional networks,ns is the normal vector ofps, Gpos is the position of recon-
structed 3D Gaussians, andGc;o;s;r represents the color, opacity, scale, and rotation of 3D Gaussians.

It's worth noting that while predicting one set of lifting distances from the plane is possible, we
adopted a strategy of predicting forward and backward lifting separately. Our dual-lifting method
aims to predict a complete 3D structure from a single source image, to achieve multi-view consistency
during inference. If we predict only one set of lifting distances from the image plane, we may face
some ambiguous situations during learning. For example, when we want to reconstruct a side view
source image, predicting one set of lifting will simultaneously lift the point forward to the visible
surface and backward to include the other side of the head. During this process, each pixel can
be lifted to the visible surface or to the opposite surface, as both are justi�ed, resulting in model

4



performance degradation. Unlike single-lifting prediction, our dual-lifting strategy predicts forward
and backward lifting separately, which eliminates ambiguities and stabilizes the optimization process.

Our dual-lifting method effectively exploits the detailed information of the source image to reconstruct
3D Gaussians. At the same time, the two sets of predicted lifting points can form an almost closed
Gaussian points distribution, thus enhancing the performance of large viewpoint changes. The 3D
Gaussian generated by dual-lifting can be rendered from any viewpoint, producing static results. In
the next section, we describe how to control the facial expressions of the generated avatar.

3.2 Expression Branch

Expression transfer is not a straightforward task, but the 3DMM [Li et al., 2017] provides us with a
powerful tool to represent common facial expressions and decouple expressions from identity, thereby
facilitating expression control. Our expression branch establishes 3D Gaussians based on the 3DMM
vertices to control the expressions of the generated images. To achieve this, we bind learnable weights
to each vertex in the 3DMM. Due to the stable semantics of 3DMM vertices, the features of these
points correspond to facial positions such as the eyes and mouth.

As shown in Fig. 2, given the source imageI s and driving imageI d, we concatenate the global
featuresFid with the learnable features of vertices. We then use a MLP to predict the Gaussian
parameters (excluding position) of each point from these features, and use the position of the 3DMM
vertices. Here we combine the global featuresFid of the source image when predicting the expression
Gaussians. This will introduce identity information to the expression branch and enhance the identity
consistency under various expressions, as con�rmed by our experiments. Throughout the driving
process, we only need to infer the Gaussians of the reconstruction branch and expression branch
once. Reenactment is achieved by modifying the camera pose and position of the Gaussians in the
expression branch, which allows us to perform fast reenactment without redundant calculations.

3.3 Neural Renderer

Reconstructing 3D Gaussians typically requires millions of points, but in our dual-lifting method,
we generate only 175,232 points. These Gaussians can reconstruct the target avatar, but with RGB
information alone it is insuf�cient for capturing the rich details of a human avatar. To enhance the
representation capability of the sparse Gaussians, we predict 32-dimensional features containing
RGB information and then perform splatting to obtain coarse images. Then we use a popular neural
renderer following existing methods [Li et al., 2023a, Chu et al., 2024, Ye et al., 2024] to get the �ne
image, as Fig. 2 shows. Unlike these methods which use neural render as a super-resolution module to
reduce rendering time, we do not upsample the image as our method do not face signi�cant rendering
time issues. Our neural renderer effectively decodes the dual lifting and expression Gaussians features
into RGB values, producing high-quality results and resolving potential con�icts between the two
sets of Gaussians. We train our neural renderer from scratch during the training process, without any
pre-trained initialization.

3.4 Training Strategy and Loss Functions

With the exception of the frozen DINOv2 backbone, we train the model from scratch. During training,
we randomly sample two images from the same video, one as the source image and the other as the
driving image and target image. Our primary objective during training is to ensure that the reenacted
coarse and �ne image aligns with the target image. Given that both images share the same identity,
this alignment is achievable. We employ L1 loss and perceptual loss [Johnson et al., 2016, Zhang
et al., 2018, Ye et al., 2024] on both the coarse and the �ne image.

Additionally, we propose a lifting distance lossL lif ting to assist dual-lifting learning. With the help
of the prior provided by the tracked 3DMM, we require the lifting distance predicted by the network
to be as close as possible to the 3DMM vertices. Speci�cally, we look for the lifting point closest to
each 3DMM vertex and constrain their distance through L2 loss. The calculation is as follows:

L lif ting = jjP3dmm �
�

argmin q2 Gpos kp � qk j p 2 P3dmm
	

jj ; (3)

where theP3dmm is the tracked 3DMM vertices,Gpos is the dual-lifting points,argmin �nd the
nearest point. Our lifting distance loss leverages 3DMM priors. Additionally, since we constrain only
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Figure 3: Cross-identity qualitative results on the VFHQ [Xie et al., 2022] dataset. Compared with
baseline methods, our method has accurate expressions and rich details.

a subset of dual-lifting points, the model can still learn areas not modeled by 3DMM, such as hair
and accessories. Experiments showL lif ting can improve the 3D structure and the performance of
large view changes.

The overall training objective is as follows:

L = jj I c � I t jj + jj I f � I t jj + � p(jj ' (I c) � ' (I t )jj + jj ' (I f ) � ' (I t )jj ) + � l L lif ting ; (4)

whereI t is target image,I c andI f are the generated coarse and �ne image,� p and� l are the weights
used to balance the losses.

4 Experiments

4.1 Experiment Setting

Datasets.We use the VFHQ [Xie et al., 2022] dataset to train our model, which comprises clips
from various interview scenarios. To avoid consecutive similar frames, we sampled 25 to 75 frames
from the original video depending on video length. This resulted in a dataset that includes 586,382
frames from 15,204 video clips. All the images are resized to 512� 512. We tracked camera poses,
FLAME [Li et al., 2017] parameters and removed the background following [Chu et al., 2024]. For
evaluation, we use sampled frames from the VFHQ original test split, consisting of 5000 frames from
100 videos. The �rst frame of each video serves as the source image, with the remaining frames used
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Table 1: Quantitative results on the VFHQ [Xie et al., 2022] dataset. We use colors to denote the
�rst , second andthird places respectively.

Self Reenactment Cross Reenactment
Method PSNR" SSIM" LPIPS# CSIM" AED# APD# AKD# CSIM" AED# APD#

StyleHeat [Yin et al., 2022] 19.95 0.726 0.211 0.537 0.199 0.385 7.6590.407 0.279 0.551
ROME [Khakhulin et al., 2022] 19.96 0.786 0.192 0.701 0.1380.186 4.986 0.530 0.259 0.277
OTAvatar [Ma et al., 2023] 17.65 0.563 0.294 0.465 0.234 0.545 18.190.364 0.324 0.678
HideNeRF [Li et al., 2023b] 19.79 0.768 0.180 0.787 0.143 0.361 7.2540.514 0.277 0.527
GOHA [Li et al., 2023a] 20.15 0.770 0.149 0.664 0.1760.173 6.272 0.518 0.274 0.261
CVTHead [Ma et al., 2024a] 18.43 0.706 0.317 0.504 0.186 0.224 5.6780.374 0.261 0.311
GPAvatar [Chu et al., 2024] 21.04 0.807 0.150 0.772 0.132 0.189 4.226 0.564 0.255 0.328
Real3DPortrait [Ye et al., 2024] 20.88 0.780 0.154 0.801 0.150 0.268 5.9710.663 0.296 0.411
Portrait4D [Deng et al., 2024b] 20.35 0.741 0.191 0.765 0.144 0.205 4.8540.596 0.286 0.258
Portrait4D-v2 [Deng et al., 2024a]21.34 0.791 0.144 0.803 0.117 0.187 3.749 0.656 0.268 0.273

Ours 21.83 0.818 0.122 0.816 0.111 0.135 3.349 0.633 0.253 0.247

Table 2: Quantitative results on the HDTF [Zhang et al., 2021] dataset. We use colors to denote the
�rst , second andthird places respectively.

Self Reenactment Cross Reenactment
Method PSNR" SSIM" LPIPS# CSIM" AED# APD# AKD# CSIM" AED# APD#

StyleHeat [Yin et al., 2022] 21.41 0.785 0.155 0.657 0.158 0.162 4.5850.632 0.271 0.239
ROME [Khakhulin et al., 2022] 20.51 0.803 0.145 0.738 0.1330.123 4.763 0.726 0.268 0.191
OTAvatar [Ma et al., 2023] 20.52 0.696 0.166 0.662 0.180 0.170 8.2950.643 0.292 0.222
HideNeRF [Li et al., 2023b] 21.08 0.811 0.117 0.858 0.120 0.247 5.8370.843 0.276 0.288
GOHA [Li et al., 2023a] 21.31 0.807 0.113 0.725 0.1620.117 6.332 0.735 0.277 0.136
CVTHead [Ma et al., 2024a] 20.08 0.762 0.179 0.608 0.169 0.138 4.5850.591 0.242 0.203
GPAvatar [Chu et al., 2024] 23.06 0.855 0.104 0.855 0.114 0.135 3.293 0.842 0.268 0.219
Real3DPortrait [Ye et al., 2024] 22.82 0.835 0.103 0.851 0.138 0.137 4.6400.903 0.299 0.238
Portrait4D [Deng et al., 2024b] 20.81 0.786 0.137 0.810 0.134 0.131 4.1510.793 0.291 0.240
Portrait4D-v2 [Deng et al., 2024a]22.87 0.860 0.105 0.860 0.111 0.111 3.292 0.857 0.262 0.183

Ours 23.13 0.863 0.103 0.862 0.110 0.111 2.985 0.851 0.231 0.181

as driving and target images for reenactment. We also evaluate on HDTF [Zhang et al., 2021] dataset,
following the test split used in [Ma et al., 2023, Li et al., 2023a], including 19 video clips.

Implementation details. Our framework is built on the PyTorch [Paszke et al., 2017] platform. We
use FLAME [Li et al., 2017] as our driving 3DMM. During training, we use the ADAM [Kingma
and Ba, 2014] optimizer with a learning rate of 1.0e-4. The DINOv2 [Oquab et al., 2023] backbone
is frozen during training and is not trained or �ne-tuned. Our training consists of 200,000 iterations
with a total batch size of 8. The training process is conducted on an NVIDIA Tesla A100 GPU and
takes approximately 46 GPU hours, demonstrating ef�cient resource utilization. During inference,
our method achieves 67 FPS on an A100 GPU while using only 2.5 GB of VRAM, showcasing high
ef�ciency. Further implementation details of the model can be found in the supplementary materials.

4.2 Main Results

Baseline methods. We conduct comparisons with existing state-of-the-art methods, including
ROME [Khakhulin et al., 2022], StyleHeat [Yin et al., 2022], OTAvatar [Ma et al., 2023], HideN-
eRF [Li et al., 2023b], GOHA [Li et al., 2023a], CVTHead [Ma et al., 2024a], GPAvatar [Chu et al.,
2024], Real3DPortrait [Ye et al., 2024], Portrait4D [Deng et al., 2024b], and Portrait4D-v2 [Deng
et al., 2024a]. For each method, we use the of�cial implementation to obtain the result. It is worth
noting that actually the core contributions of Portrait4D-v2 are orthogonal to our work. They intro-
duced a new data generation method and a novel learning paradigm to improve performance, which
means our method can also bene�t from their advancements.

Qualitative results. Fig. 3 shows qualitative comparisons between methods. Compared with other
methods, our method can reconstruct detailed head avatars from source images and capture subtle
facial movements such as eyes and mouth in driving images. Our method can also maintain identity
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Figure 4: Ablation results on VFHQ [Xie et al., 2022] datasets. We can see that our full method
performs best, especially on facial edges such as glasses in large view angles.

consistency and image quality when handling large head rotations. At the same time, our method
achieves high-quality reconstruction and rendering at a much faster speed than the baseline method.

Quantitative results. We also quantitatively evaluate the self and cross-identity reenactment perfor-
mance between methods. For self-reenactment with ground truth available, we measure the quality of
the synthesized images using PSNR, SSIM, LPIPS [Zhang et al., 2018] between the synthetic results
and the ground truth. For identity similarity, we calculate the cosine distance of face recognition
features [Deng et al., 2019a] between the reenactment results and the source images. For expression
and pose, we use the average expression distance (AED) and average pose distance (APD) measured
by a 3DMM estimator [Deng et al., 2019b], and the average keypoint distance (AKD) based on a
facial landmark detector [Bulat and Tzimiropoulos, 2017] to evaluate the accuracy of driving control.
For the cross-identity reenactment task, due to the lack of ground truth, we evaluate CSIM, AED, and
APD, generally consistent with previous work [Li et al., 2023a, Chu et al., 2024, Ye et al., 2024].

Tab. 1 and Tab. 2 show the quantitative results on the VFHQ and HDTF datasets, respectively. Our
method outperforms previous methods in terms of reconstruction and synthesis quality and expression
control accuracy but the cross-reenactment identity consistency is slightly worse than some existing
methods. We believe this is due to the 3DMM [Li et al., 2017] and 3DMM tracker we rely on, whose
identity parameters and expression parameters are not completely decoupled. Some methods [Deng
et al., 2024b,a] that are not based on 3DMM have brought some inspiration to solve this limitation,
and we leave these to future work. Importantly, our model not only achieves these quantitative results,
but also achieves the real-time reenactment speed, which is much faster than existing methods.

Inference speed and ef�ciency.Our method can run at 67 FPS on an A100 GPU with the naive
PyTorch framework and of�cial 3D Gaussian Splatting implementation. As shown in Tab. 3, we
are the �rst real-time method for animatable one-shot head avatar reconstruction, which shows the
application prospects and unique value of our method.

Table 3: The time of reenactment is measured in FPS. All results exclude the time for getting driving
parameters that can be calculated in advance and are averaged over 100 frames.

StyleHeat ROME OTAvatar HideNeRF GOHA CVTHead GPAvatar Real3D P4D P4D-v2 Ours

Driving FPS 19.82 11.21 0.12 9.73 6.57 18.09 16.86 4.55 9.49 9.62 67.12

4.3 Ablation Studies

Dual-lifting. To validate the effectiveness of our proposed dual-lifting method, we compare it against
a baseline that lifts points from a single plane. This baseline requires the model to simultaneously lift
points forward and backward from the image plane, sometimes creating ambiguities. The results in
Tab. 4 and Fig. 4 show that dual-lifting signi�cantly enhances reconstruction quality. Moreover, since
the lifting is performed only once per identity and subsequent expression driving does not require
recalculation, dual-lifting does not impact the performance during reenactment.
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Table 4: Ablation results on the VFHQ [Xie et al., 2022] dataset.

Self Reenactment Cross Reenactment
Method PSNR" SSIM" LPIPS# CSIM" AED# APD# AKD# CSIM" AED# APD#

one-plane lifting 21.34 0.802 0.158 0.781 0.127 0.170 3.8100.581 0.272 0.290
w/o F id 21.13 0.807 0.155 0.774 0.125 0.155 3.7220.537 0.270 0.272
w/o neural renderer 20.34 0.789 0.138 0.788 0.147 0.202 4.7630.623 0.300 0.353
w/o L lif ting 21.64 0.812 0.148 0.800 0.119 0.151 3.5630.620 0.261 0.252

Ours 21.83 0.818 0.122 0.816 0.111 0.135 3.349 0.633 0.253 0.247

Figure 5: Lifting results of an in-the-wild image, include the front view and the top view. Points are
�ltered by Gaussian opacity. We color two parts of the dual-lifting separately, and the black points
are the image plane. It can be seen that the lifted 3D structure is relatively �at withoutL lif ting .

Lifting distance loss.We evaluate the in�uence of the lifting distance lossL lif ting by removing it
during training. Without lifting distance loss, we observed performance degradation as shown in
Tab. 4 and Fig. 4. Compared with our full method, removing the point distance constraint will make
it more dif�cult to reconstruct high-quality 3D structures, especially on facial edges.

3D structure of dual-lifting. We further analyze and compare the 3D structure of dual-lifting. We
show the visualization of �ltered lifting points in Fig. 5. It can be seen that in the case of single-plane
lifting or without L lif ting , the model can learn the correct 3D lifting even without any explicit 3D
constraints. However, dual-lifting can produce 3D Gaussian points away from the input angle, and
the 3D structure is also more reasonable rather than relatively �at.

Global feature in expression branch.We conduct an ablation study by removing the global identity
featuresFid from the expression branch. The results in Tab. 4 and Fig. 4 indicate that removingFid
decreases the identity similarity (CSIM) of the results and the reenactment quality. This demonstrates
the importance of incorporating identity information in the expression branch.

Neural renderer. Due to the sparsity of our reconstructed Gaussians, we increased the output
dimensions and introduced a neural renderer to re�ne the coarse images and features. This process is
similar to the super-resolution module in EG3D [Chan et al., 2022], but our neural renderer does not
increase the resolution of the results. The results in Tab. 4 and Fig. 4 show the performance of coarse
results without neural rendering. It can be observed that we can obtain reasonable results even using
only sparse Gaussians, but the neural renderer signi�cantly improves detail and expression.

Extreme inputs. We present more qualitative results with extreme inputs in Fig. 6. For extreme
expressions or common occlusions such as sunglasses, our method shows good robustness. Our
model can also work well with low-quality images and challenging lighting conditions, but the details
of reconstructed avatars are inevitably affected. For example, avatars reconstructed from blurred
images lack details, while those from images with challenging lighting conditions have �xed lighting,
such as shadows on the nose. However, these features also demonstrate that our method can faithfully
restore details and handle various extreme cases.

Resolve con�icts of dual-lifting and expression Gaussians.Although we attempt to bring the two
sets of Gaussians closer, there are inherent con�icts since one set is static and the other is dynamic.
We show some results with con�icts in Fig. 7. It can be seen that the RGB values con�ict when there
is a signi�cant expression difference between the dual-lifting Gaussians and the expression Gaussians,
but these con�icts are well resolved after neural rendering. We believe this is because our Gaussians
have 32-D features that contain more information than RGB values. The neural rendering module
can act as a �lter to integrate the two point sets using these features and resolving possible con�icts.
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