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Abstract

Realistic and interactive scene simulation is a key prerequisite for autonomous
vehicle (AV) development. In this work, we present SceneDiffuser, a scene-level
diffusion prior designed for traffic simulation. It offers a unified framework that
addresses two key stages of simulation: scene initialization, which involves gener-
ating initial traffic layouts, and scene rollout, which encompasses the closed-loop
simulation of agent behaviors. While diffusion models have been proven effec-
tive in learning realistic and multimodal agent distributions, several challenges
remain, including controllability, maintaining realism in closed-loop simulations,
and ensuring inference efficiency. To address these issues, we introduce amortized
diffusion for simulation. This novel diffusion denoising paradigm amortizes the
computational cost of denoising over future simulation steps, significantly reducing
the cost per rollout step (16x less inference steps) while also mitigating closed-loop
errors. We further enhance controllability through the introduction of generalized
hard constraints, a simple yet effective inference-time constraint mechanism, as
well as language-based constrained scene generation via few-shot prompting of
a large language model (LLM). Our investigations into model scaling reveal that
increased computational resources significantly improve overall simulation real-
ism. We demonstrate the effectiveness of our approach on the Waymo Open Sim
Agents Challenge, achieving top open-loop performance and the best closed-loop
performance among diffusion models.

1 Introduction

Simulation environments allow efficient and safe evaluation of autonomous driving systems [1, 8,
15, 22, 31, 32, 46, 50–52, 54]. Simulation involves initialization (determining starting conditions for
agents) and rollout (simulating agent behavior over time), typically treated as separate problems [44].
Inspired by diffusion models’ success in generative media, such as video generation [2, 10] and video
editing (inpainting [21, 24, 28], extension, uncropping etc.), we propose SceneDiffuser, a unified
spatiotemporal diffusion model that addresses both initialization and rollout for autonomous driving,
trained end-to-end on logged driving scenes. To our knowledge, SceneDiffuser is the first model to
jointly enable scene generation, controllable editing, and efficient learned closed-loop rollout (Fig. 1).

One challenge in simulation is evaluating long-tail safety-critical scenarios [1, 8, 22, 32, 46]. While
data mining can help, such scenarios are often rare. We address this by learning a generative scene
realism prior that allows editing logged scenes or generating diverse scenarios. Our model supports
scene perturbation (modifying a scene while retaining similarity) and agent injection (adding agents to
create challenging scenarios). We also enable synthetic scene generation on roadgraphs with realistic
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Scene Initialization (Generation and Editing)

Log Scenario Log Perturbation Agent Injection Fully Synthetic Scenario
Scene Rollout(Closed-loop with Amortized Diffusion)

Rollout Step = 2 Rollout Step = 30 Rollout Step = 60 Rollout Step = 80 (�nal)
Figure 1: SceneDiffuser: a generative prior for simulation initialization via log perturbation, agent
injection, and synthetic scene generation, and for ef�cient closed-loop simulation at 10Hz via
amortized diffusion. It progressively re�nes initial trajectories throughout the rollout. Environment
sim agents are in green-blue gradient (temporal progression), AV agent in orange-yellow, and
synthetic agents in red-purple.

layouts. We design a protocol for specifying scenario constraints, enabling scalable generation, and
demonstrate how a few-shot prompted LLM can generate constraints from natural language.

Given a scene, realistically simulating agents and AV behavior is challenging [15, 31, 50–52, 54].
Unlike motion prediction tasks [18, 25, 26, 38, 41, 48] where entire future trajectories are jointly
predicted in a single inference, simulator predictions are iteratively fed back into the model, requiring
realism at each step. This poses challenges: distributional drift from compounding errors, high
computational cost for models like diffusion, and the need to simulate various perception attributes
realistically.

We propose Amortized Diffusion for simulation rollout generation, a novel approach for amortizing
the cost of the denoising inference over a span of physical steps that effectively addresses the
challenges of simulation realism due to closed-loop drift and inference ef�ciency. Amortized
diffusion iteratively carries over prior predictions and re�nes them over the course of future physical
steps (see Sec. 3.2 and Fig. 4). This allows our model to produce stable, consistent, and realistic
simulated trajectories, while requiring only asingledenoising function evaluation at each physical
step while jointly simulating all perception attributes at each step. Experiments show that Amortized
Diffusion not only requires 16x less model inferences per step, but is also signi�cantly more realistic.

In summary, SceneDiffuser's main contributions are:

� A uni�ed generative model for scene initialization and rollout, jointly learning distributions
for agents, timesteps, and perception features including pose, size and type.

� A novel amortized diffusion method for ef�cient and realistic rollout generation, signi�cantly
improving trajectory consistency and reducing closed-loop error.

� Controllable scene initialization methods, including log perturbation, agent injection, and
synthetic generation with a novel hard constraint framework and LLM.

� Investigation of model scaling, showing increased compute effectively improves realism.

� Demonstration of effectiveness on the Waymo Open Sim Agents Challenge, achieving top
open-loop performance and the best closed-loop performance among diffusion models.
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Figure 2: We formulate various different tasks, including behavior prediction, conditional scenegen
and unconditional scenegen as inpainting tasks on the scene tensor. We represent the scene tensor as
a normalized tensorx 2 RA �T � D , for the number of agents, timesteps and feature dimensions.

2 Related Work

2.1 Data-driven Agent Simulation

A variety of generative models have been explored for scene initialization and simulation, including
autoregressive models [8, 22, 46], cVAEs [45], cGANs [1], and Gaussian Mixture Models (GMMs)
[8, 47]. For closed-loop rollouts, these models have been extended with GMMs [51], GANs [15],
AR models over discrete motion vocabularies [31], cVAE [54], and deterministic policies [50, 52].
Open-loop rollouts have also been explored using cVAE [35].

2.2 Diffusion Models for Agent Simulation

Open-loop Sim Open-loop simulation generates behavior for agents that all lie within one's control,
i.e. does not receive any external inputs between steps. Open-loop simulation thus cannot respond to
an external planner stack (AV), the evaluation of which is the purpose of simulation. Diffusion models
have recently gained traction in multi-agent simulation, particularly in open-loop scenarios (multi-
agent trajectory forecasting) [31, 39], using either single-shot or autoregressive (AR) generation.
Single-shot approaches employ spatiotemporal transformers in ego-centric [6, 18] or scene-centric
frames with motion/velocity deltas [9, 53]. Soft guidance techniques enhance controllability [17, 56].
DJINN [27] uses 2d condition masks for �exible generation.

Closed-loop Sim Closed-loop simulation with diffusion remains challenging due to compounding
errors and ef�ciency concerns. Changet al. [3] explore route and collision avoidance guidance in
closed-loop diffusion, while VBD [14] combines denoising and behavior prediction losses with a
query-centric Transformer encoder [42]. VBD found it computationally infeasible to replan at a 1Hz
frequency in a receding horizon fashion over the full WOSAC test split due to the high diffusion
inference cost, therefore testing in open-loop except over 500 selected scenarios.

Initial Condition Generation Diffusion-based initial condition generation has also been studied
[20]. Pronovostet al. [32, 33] adapt the LDM framework to rendered scene images, while SLEDGE
[5] and DriveSceneGen [44] diffuse initial lane polylines, agent box locations, and AV velocity.

2.3 Diffusion for Temporal World Modeling and Planning

Outside of the autonomous driving domain, diffusion models have proven effective for world sim-
ulation through video and for planning. Various diffusion models for 4d data have been proposed,
often involving spatiotemporal convolutions and attention mechanisms [11, 12, 43]. In robotics,
diffusion-based temporal models leverage Model Predictive Control (MPC) for closed-loop control
[4] and have shown state-of-the-art performance for imitation learning [29].

Similar to our Amortized Diffusion approach, TEDi [55] proposes to entangle the physical timestep
and diffusion steps for human animation, thereby reducingO(T � T ) complexity forT physical
timesteps andT denoising steps toO(T ). However, we are the �rst work to demonstrate the
effectiveness of this approach for reducing closed-loop simulation errors, and the �rst to extend it to
a multi-agent simulation setting.
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Figure 3: SceneDiffuser architecture. Global scene context is encoded into a �xed number ofNc
tokens via a Perceiver IO [16] encoder. The noisy scene tokens are fused with local and global context,
then used to condition a spatiotemporal transformer-based backbone [49] via Adaptive LayerNorm
(AdaLN) [30]. Input/output tensor are in green, context tensors in blue, and ops initalics.

3 Method

3.1 Scene Diffusion Setup

We denote the scene tensor asx 2 RA �T � D , whereA is the number of agents jointly modeled
in the scene,T is the total number of modeled physical timesteps, andD is the dimensionality
of all the features that are jointly modeled. We learn to predict the following attributes for each
agent: positional coordinatesx; y; z, heading
 , bounding box dimensionsl; h; w, and object type
k � f AV, car, pedestrian, cyclistg. We model all tasks considered in SceneDiffuser as multi-task
inpainting on this scene tensor. Given an inpainting mask�m 2 BA �T � D , the corresponding
inpainting context values�x := �m � x , a set of global contextc (such as roadgraph and traf�c
signals), and a validity mask for a given agent at a given timestep�v 2 BA; T (to account for there
being< A agents in the scene or for occlusion), we train a diffusion model to learn the conditional
probabilityp(x jC), whereC := f �m ; �x ; c; �vg. See Fig. 2 for an illustration of the scene tensor.

Feature Normalization To simplify the diffusion model's learning task, we normalize all feature
channels before concatenating them alongD to form the scene tensor. We �rst encode the entire scene
in a scene-centric coordinate system, namely the AV's coordinate frame just before the simulation
commences. We then scalex; y; z by �xed constants,l; h; w by their standard deviation, and one-hot
encodek. See Appendix A.6 for more details. This simple yet generalizable process allows us to
jointly predict �oat, boolean, and even categorical attributes by converting into a normalized space of
�oats. After generating a scene tensorx , we apply a reverse process to obtain the generated features.

Diffusion Preliminaries We adopt the notation and setup for diffusion models from [13]. The
forward diffusion process gradually adds Gaussian noise tox . The noisy scene tensor at diffusion
stept can be expressed asq(zt jx ) = N (zt j� t x ; � 2

t I ), where� t and� t are parameters which control
the magnitude and variances of the noise schedule under a variance-preserving model. Therefore
zt = � t x + � t � t , where� t � N (0; I ). One major departure from the classic diffusion setup in our
amortized diffusion regime is that we do not assume a uniform noise levelt 2 R for the entire scene
tensorx . Instead, we havet 2 RT wheret can be relaxed to have a different value per physical
timestep in the scene tensor as described in Sec. 3.2. We utilize the commonly used� -cosine schedule
where� t = cos(�t= 2) and� t = sin( �t= 2). At the highest noise level oft = 1 , the forward diffusion
process completely destroys the initial scene tensorx resulting inzt = � t � N (0; I ). Assuming
a Markovian transition process, we have the transition distributionsq(zt jzs) = N (zt j� ts zs; � 2

ts I ),
where� ts = � t =� s and� 2

ts = � 2
t � � 2

ts � 2
s andt > s . In the denoising process, conditioned on a

single datapointx , the denoising process can be written as

q(zs jzt ; x ) = N (zt j� t ! s; � 2
t ! sI ); (1)

where� t ! s = � ts � 2
s

� 2
t

zt + � s � 2
ts

� 2
t

x and� t ! s = � 2
ts � 2

s
� 2

t
. In the denoising process,x is approximated

using a learned denoiserx̂ . Following [13] and [37], we adopt the commonly usedv prediction,
de�ned asv t (� t ; x ) = � t � t � � t x . We trained a model parameterized by� to predictv t givenzt ,
t and contextC: v̂ t := v̂ � (zt ; t; C). The predicted̂x t can be recovered viâx t = � t zt � � t v̂ t . The
model is end-to-end trained with a single loss:

E(x ;C) �D ;t �fU (0 ;1); t̂ g;m �M ;� t �N (0 ;I ) [jj v̂ � (zt ; t; C) � v t (� t ; x )jj2
2]; (2)
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Figure 4: Amortized diffusion rollout procedure. The warm up step initializes the future predictions
for the entire future horizon, which is then perturbed by a monotonic noise schedulet̂. The trajectory
is iteratively denoised by one step at each simulation step.

D = f (x i ; Ci )ji = 1 ; 2; � � � ; jDjg is the dataset containing paired agents and scene context data,
t is probabilistically either sampled from a uniform distribution, or sampled as a monotonically
increasing temporal schedulêt , wheret̂ � = max

�
0; (� � T history)=Tfuture

�
to facilitate amortized

rollout which will be discussed in Sec. 3.2. Each is sampled with 50% probability.M = f �m bp �
�m control; �m scenegen� �m controlg is the set of inpainting masks for the varied tasks.

Scene Diffusion TasksDifferent tasks are fomulated as inpainting problems (Fig. 2).

Scene Generation (SceneGen): Given the full trajectory of some agents, generate the full trajectory
of other agents. We have�m scenegen2 RA; 1;1 (broadcastable toT timesteps andD features), where
�m scenegen, a� P r (X = Aselect=Avalid), whereAselect � U (0; Avalid) is the number of agents sampled
to be selected as inpainting conditions out ofAvalid valid agents in the scene.

Behavior Prediction (BP): Given past and current data for all agents, predict the future for all agents.
We have�m bp 2 R1;T ;1 (broadcastable toA agents andD features), where�m bp;� = I (� < Thistory ).

Conditional SceneGen and Behavior Prediction: Both scenegen and behavior prediction masks
are multiplied by a control mask at training time to enable controllable scenegen and controllable
behavior prediction at inference time. We have�m control 2 RA; T ;D , where �m control;(a;�;d ) = I a � I � �
I d; I a � P r (X = Acontrol=Avalid); I � � P r (X = Tcontrol=T ); I d � P r (X = pd) wherepd of the
corresponding feature channel. This allows us to condition on certain channels, such as positionsx; y
with or without specifying other features such as type and heading.

Architecture We present a schematic for the SceneDiffuser architecture in Fig. 3, consisting of two
end-to-end trained models: a global context encoder and a transformer denosier backbone. Validity�v
is used as a transformer attention mask within the transformer denoiser backbone.

Diffusion Sampler We use DPM++ [19] with a Heun solver. We utilize 16 denoising steps for our
one-shot experiments and for our amortized diffusion warmup process.

3.2 Scene Rollout

Future prediction with no replanning (`One-Shot`) is not used in simulation due to its non-reactivity,
and forward scene inference, under the standard diffusion paradigm (`Full AR'), is computationally
intensive due to the double for-loop over both physical rollout steps and denoising diffusion steps
[55]. Moreover, executing only the �rst step while discarding the remainder leads to inconsistent
plans that result in compounding errors. We adopt an amortized autoregressive (`Amortized AR`)
rollout, aligning the diffusion steps with physical timesteps to amortize diffusion steps over physical
time, requiring a single diffusion step at each simulation step while reusing previous plans.

We illustrate the three algorithms in Algorithm 1-3 using the same model trained with a noise mixture
t � fU (0; 1); t̂ g (Eqn. 2). We also illustrate Algorithm 3 in Fig. 4. We denote the total number
of timestepsT = H + F , whereH; F denote the number of past and future steps. We denote
x := x [� H :F ] to be the temporal slicing operator wherex [0] is the �nal history step.

Input: Global contextc (roadgraph and traf�c signals), history statesx [� H :0] , validity �v .

Output: Simulated observations for unobserved futuresx̂ [1:F ].

2 We omit L/2 due to training collapse.
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Algorithm 1 One-Shot (Open-Loop)
1: OneShot( x [ � H :0] ; C) :
2: z 1 � N (0 ; I )
3: for t = 1 ; � � � ; � t; 0 do . For each diffusion timestep
4: x̂ t  � t z t � � t v̂ � ( z t ; t; C) . V-prediction

5: x̂ t  x [ � H :0] � �m bp + x̂ t � ( � �m bp) . Apply inpainting

6: z s � q( z s j z t ; x̂ t )
7: z t  z s

x̂  z 0

8: return x̂ [1: F ]

Algorithm 2 Full AR (Closed-Loop)
1: FullAR( x [ � H :0] ; C) :

2: x̂  x [ � H :0]

3: for � = 0 ; :::; T � 1 do . For each physical timestep
4: x̂ [ � +1: � + F ]  OneShot( x̂ [ � � H : � ] ; C) . Update buffer at indices
5: return x̂ [1: F ]

Algorithm 3 Amortized AR (Closed-Loop)
1: AmortizedAR(( x [ � H :0] ; C)) :

2: x̂  OneShot( x [ � H :0] ; C) . Warm-Up

3: x̂ [0: F ]  � t̂ x̂ [0: F ] + � t̂ � . Add noiset̂

4: for � = 1 ; :::; T do . For each physical timestep
5: x̂ [ � : � + F ]  � t̂ x̂ [ � : � + F ] � � t̂ v̂ � ( x̂ [ � : � + F ] ; t̂ ; C) . Recover solution from v-prediction

6: x̂ [ � : � + F ]  � t̂ x̂ [ � : � + F ] + � t̂ � . Add noiset̂

7: x̂ [ � � H : � + F ]  x̂ [ � � H : � ] � �m bp + x̂ [ � � H : � + F ] � ( � �m bp) . Apply inpainting

8: return x̂ [1: F ]

Figure 5: We compare the in�uence of replan
rate on performance for our Full AR and Amor-
tized AR models. Circle radius/ # inference
calls over the simulation. At 10Hz, Amortized
AR requires 16x less model inference per step
and is more realistic compared to Full AR.

Figure 6: Scene generation realism with model
parameter and resolution scaling2. Decreased
temporal patch sizes (i.e. increased temporal
resolution) and increased parameters are both
effective for improving realism via compute scal-
ing. Circle radius/ compute GFLOPs.

3.3 Controllable Scene Generation

To simulate long-tail scenarios such as rare behavior of other agents, it is important to effectively
insert controls into the scene generation process. To do so, we input an inpainting context scene
tensor�x , where some pixels are pre-�lled. Through pre-�lled feature values in�x , we can specify a
particular agent of a speci�ed type to be appear at a speci�c position at a speci�c timestamp.

Data Augmentation via Log Perturbation The diffusion framework makes it straightforward to
produce additional perturbed examples of existing ground truth (log) scenes. Instead of starting from
pure noisezt � N (0; I ) and diffusing backwards fromt ! 0, we take our original log scenex 0 and
add noise to it such that our initialzt = � t x 0 + � t where� t � N (0; � t I ). Starting the diffusion
process att = 0 yields the original data, whilet = 1 produces purely synthetic data. Fort 2 (0; 1),
higher values increase diversity and decrease resemblance to the log. See Figs. 1 and 12 (Appendix).

Language-based Few-shot Scene GenerationThe diffusion model inpaint constraints can be
de�ned through structured data such as a Protocol Buffer3 (`proto'). Protos can be converted into
inpainting values, and we leverage the off-the-shelf generalization capabilities of a publicly accessible

3 https://protobuf.dev/
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Full AR @ 0.125 HZ Full AR @ 2 Hz

Full AR @ 10 Hz Amortized AR @ 10 Hz

Figure 7: Full AR quality deteriorates at in-
creasing replan rates due to compounding errors.
Amortized AR retains a high level of realism
even at 10 Hz while being more ef�cient.

(a) No Hard Constraints

(b) Post-Diffusion GHC (c) In-Diffusion GHC

Figure 8: Applying no-collision constraints pre-
vents collisions (red-purple) in generated scenes
(b, c). Iteratively applying constraints with every
diffusion step further enhances realism (c vs b).

chat app powered by a large language model (LLM)4, to generate new Scene Diffusion constraints
protos solely using natural language via few-shot prompt engineering. We show example results
generated by the LLM in Fig. 10. Details in the Appendix (A.7).

3.4 Generalized Hard Constraints

Users of simulation often require agents to have speci�c behaviors while maintaining realistic
trajectories. However, diffusion soft constraints [27, 56, 57] require a differentiable cost for the
constraint and do not guarantee constraint satisfaction. Diffusion hard constraints [21] are modeled
as inpainting values and are limited in their expressivity.

Inspired by dynamic thresholding [36] in the image generation domain, where intermediate images
are dynamically clipped to a range at every denoising step, we introducegeneralized hard constraints
(GHC), where a generalized clipping function is iteratively applied at each denoising step. We modify

Eqn. 1 such that at each denoising step� t ! s = � ts � 2
s

� 2
t

z + � s � 2
ts

� 2
t

clip(x ), whereclip(�) denotes the
GHC-speci�c clipping operator. See more details on constraints in Appendix A.9.

We qualitatively demonstrate the effect of hard constraints for unconditional scene generation in
Fig. 8. Applying hard constraints post-diffusion removes overlapping agents but results in unrealistic
layouts, while applying the hard constraints after each diffusion step both removes the overlapping
agents and takes advantage of the prior to improve the realism of the trajectories. We �nd that the
basis on which the hard constraints operate is important: a good constraint will modify a signi�cant
fraction of the scene tensor (for example, shifting an agent's entire trajectory rather than just the
overlapping waypoints), or else the model "rejects" the constraint on the next denoising step.

4 Experimental Results

Dataset We use the Waymo Open Motion Dataset (WOMD)[7] for both our scene generation and
agent simulation experiments. WOMD includes tracks of all agents and corresponding vectorized
maps in each scenario, and offers a large quantity of high-�delity object behaviors and shapes
produced by a state-of-the-art offboard perception system.

4.1 Simulation Rollout

Benchmark We evaluate our closed-loop simulation models on the Waymo Open Sim Agent
Challenge (WOSAC) [23] metrics (see Appendix A.1), a popular sim agent benchmark used in many
recent works [9, 14, 31, 51, 53]. Challenge submissions consist of x/y/z/
 trajectories representing
centroid coordinates and heading of the objects' boxes that must be generated in closed-loop and
4

The chat app is available atgemini.google.com , powered by Gemini V1.0 Ultra at the time of access.
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METRICS M/1 M/1+GHC L/1 LOG

COMPOSITEMETRIC 0.516 0.558 0.549 0.593

L INEAR SPEED 0.326 0.327 0.331 0.339
L INEAR ACCEL. 0.387 0.383 0.378 0.445
ANGULAR SPEED 0.529 0.562 0.534 0.572
ANGULAR ACCEL. 0.595 0.608 0.588 0.625
DIST. TO OBJ. 0.154 0.176 0.174 0.192
COLLISION 0.692 0.841 0.794 0.875
TIME TO COLLISION 0.826 0.827 0.827 0.842
DIST. TO RD. EDGE 0.164 0.165 0.176 0.204
OFFROAD 0.546 0.549 0.566 0.605

Table 1: Realism metrics on WOMDval. for scene gener-
ation for the M/1 model, M/1 with hard constraints, L/1,
and oracle log distribution matching (see Sec. 4.3). Real-
ism can be improved through hard constraints or scaling.

Figure 9: Generated vs logged distri-
bution. SceneDiffuser learns realistic
joint distributions across modeled fea-
tures such as length and width.

ONE-SHOT FULL AR AMORTIZED AR
(10 HZ) (10 HZ)

COMPOSITESCORE (M/1) 0.730 0.492 0.673
COMPOSITESCORE (L/1) 0.736 - 0.703

# FN EVALS 16 16� 80 = 1280 80 + 16 = 96

Table 2: Distrib. realism metrics on WOSAC.
L/1 denotes the Large model of patch size 1.

COMPOSITEMETRIC COLLISION RATE OFFROAD RATE
(" ) (#) (#)

-ADALN-ZERO -7.99% +65.2% +29.3%
-SPATIAL -ATTN -14.5% +209% +11.8%
-MULTI TASK -2.04% +39.6% +3.24%
-SIZE,TYPE 0.68% -6.85% +2.90%

Table 3: Design analysis and ablation studies.

with factorized AV vs. agent models. WOSAC uses the test data from the Waymo Open Motion
Dataset (WOMD)[7]. Up to 128 agents (one of which must represent the AV) must be simulated in
each scenario for the 8 second future (comprising 80 steps of simulation), producing 32 rollouts per
scenario for evaluation. In a small departure from the of�cial setting, we utilize the logged validity
mask as input to our transformer and unify the AV and agents' rollout step for simplicity.

Evaluation In Tab. 2, we show results on WOSAC. We show that Amortized AR (10 Hz) not only
requires 16x fewer model inference calls, but is also signi�cantly more realistic than Full AR at a
10Hz replan rate. In Amortized AR, we re-use the plan from the previous step, leading to increased
ef�ciency and consistency. The one-shot inference setting is equivalent to Full AR with no replanning
(0.125 Hz) and achieves comparably higher realism, though as it is not executed in closed-loop, it is
not reactive to external input in simulation, and thus not a valid WOSAC entry.

In Figs. 5 and 7, we investigate the effects of varied replan rates to simulation realism. While high
replan frequency leads to signi�cant degredation in realism under the Full AR rollout paradigm,
Amortized AR signi�cantly reduces error accumulation while being16� more ef�cient.

In Tab. 4, we compare against the WOSAC leaderboard with the aforementioned modi�cations. We
achieve top open-loop performance and the best closed-loop performance among diffusion models.

4.2 Scene Generation

Unconstrained Scene GenerationWe use the unconditional scene generation task as a means to
quantitatively measure the distributional realism of our model. We condition the scene using the same
logged road graph and traf�c signals, as well as the logged agent validity to control for the same
number of agents generated per scene. All agent attributes are generated by the model.

Due to a lack of public benchmarks for this task, we adopt a slightly modi�ed version of the WOSAC
[23] metrics, where different metrics buckets are aggregated per-scene instead of per-agent, due to
the lack of one-to-one correspondence between agents in the generated scene versus the logged scene
(see Appendix A.2 for more details). Metrics are aggregated over all agents that are ever valid in the
9 second trajectory.

We show our model's realism metrics in Tab. 1. Even compared to the oracle performance (comparing
logged versus logged distributions), our model achieves comparable realism scores in every realism
bucket. Introducing hard constraints on collisions can signi�cantly improve the composite metric
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