
Reshuffling Resampling Splits Can Improve
Generalization of Hyperparameter Optimization

Thomas Nagler∗ Lennart Schneider∗ Bernd Bischl Matthias Feurer
t.nagler@lmu.de

Department of Statistics, LMU Munich
Munich Center for Machine Learning (MCML)

Abstract

Hyperparameter optimization is crucial for obtaining peak performance of ma-
chine learning models. The standard protocol evaluates various hyperparameter
configurations using a resampling estimate of the generalization error to guide opti-
mization and select a final hyperparameter configuration. Without much evidence,
paired resampling splits, i.e., either a fixed train-validation split or a fixed cross-
validation scheme, are often recommended. We show that, surprisingly, reshuffling
the splits for every configuration often improves the final model’s generalization
performance on unseen data. Our theoretical analysis explains how reshuffling
affects the asymptotic behavior of the validation loss surface and provides a bound
on the expected regret in the limiting regime. This bound connects the potential
benefits of reshuffling to the signal and noise characteristics of the underlying
optimization problem. We confirm our theoretical results in a controlled simula-
tion study and demonstrate the practical usefulness of reshuffling in a large-scale,
realistic hyperparameter optimization experiment. While reshuffling leads to test
performances that are competitive with using fixed splits, it drastically improves
results for a single train-validation holdout protocol and can often make holdout
become competitive with standard CV while being computationally cheaper.

1 Introduction

Hyperparameters have been shown to strongly influence the performance of machine learning models
(van Rijn & Hutter, 2018; Probst et al., 2019). The primary goal of hyperparameter optimization
(HPO; also called tuning) is the identification and selection of a hyperparameter configuration
(HPC) that minimizes the estimated generalization error (Feurer & Hutter, 2019; Bischl et al., 2023).
Typically, this task is challenged by the absence of a closed-form mathematical description of the
objective function, the unavailability of an analytic gradient, and the large cost to evaluate HPCs,
categorizing HPO as a noisy, black-box optimization problem. An HPC is evaluated via resampling,
such as a holdout split or M -fold cross-validation (CV), during tuning.

These resampling splits are usually constructed in a fixed and instantiated manner, i.e., the same
training and validation splits are used for the internal evaluation of all configurations. On the one
hand, this is an intuitive approach, as it should facilitate a fair comparison between HPCs and reduce
the variance in the comparison.1 On the other hand, such a fixing of train and validation splits might
steer the optimization, especially after a substantial budget of evaluations, towards favoring HPCs

∗Equal contribution.
1This approach likely originates from the concept of paired statistical tests and the resulting variance

reduction, but in our literature search we did not find any references discussing this in the context of HPO.
For example, when comparing the performance of two classifiers on one dataset, paired tests are commonly

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

which are speci�cally tailored to the chosen splits. Such and related effects, where we "overoptimize"
the validation performance without effective reward in improved generalization performance have
been sometimes dubbed "overtuning" or "oversearching". For a more detailed discussion of this topic,
including related work, see Section 5 and Appendix B. The practice of reshuf�ing resampling splits
during HPO is generally neither discussed in the scienti�c literature nor HPO software tools.2 To the
best of our knowledge, only Lévesque (2018) investigated reshuf�ing train-validation splits for every
new HPC. For both holdout andM -fold CV using reshuf�ed resampling splits resulted in, on average,
slightly lower generalization error when used in combination with Bayesian optimization (BO, Garnett,
2023) or CMA-ES (Hansen & Ostermeier, 2001) as HPO algorithms. Additionally, reshuf�ing
was used by a solution to the NeurIPS 2006 performance prediction challenge to estimate the �nal
generalization performance (Guyon et al., 2006). Recently, in the context of evolutionary optimization,
reshuf�ing was applied after every generation (Larcher & Barbosa, 2022).

In this paper, we systematically examine the effect of reshuf�ing on HPO performance. Our contribu-
tions can be summarized as follows:

1. We show theoretically that reshuf�ing resampling splits during HPO can result in �nding
a con�guration with better overall generalization performance, especially when the loss
surface is rather �at and its estimate is noisy (Section 2).

2. We con�rm these theoretical insights through controlled simulation studies (Section 3).

3. We demonstrate in realistic HPO benchmark experiments that reshuf�ing splits can lead to a
real-world improvement of HPO (Section 4). Especially in the case of reshuf�ed holdout,
we �nd that the �nal generalization performance is often on par with 5-fold CV under a
wide range of settings.

We discuss results, limitations, and avenues for future research in Section 5.

2 Theoretical Analysis

2.1 Problem Statement and Setup

Machine learning (ML) aims to �t a model to data, so that it generalizes well to new observations
of the same distribution. LetD = f Z i gn

i =1 be the observed dataset consisting ofi.i.d. random
variables from a distributionP, i.e., in the supervised settingZ i = (X i ; Yi).3,4 Formally, an
inducerg con�gured by an HPC� 2 � maps a datasetD to a model from our hypothesis space
h = g� (D) 2 H . During HPO, we want to �nd a HPC that minimizes the expected generalization
error, i.e., �nd

� � = arg min
� 2 �

� (�); where � (�) = E[`(Z ; g� (D))] ;

where`(Z ; h) is the loss of modelh on a fresh observationZ . In practice, there is usually a limited
computational budget for each HPO run, so we assume that there is only a �nite number of distinct
HPCs� = f � 1; : : : ; � J g to be evaluated, which also simpli�es the subsequent analysis. Naturally,
we cannot optimize the generalization error directly, but only an estimate of it. To do so, a resampling
is constructed. For every HPC� j , drawM random setsI 1;j ; : : : ; I M;j � f 1; : : : ; ng of validation
indices withnvalid = d�n e instances each. The random index draws are assumed to be independent
of the observed data. The data is then split accordingly into pairsVm;j = f Z i gi 2I m;j ; Tm;j =
f Z i gi =2I m;j of disjoint validation and training sets. De�ne the validation loss on them-th fold

L(Vm;j ; g� j (Tm;j)) =
1

nvalid

X

i 2I m;j

`(Z i ; g� j (Tm;j)) ;

employed that implicitly assume that differences between the performance of classi�ers on a given CV fold are
comparable (Dietterich, 1998; Nadeau & Bengio, 1999, 2003; Demšar, 2006).

2In Appendix B, we present an overview of how resampling is addressed in tutorials and examples of standard
HPO libraries and software. We conclude that usually �xed splits are used or recommended.

3Throughout, we use bold letters to indicate (�xed and random) vectors.
4We provide a notation table for symbols used in the main paper in Table 2 in the appendix.

2

and theM -fold validation loss as

b� (� j) =
1

M

MX

m =1

L(Vm;j ; g� j (Tm;j)) :

Since� is unknown, we minimizeb� = arg min � 2 � b� (�), hoping that� (b�) will also be small.
Typically, the same splits are used for every HPC, soI m;j = I m for all j = 1 ; : : : ; J andm =
1; : : : ; M . In the following, we investigate how reshuf�ing train-validation splits (i.e.,I m;j 6= I m;j 0

for j 6= j 0) affects the HPO problem.

2.2 How Reshuf�ing Affects the Loss Surface

We �rst investigate how different validation and reshuf�ing strategies affect the empirical loss surface
b� . In particular, we derive the limiting distribution of the sequence

p
n(b� (� j) � � (� j)) J

j =1 . This
limiting regime will not only reveal the effect of reshuf�ing on the loss surface, but also give us a
tractable setting to study HPO performance.

Theorem 2.1. Under regularity conditions stated in Appendix C.1, it holds
p

n (b� (� j) � � (� j)) J
j =1 ! N (0; �) in distribution;

where

� i;j = � i;j;M K (� i ; � j); � i;j;M = lim
n !1

1
nM 2� 2

nX

s=1

MX

m =1

MX

m 0=1

Pr(s 2 I m;i \ I m 0;j);

and

K (� i ; � j) = lim
n !1

Cov[�̀n (Z 0; � i); �̀
n (Z 0; � j)]; �̀

n (z; �) = E[`(z; g� (T))] � E[`(Z ; g� (T))] ;

where the expectation is taken over a training setT of sizen and two fresh samplesZ ; Z 0 from the
same distribution.

The regularity conditions are rather mild and discussed further in Appendix C.1. The kernelK
re�ects the (co-)variability of the losses caused by validation samples. The contribution of training
samples only has a higher-order effect. The validation scheme enters the distribution through the
quantities� i;j;M : In what follows, we compute explicit expressions for some popular examples. The
following list provides formal de�nitions for the index setsI m;j .

(i) (holdout) LetM = 1 andI 1;j = I 1 for all j = 1 ; : : : ; J , and some size-d�n e index setI 1.

(ii) (reshuf�ed holdout) LetM = 1 andI 1;1; : : : ; I 1;J be independently drawn from the uniform
distribution over all size-d�n esubsets fromf 1; : : : ; ng.

(iii) (M -fold CV) Let � = 1=M andI 1; : : : ; I M be a disjoint partition off 1; : : : ; ng, andI m;j =
I m for all j = 1 ; : : : ; J .

(iv) (reshuf�edM -fold CV) Let � = 1=M and(I 1;j ; : : : ; I M;j); j = 1 ; : : : ; J , be independently
drawn from the uniform distribution over disjoint partitions off 1; : : : ; ng.

(v) (M -fold holdout) LetI m ; m = 1 ; : : : ; M , be independently drawn from the uniform distribution
over size-d�n esubsets off 1; : : : ; ng and setI m;j = I m for all m = 1 ; : : : ; M; j = 1 ; : : : ; J .

(vi) (reshuf�edM -fold holdout) LetI m;j ; m = 1 ; : : : ; M; j = 1 ; : : : ; J , be independently drawn
from the uniform distribution over size-d�n esubsets off 1; : : : ; ng.

The value of� i;j;M for each example is computed explicitly in Appendix E. In all these examples, we
in fact have

� i;j;M =
�

� 2; i = j
� 2� 2; i 6= j:

; (1)

for some method-dependent parameters�; � shown in Table 1. The parameter� 2 captures any
increase in variance caused by omitting an observation from the validation sets. The parameter�
quanti�es a potential decrease in correlation in the loss surface due to reshuf�ing. More precisely,

3

Table 1: Exemplary parametrizations in Equation (1) for resamplings; see Appendix E for details.

Method � 2 � 2

holdout (HO) 1=� 1
reshuf�ed HO 1=� �
M -fold CV 1 1
reshuf�edM -fold CV 1 1
M -fold HO (subsampling / Monte Carlo CV) 1 + (1 � �)=M� 1
reshuf�edM -fold HO 1 + (1 � �)=M� 1=(1 + (1 � �)=M�)

the observed lossesb� (� i); b� (� j) at distinct HPCs� i 6= � j become less correlated when� is
small. Generally, an increase in variance leads to worse generalization performance. The effect of a
correlation decrease is less obvious and is studied in detail in the following section.

We make the following observations about the differences between methods in Table 1:

• M -fold CV incurs no increase in variance (� 2 = 1) and — because every HPC uses the same
folds — no decrease in correlation. Interestingly, the correlation does not even decrease
when reshuf�ing the folds. In any case, all samples are used exactly once as validation and
training instance. At least asymptotically, this leads to the same behavior, and reshuf�ing
should have almost no effect onM -fold CV.

• The two (1-fold) holdout methods bear the same1=� increase in variance. This is caused by
only using a fraction� of the data as validation samples. Reshuf�ed holdout also decreases
the correlation parameter� 2. In fact, if HPCs� i 6= � j are evaluated on largely distinct
samples, the validation lossesb� (� i) andb� (� j) become almost independent.

• M -fold holdout also increases the variance, because some samples may still be omitted from
validation sets. This increase is much smaller for largeM . Accordingly, the correlation is
also decreased by less in the reshuf�ed variant.

2.3 How Reshuf�ing Affects HPO Performance

In practice, we are mainly interested in the performance of a model trained with the optimal HPCb� .
To simplify the analysis, we explore this in the large-sample regime derived in the previous section.
Assume

b� (� j) = � (� j) + � (� j) (2)

where� (�) is a zero-mean Gaussian process with covariance kernel

Cov(� (�); � (� 0)) =
�

K (� ; �) if � = � 0;
� 2K (� ; � 0) else:

(3)

Let � � f � 2 Rd : k� k � 1g with j� j = J < 1 be the set of hyperparameters. Theorem 2.2 ahead
gives a bound on the expected regretE[� (b�) � � (� �)]. It depends on several quantities characterizing
the dif�culty of the HPO problem. The constant

� = sup
k� k;k� 0k� 1

jK (� ; �) � K (� ; � 0)j
K (� ; �)k� � � 0k2 :

can be interpreted as a measure of correlation of the process� . In particular,Corr(� (�); � (� 0)) �
1 � � k� � � 0k2. The constant is small when� is strongly correlated, and large otherwise. Further,
de�ne � as the minimal number such that any� -ball contained infk � k � 1g contains at least one
element of� . It measures how densely the set of candidate HPCs� covers set of all possible HPCs. If
� is a deterministic uniform grid, we have about� � J � 1=d. Similarly, Lemma D.1 in the Appendix
shows that� . J � 1=2d when randomly sampling HPCs. Finally, the constant

m = sup
� 2 �

j� (�) � � (� �)j
k� � � � k2 ;

4

(a) High signal-to-noise ratio (b) Low signal-to-noise ratio

Figure 1: Example of reshuf�ed empirical loss yielding a worse (left) and better (right) minimizer.

measures the local curvature at the minimum of the loss surface� . Finding an HPC� close to
the theoretical optimum� � is easier when the minimum is more pronounced (largem). On the
other hand, the regret� (�) � � (� �) is also punishing mistakes more quickly. De�ninglog(x)+ =
maxf 0; log(x)g, we can now state our main result.

Theorem 2.2. Let b� follow the Gaussian process model(2). Suppose� < 1 , 0 < � 2 � Var[� (�)] �
� 2 < 1 for all � 2 � , andm > 0. Then

E[� (b�) � � (� �)] � �
p

d[8 + B (�) � A(�)]:

where

B (�) = 48
hp

1 � � 2
p

logJ + �
p

1 + log(3�)+

i
; A(�) =

p
1 � � 2(� =�)

s

log
�

�
2m� 2

�

+
:

The numeric constants result from several simpli�cations in a worst-case analysis, which lowers their
practical relevance. A qualitative analysis of the bound is still insightful. The bound is increasing in
� andd, indicating that the HPO problem is harder when there is a lot of noise or there are many
parameters to tune. The termsB (�) andA(�) have conceptual interpretations:

• The termB (�) quanti�es how likely it is to pick a badb� because of bad luck: a� far away
from � � had such a small� (�) that it outweighs the increase in� . Such events are more
likely when the process� is weakly correlated. Accordingly,B (�) is decreasing in� and
increasing in� .

• The termA(�) quanti�es how likely it is to pick a goodb� by luck: a� close to� � had such
a small� (�) that it overshoots all the other �uctuations. Also such events are more likely
when the process� is weakly correlated. Accordingly, the termA(�) is decreasing in� .

TheB , as stated, is unbounded, but a closer inspection of the proof shows that it is upper bounded
by

p
logJ . This bound is attained only in the unrealistic scenario when the validation losses are

essentially uncorrelated across all HPCs. The termA is bounded from below by zero, which is also
the worst case because the term enters our regret bound with a negative sign.

Both A andB are decreasing in the reshuf�ing parameter� . There are two regimes. If�= 2m� 2 � e,
thenA(�) = 0 and reshuf�ing cannot lead to an improvement of the bound. The term�=m� 2 can be
interpreted as noise-to-signal ratio (relative to the grid density). If the signal is much stronger than
the noise, the HPO problem is so easy that reshuf�ing will not help. This situation is illustrated in
Figure 1a.

If on the other hand�=m� 2 > e, the termsA(�) andB (�) enter the bound with opposing signs.
This creates tension: reshuf�ing between HPCs increasesB (�), which is countered by a decrease in
A(�). So which scenarios favor reshuf�ing? When the process� is strongly correlated,� is small
and reshuf�ing (decreasing�) incurs a high cost inB (�). This is intuitive: When there is strong

5

correlation, the validation loss surfaceb� is essentially just a vertical shift of� . Finding the optimal
� is then almost as easy as if we would know� , and decorrelating the surface through reshuf�ing
would make it unnecessarily hard. When� is less correlated (� large) however, reshuf�ing does not
hurt the termB (�) as much, but we can reap all the bene�ts of increasingA(�). Here, the effect of
reshuf�ing can be interpreted as hedging against the catastrophic case where allb� (�) close to the
optimal� � are simultaneously dominated by a region of bad hyperparameters. This is illustrated in
Figure 1b.

3 Simulation Study

To test our theoretical understanding of the potential bene�ts of reshuf�ing resampling splits during
HPO, we conduct a simulation study. This study helps us explore the effects of reshuf�ing in a
controlled setting.

3.1 Design

We construct a univariate quadratic loss surface function� : � � R 7! R; � ! m(� � 0:5)2=2
which we want to minimize. The global minimum is given at� (0:5) = 0 . Combined with a
kernel for the noise process� as in Equation(3), this allows us to simulate an objective as ob-
served during HPO by samplingb� (�) = � (�) + � (�). We use a squared exponential kernel
K (�; � 0) = � 2

K exp (� � (� � � 0)2=2) that is plugged into the covariance kernel of the noise process
� in Equation(3). The parametersm and� in our simulation setup correspond exactly to the curva-
ture and correlation constants from the previous sections. Recall that Theorem 2.2 states that the
effect of reshuf�ing strongly depends on the curvaturem of the loss surface� (a largerm implies a
stronger curvature) and the constant� as a measure of correlation of the noise� (a larger� implies
weaker correlation). Combined with the possibility to vary� in the covariance kernel of� , we can
systematically investigate how curvature of the loss surface, correlation of the noise and the extent
of reshuf�ing affect optimization performance. In each simulation run, we simulate the observed
objective�̂ (�), identify the minimizer̂� = arg min � 2 � �̂ (�), and calculate its true risk,� (�̂). We
repeat this process10000times for various combinations of� , m, and� .

3.2 Results

Figure 2 visualizes the true risk of the con�guration�̂ that minimizes the observed objective. We
observe that for a loss surface with low curvature (i.e.,m � 2), reshuf�ing is bene�cial (lower values
of � resulting in a better true risk of the con�guration that optimizes the observed objective) as
long as the noise process is not too correlated (i.e.,� � 1). As soon as the noise process is more
strongly correlated, even �at valleys of the true risk� remain clearly visible in the observed riskb� ,
and reshuf�ing starts to hurt the optimization performance. Moving to scenarios of high curvature,
the general relationship ofm and� remains the same, but reshuf�ing starts to hurt optimization
performance already with weaker correlation in the noise. In summary, the simulations show that
in cases of low curvature of the loss surface, reshuf�ing (reducing�) tends to improve the true risk
of the optimized con�guration, especially when the loss surface is �at (smallm) and the noise is
not strongly correlated (i.e.,� is large). This exactly con�rms our theoretical predictions from the
previous section.

4 Benchmark Experiments

In this section, we present benchmark experiments of real-world HPO problems where we investigate
the effect of reshuf�ing resampling splits during HPO. First, we discuss the experimental setup.
Second, we present results for HPO using random search (Bergstra & Bengio, 2012). Third, we
also show the effect of reshuf�ing when applied in BO using HEBO (Cowen-Rivers et al., 2022)
and SMAC3 (Lindauer et al., 2022). Recall that our theoretical insight suggests that 1) reshuf�ing
might be bene�cial during HPO and 2) holdout should be affected the most by reshuf�ing and other
resamplings should only be affected to a lesser extent.

6

Figure 2: Mean true risk (lower is better) of the con�guration minimizing the observed objective
systematically varied with respect to curvaturem, correlation strength� of the noise (a larger�
implying weaker correlation), and extent of reshuf�ing� (lower � increasing reshuf�ing). A� of 1
indicates no reshuf�ing. Error bars represent standard errors.

4.1 Experimental Setup

As benchmark tasks, we use a set of standard HPO problems de�ned on small- to medium-sized
tabular datasets for binary classi�cation. We suspect the effect of the resampling variant used
and whether the resampling is reshuf�ed to be larger for smaller datasets, where the variance of
the validation loss estimator is naturally higher. Furthermore, from a practical perspective, this
also ensures computational feasibility given the large number of HPO runs in our experiments.
We systematically vary the learning algorithm, optimized performance metric, resampling method,
whether the resampling is reshuf�ed, and the size of the dataset used for training and validation
during HPO. Below, we outline the general experimental design and refer to Appendix F for details.

We used a subset of the datasets de�ned by the AutoML benchmark (Gijsbers et al., 2024), treating
these as data generating processes (DGPs; Hothorn et al., 2005). We only considered datasets
with less than100 features to reduce the required computation time and required the number of
observations to be between10000and1000000; for further details see Appendix F.1. Our aim was
to robustly measure the generalization performance when varying the sizen, which, as de�ned in
Section 2 denotes the size of the combined data for model selection, so one training and validation set
combined. First, we sampled5000data points per dataset for robust assessment of the generalization
error; these points are not used during HPO in any way. Then, from the remaining points we sampled
tasks withn 2 f 500; 1000; 5000g.

We selected CatBoost (Prokhorenkova et al., 2018) and XGBoost (Chen & Guestrin, 2016) for their
state-of-the-art performance on tabular data (Grinsztajn et al., 2022; Borisov et al., 2022; McElfresh
et al., 2023; Kohli et al., 2024). Additionally, we included an Elastic Net (Zou & Hastie, 2005) to
represent a linear baseline with a smaller search space and a funnel-shaped MLP (Zimmer et al.,
2021) as a cost-effective neural network baseline. We provide details regarding training pipelines and
search spaces in Appendix F.2.

We conduct a random search with500HPC evaluations for every resampling strategy we described in
Table 1, for both �xed and reshuf�ed splits. We always use 80/20 train-validation splits for holdout

7

Figure 3: Average test performance (negative ROC AUC) of the incumbent for XGBoost on dataset
albert for increasingn (train-validation sizes, columns). Shaded areas represent standard errors.

and 5-fold CVs, so that training set size (and negative estimation bias) are the same. Anytime test
performance of an HPO run is assessed by re-training the current incumbent (i.e. the best HPC until
the current HPO iteration based on validation performance) on all available train and validation data
and evaluating its performance on the outer test set. Note we do this for scienti�c evaluation in this
experiment; obviously, this is not possible in practice. Using random search allows us to record
various metrics and afterwards simulate optimizing for different ones, speci�cally, we recorded
accuracy, area under the ROC curve (ROC AUC) and logloss.

We also investigated the effect of reshuf�ing on two state-of-the-art BO variants (Eggensperger et al.,
2021; Turner et al., 2021), namely HEBO (Cowen-Rivers et al., 2022) and SMAC3 (Lindauer et al.,
2022). The experimental design was the same as for random search, except for the budget, which we
reduced from 500 HPCs to 250 HPCs, and only optimized ROC AUC.

4.2 Experimental Results

In the following, we focus on the results obtained using ROC AUC. We present aggregated results
over different tasks, learning algorithms and replications to get a general understanding of the effects.
Unaggregated results and results involving accuracy and logloss can be found in Appendix G.

Results of Reshuf�ing Different Resamplings For each resampling (holdout, 5-fold holdout,
5-fold CV, and 5x 5-fold CV), we empirically analyze the effect of reshuf�ing train and validation
splits during HPO.

In Figure 3 we exemplarily show how test performance develops over the course of an HPO run on a
single task for different resamplings (with and without reshuf�ing). Naturally, test performance does
not necessarily increase in a monotonic fashion, and especially holdout without reshuf�ing tends to
be unstable. Its reshuf�ed version results in substantially better test performance.

Next, we look at the relativeimprovement(compared to standard 5-fold CV, which we consider our
baseline) with respect totestROC AUC performance of the incumbent over time in Figure 4, i.e.,
the difference in test performance of the incumbent between standard 5-fold CV and a different
resampling protocol; hence a positive difference tells us how much better in test error we are, if
we would have chosen the other protocol instead 5-fold CV. We observe that reshuf�ing generally
results in equal or better performance compared to the same resampling protocol without reshuf�ing.
For 5-fold holdout and especially 5-fold CV and 5x 5-fold CV, reshuf�ing has a smaller effect on
relative test performance improvement, as expected. Holdout is affected the most by reshuf�ing
and results in substantially better relative test performance compared to standard holdout. We also
observe that an HPO protocol based on reshuf�ed holdout results in similar �nal test performance
as standard 5-fold CV while overall being substantially cheaper due to requiring less model �ts per
HPC evaluation. In Appendix G.2, we further provide an ablation study on the number of folds when
usingM -fold holdout, where we observed that – in line with our theory – the more folds are used,
the less reshuf�ing affectsM -fold holdout.

8

Figure 4: Average improvement (compared to standard 5-fold CV) with respect to test performance
(ROC AUC) of the incumbent over different tasks, learning algorithms and replications separately for
increasingn (train-validation sizes, columns). Shaded areas represent standard errors.

However, this general trend can vary for certain combinations of classi�er and performance metric,
see Appendix G. Especially for logloss, we observed that reshuf�ing rarely is bene�cial; see the
discussion in Section 5. Finally, the different resamplings generally behave as expected. The more
we are willing to invest compute resources into a more intensive resampling like 5-fold CV or 5x
5-fold CV, the better the generalization performance of the �nal incumbent.

Results for BO and Reshuf�ing Figure 5 shows that, generally HEBO and SMAC3 outperform
random search with respect to generalization performance (i.e., comparing HEBO and SMAC3 to
random search under standard holdout, or comparing under reshuf�ed holdout). More interestingly,
HEBO, SMAC3 and random search all strongly bene�t from reshuf�ing. Moreover, the performance
gap between HEBO and random search but also SMAC3 and random search narrows when the
resampling is reshuf�ed, which is an interesting �nding of its own: As soon as we are concerned
with generalization performance of HPO and not only investigate validation performance during
optimization, the choice of optimizer might have less impact on �nal generalization performance
compared to other choices such as whether the resampling is reshuf�ed during HPO or not. We
present results for BO and reshuf�ing for different resamplings in Appendix G.

Figure 5: Average improvement (compared to random search on standard holdout) with respect to
test performance (ROC AUC) of the incumbent over tasks, learning algorithms and replications for
differentn (train-validation sizes, columns). Shaded areas represent standard errors.

5 Discussion

In the previous sections, we have shown theoretically and empirically that reshuf�ing can enhance
generalization performance of HPO. The main purpose of this article is to draw attention to this

9

surprising fact about a technique that is simple but rarely discussed. Our work goes beyond a
preliminary experimental study on reshuf�ing (Lévesque, 2018), in that we also study the effect of
reshuf�ing on random search, multiple metrics and learning algorithms, and most importantly, for the
�rst time, we provide a theoretical analysis that explains why reshuf�ing can be bene�cial.

Limitations To unveil the mechanisms underlying the reshuf�ing procedures, our theoretical
analysis relies on an asymptotic approximation of the empirical loss surface. This allows us to operate
on Gaussian loss surfaces, which exhibit convenient concentration and anti-concentration properties
required in our proof. The latter are lacking for general distributions, which explains our asymptotic
approach. The analysis was further facilitated by a loss stability assumption regarding the learning
algorithms that is generally rather mild; see the discussion in Bayle et al. (2020). However, it typically
fails for highly sensitive losses, which has practical consequences. In fact, Figure 9 in Appendix G
shows that reshuf�ing usually hurts generalization for the logloss and small sample sizes. It is still
an open question whether this problem can be �xed by less naive implementations of the technique.
Another limitation is our focus on generalization after search through a �xed, �nite set of candidates.
This largely ignores the dynamic nature of many HPO algorithms, which would greatly complicate
our analysis. Finally, our experiments are limited in that we restricted ourselves to tabular data and
binary classi�cation and we avoided extremely small or large datasets.

Relation to Over�tting The fact that generalization performance can decrease during HPO (or
computational model selection in general) is sometimes known as oversearching, overtuning, or
over�tting to the validation set (Quinlan & Cameron-Jones, 1995; Escalante et al., 2009; Koch et al.,
2010; Igel, 2012; Bischl et al., 2023), but has arguably not been studied very thoroughly. Given
recent theoretical (Feldman et al., 2019) and empirical (Purucker & Beel, 2023) �ndings, we expect
less overtuning on multi-class datasets, making it interesting to see how reshuf�ing would affect the
generalization performance.

Several works suggest strategies to counteract this effect. First, LOOCVCV proposes a conservative
choice of incumbents (Ng, 1997) at the cost of leave-one-out analysis or an additional hyperparameter.
Second, it is possible to use an extraselection set(Igel, 2012; Lévesque, 2018; Mohr et al., 2018) at
the cost of reduced training data, which was found to lead to reduced overall performance (Lévesque,
2018). Third, by using early stopping one can stop hyperparameter optimization before the generaliza-
tion performance degrades again. This was so far demonstrated to be able to save compute budget at
only marginally reduced performance, but also requires either a sensitivity hyperparameter or correct
estimation of the variance of the generalization estimate and was only developed for cross-validation
so far (Makarova et al., 2022). Reshuf�ing itself is orthogonal to these proposals and a combination
with the above-mentioned methods might result in further improvements.

Outlook Generally, the related literature detects over�tting to the validation set either visually (Ng,
1997) or by measuring it (Koch et al., 2010; Igel, 2012; Fabris & Freitas, 2019). Developing a uni�ed
formal de�nition of the above-mentioned terms and thoroughly analyzing the effect of decreased
generalization performance after many HPO iterations and how it relates to our measurements of the
validation performance is an important direction for future work.

We further found, both theoretically and experimentally, that investing more resources when evaluating
each HPC can result in better �nal HPO performance. To reduce the computational burden on HPO
again, we suggest further investigating the use of adaptive CV techniques, as proposed by Auto-
WEKA (Thornton et al., 2013) or under the name Lazy Paired Hyperparameter Tuning (Zheng &
Bilenko, 2013). Designing more advanced HPO algorithms exploiting the reshuf�ing effect should
be a promising avenue for further research.

Acknowledgments and Disclosure of Funding

We thank Martin Binder and Florian Karl for helpful discussions. Lennart Schneider is supported by
the Bavarian Ministry of Economic Affairs, Regional Development and Energy through the Center
for Analytics - Data - Applications (ADACenter) within the framework of BAYERN DIGITAL II
(20-3410-2-9-8). Lennart Schneider acknowledges funding from the LMU Mentoring Program of the
Faculty of Mathematics, Informatics and Statistics.

10

References

Arlot, S. and Celisse, A. A survey of cross-validation procedures for model selection.Statistics
Surveys, 4:40 – 79, 2010. B

Austern, M. and Zhou, W. Asymptotics of cross-validation.arXiv:2001.11111 [math.ST], 2020. C.1

Awad, N., Mallik, N., and Hutter, F. DEHB: Evolutionary hyberband for scalable, robust and ef�cient
Hyperparameter Optimization. In Zhou, Z. (ed.),Proceedings of the 30th International Joint
Conference on Arti�cial Intelligence (IJCAI'21), pp. 2147–2153, 2021. B

Bayle, P., Bayle, A., Janson, L., and Mackey, L. Cross-validation con�dence intervals for test error. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.-F., and Lin, H. (eds.),Proceedings of the 33rd
International Conference on Advances in Neural Information Processing Systems (NeurIPS'20),
pp. 16339–16350. Curran Associates, 2020. 5, C.1, C.1, C.1

Bergman, E., Purucker, L., and Hutter, F. Don't waste your time: Early stopping cross-validation. In
Eggensperger, K., Garnett, R., Vanschoren, J., Lindauer, M., and Gardner, J. (eds.),Proceedings of
the Third International Conference on Automated Machine Learning, volume 256 ofProceedings
of Machine Learning Research, pp. 9/1–31. PMLR, 2024. B

Bergstra, J. and Bengio, Y. Random search for hyper-parameter optimization.Journal of Machine
Learning Research, 13:281–305, 2012. 4, B

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker,
M., Boulesteix, A., Deng, D., and Lindauer, M. Hyperparameter optimization: Foundations,
algorithms, best practices, and open challenges.Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, pp. e1484, 2023. 1, 5, B

Blum, A., Kalai, A., and Langford, J. Beating the hold-out: Bounds for k-fold and progressive
cross-validation. InProceedings of the Twelfth Annual Conference on Computational Learning
Theory, COLT '99, pp. 203–208, 1999. B

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., and Kasneci, G. Deep neural networks
and tabular data: A survey.IEEE Transactions on Neural Networks and Learning Systems, pp.
1–21, 2022. 4.1

Bouckaert, Remcoand Frank, E. Evaluating the Replicability of Signi�cance Tests for Comparing
Learning Algorithms. In Dai, H., Srikant, R., and Zhang, C. (eds.),Advances in Knowledge
Discovery and Data Mining, pp. 3–12. Springer, 2004. B

Bousquet, O. and Zhivotovskiy, N. Fast classi�cation rates without standard margin assumptions.
Information and Inference: A Journal of the IMA, 10(4):1389–1421, 2021. C.1

Bouthillier, X., Delaunay, P., Bronzi, M., Tro�mov, A., Nichyporuk, B., Szeto, J., Sepahvand, N. M.,
Raff, E., Madan, K., Voleti, V., Kahou, S. E., Michalski, V., Arbel, T., Pal, C., Varoquaux, G., and
Vincent, P. Accounting for variance in machine learning benchmarks. In Smola, A., Dimakis, A.,
and Stoica, I. (eds.),Proceedings of Machine Learning and Systems 3, volume 3, pp. 747–769,
2021. B

Buczak, P., Groll, A., Pauly, M., Rehof, J., and Horn, D. Using sequential statistical tests for ef�cient
hyperparameter tuning.AStA Advances in Statistical Analysis, 108(2):441–460, 2024. B

Cawley, G. and Talbot, N. On Over�tting in Model Selection and Subsequent Selection Bias in
Performance Evaluation.Journal of Machine Learning Research, 11:2079–2107, 2010. B

Chen, T. and Guestrin, C. XGBoost: A scalable tree boosting system. In Krishnapuram, B., Shah, M.,
Smola, A., Aggarwal, C., Shen, D., and Rastogi, R. (eds.),Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD'16), pp. 785–794.
ACM Press, 2016. 4.1

Cowen-Rivers, A., Lyu, W., Tutunov, R., Wang, Z., Grosnit, A., Grif�ths, R., Maraval, A., Jianye, H.,
Wang, J., Peters, J., and Ammar, H. HEBO: Pushing the limits of sample-ef�cient hyper-parameter
optimisation.Journal of Arti�cial Intelligence Research, 74:1269–1349, 2022. 4, 4.1, B

11

Demšar, J. Statistical comparisons of classi�ers over multiple data sets.Journal of Machine Learning
Research, 7:1–30, 2006. 1

Dietterich, T. G. Approximate statistical tests for comparing supervised classi�cation learning
algorithms.Neural Computation, 10(7):1895–1923, 1998. 1

Dunias, Z., Van Calster, B., Timmerman, D., Boulesteix, A.-L., and van Smeden, M. A comparison
of hyperparameter tuning procedures for clinical prediction models: A simulation study.Statistics
in Medicine, 43(6):1119–1134, 2024. B

Eggensperger, K., Lindauer, M., Hoos, H., Hutter, F., and Leyton-Brown, K. Ef�cient benchmarking
of algorithm con�gurators via model-based surrogates.Machine Learning, 107(1):15–41, 2018. 5

Eggensperger, K., Lindauer, M., and Hutter, F. Pitfalls and best practices in algorithm con�guration.
Journal of Arti�cial Intelligence Research, pp. 861–893, 2019. B

Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass, R., Klein, A., Awad, N., Lindauer, M., and
Hutter, F. HPOBench: A collection of reproducible multi-�delity benchmark problems for HPO.
In Vanschoren, J. and Yeung, S. (eds.),Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks. Curran Associates, 2021. 4.1, B

Escalante, H., Montes, M., and Sucar, E. Particle Swarm Model Selection.Journal of Machine
Learning Research, 10:405–440, 2009. 5

Fabris, F. and Freitas, A. Analysing the over�t of the auto-sklearn automated machine learning
tool. In Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., and Sciacca, V. (eds.),Machine
Learning, Optimization, and Data Science, volume 11943 ofLecture Notes in Computer Science,
pp. 508–520, 2019. 5

Falkner, S., Klein, A., and Hutter, F. BOHB: Robust and ef�cient Hyperparameter Optimization
at scale. In Dy, J. and Krause, A. (eds.),Proceedings of the 35th International Conference on
Machine Learning (ICML'18), volume 80, pp. 1437–1446. Proceedings of Machine Learning
Research, 2018. B

Feldman, V., Frostig, R., and Hardt, M. The advantages of multiple classes for reducing over�tting
from test set reuse. In Chaudhuri, K. and Salakhutdinov, R. (eds.),Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML'19), volume 97, pp. 1892–1900. Proceedings of
Machine Learning Research, 2019. 5

Feurer, M. and Hutter, F. Hyperparameter Optimization. In Hutter, F., Kotthoff, L., and Vanschoren,
J. (eds.),Automated Machine Learning: Methods, Systems, Challenges, chapter 1, pp. 3 – 38.
Springer, 2019. Available for free athttp://automl.org/book . 1, B

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and Hutter, F. Auto-Sklearn 2.0: Hands-free
automl via meta-learning.Journal of Machine Learning Research, 23(261):1–61, 2022. B

Garnett, R.Bayesian Optimization. Cambridge University Press, 2023. 1, B

Gijsbers, P., Bueno, M., Coors, S., LeDell, E., Poirier, S., Thomas, J., Bischl, B., and Vanschoren, J.
AMLB: an automl benchmark.Journal of Machine Learning Research, 25(101):1–65, 2024. 4.1

Giné, E. and Nickl, R.Mathematical Foundations of In�nite-Dimensional Statistical Models, vol-
ume 40. Cambridge University Press, 2016. C.2

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do tree-based models still outperform deep
learning on typical tabular data? InProceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, pp. 507–520, 2022. 4.1

Guyon, I., Alamdari, A., Dror, G., and Buhmann, J. Performance prediction challenge. InThe 2006
IEEE International Joint Conference on Neural Network Proceedings, 2006. 1

Guyon, I., Saffari, A., Dror, G., and Cawley, G. Model selection: Beyond the Bayesian/Frequentist
divide. Journal of Machine Learning Research, 11:61–87, 2010. B

12

Guyon, I., Bennett, K., Cawley, G., Escalante, H. J., Escalera, S., Ho, T. K., Macià, N., Ray, B.,
Saeed, M., Statnikov, A., and Viegas, E. Design of the 2015 ChaLearn AutoML challenge. In2015
International Joint Conference on Neural Networks (IJCNN'15), pp. 1–8. International Neural
Network Society and IEEE Computational Intelligence Society, IEEE, 2015. B

Guyon, I., Sun-Hosoya, L., Boullé, M., Escalante, H., Escalera, S., Liu, Z., Jajetic, D., Ray, B., Saeed,
M., Sebag, M., Statnikov, A., Tu, W., and Viegas, E. Analysis of the AutoML Challenge Series
2015-2018. In Hutter, F., Kotthoff, L., and Vanschoren, J. (eds.),Automated Machine Learning:
Methods, Systems, Challenges, chapter 10, pp. 177–219. Springer, 2019. Available for free at
http://automl.org/book . B

Hansen, N. and Ostermeier, A. Completely derandomized self-adaptation in evolution strategies.
Evolutionary C., 9(2):159–195, 2001. 1

Hothorn, T., Leisch, F., Zeileis, A., and Hornik, K. The design and analysis of benchmark experiments.
Journal of Computational and Graphical Statistics, 14(3):675–699, 2005. 4.1, F.1

Igel, C. A note on generalization loss when evolving adaptive pattern recognition systems.IEEE
Transactions on Evolutionary Computation, 17(3):345–352, 2012. 5, 5

Jamieson, K. and Talwalkar, A. Non-stochastic best arm identi�cation and Hyperparameter Op-
timization. In Gretton, A. and Robert, C. (eds.),Proceedings of the Seventeenth International
Conference on Arti�cial Intelligence and Statistics (AISTATS'16), volume 51. Proceedings of
Machine Learning Research, 2016. B

Kadra, A., Janowski, M., Wistuba, M., and Grabocka, J. Scaling laws for hyperparameter optimization.
In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S. (eds.),Advances in
Neural Information Processing Systems, volume 36, pp. 47527–47553, 2023. B

Kallenberg, O.Foundations of modern probability, volume 2. Springer, 1997. D

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. Fast Bayesian optimization of machine
learning hyperparameters on large datasets. In Singh, A. and Zhu, J. (eds.),Proceedings of
the Seventeenth International Conference on Arti�cial Intelligence and Statistics (AISTATS'17),
volume 54. Proceedings of Machine Learning Research, 2017. B

Koch, P., Konen, W., Flasch, O., and Bartz-Beielstein, T. Optimizing support vector machines for
stormwater prediction. Technical Report TR10-2-007, Technische Universität Dortmund, 2010.
Proceedings of Workshop on Experimental Methods for the Assessment of Computational Systems
joint to PPSN2010. 5, 5

Kohli, R., Feurer, M., Bischl, B., Eggensperger, K., and Hutter, F. Towards quantifying the effect of
datasets for benchmarking: A look at tabular machine learning. InData-centric Machine Learning
(DMLR) workshop at the International Conference on Learning Representations (ICLR), 2024. 4.1

Lang, M., Kotthaus, H., Marwedel, P., Weihs, C., Rahnenführer, J., and Bischl, B. Automatic
model selection for high-dimensional survival analysis.Journal of Statistical Computation and
Simulation, 85:62–76, 2015. B

Larcher, C. and Barbosa, H. Evaluating models with dynamic sampling holdout in auto-ml.SN
Computer Science, 3(506), 2022. 1

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. Hyperband: A novel
bandit-based approach to Hyperparameter Optimization.Journal of Machine Learning Research,
18(185):1–52, 2018. B

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, T.,
Sass, R., and Hutter, F. SMAC3: A versatile bayesian optimization package for Hyperparameter
Optimization.Journal of Machine Learning Research, 23(54):1–9, 2022. 4, 4.1, B

Loshchilov, I. and Hutter, F. CMA-ES for Hyperparameter Optimization of deep neural networks. In
International Conference on Learning Representations Workshop track, 2016. Published online:
iclr.cc . B

13

Lévesque, J.Bayesian Hyperparameter Optimization: Over�tting, Ensembles and Conditional
Spaces. PhD thesis, Université Laval, 2018. 1, 5, 5

Makarova, A., Shen, H., Perrone, V., Klein, A., Faddoul, J., Krause, A., Seeger, M., and Archambeau,
C. Automatic termination for hyperparameter optimization. In Guyon, I., Lindauer, M., van der
Schaar, M., Hutter, F., and Garnett, R. (eds.),Proceedings of the First International Conference on
Automated Machine Learning. Proceedings of Machine Learning Research, 2022. 5

Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski, M., Lindauer, M., Nardi, L., and Hutter,
F. PriorBand: Practical hyperparameter optimization in the age of deep learning. In Oh, A.,
Neumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S. (eds.),Proceedings of the 36th
International Conference on Advances in Neural Information Processing Systems (NeurIPS'23).
Curran Associates, 2023. B

McElfresh, D., Khandagale, S., Valverde, J., Prasad C., V., Ramakrishnan, G., Goldblum, M., and
White, C. When do neural nets outperform boosted trees on tabular data? In Oh, A., Neumann, T.,
Globerson, A., Saenko, K., Hardt, M., and Levine, S. (eds.),Proceedings of the 36th International
Conference on Advances in Neural Information Processing Systems (NeurIPS'23), pp. 76336–
76369. Curran Associates, 2023. 4.1, F.2

Mohr, F., Wever, M., and Hüllermeier, E. ML-Plan: Automated machine learning via hierarchical
planning.Machine Learning, 107(8-10):1495–1515, 2018. 5, B

Molinaro, A., Simon, R., and Pfeiffer, R. Prediction error estimation: A comparison of resampling
methods.Bioinformatics, 21(15):3301–3307, 2005. B

Nadeau, C. and Bengio, Y. Inference for the generalization error. In Solla, S., Leen, T., and Müller,
K. (eds.),Proceedings of the 13th International Conference on Advances in Neural Information
Processing Systems (NeurIPS'99). The MIT Press, 1999. 1

Nadeau, C. and Bengio, Y. Inference for the generalization error.Machine Learning, 52:239–281,
2003. 1

Ng, A. Preventing “over�tting”' of cross-validation data. In Fisher, D. H. (ed.),Proceedings of
the Fourteenth International Conference on Machine Learning (ICML'97), pp. 245–253. Morgan
Kaufmann Publishers, 1997. 5, 5

P�sterer, F., Schneider, L., Moosbauer, J., Binder, M., and Bischl, B. YAHPO Gym – an ef�cient
multi-objective multi-�delity benchmark for hyperparameter optimization. In Guyon, I., Lindauer,
M., van der Schaar, M., Hutter, F., and Garnett, R. (eds.),Proceedings of the First International
Conference on Automated Machine Learning. Proceedings of Machine Learning Research, 2022.
B, 5

Pineda Arango, S., Jomaa, H., Wistuba, M., and Grabocka, J. HPO-B: A large-scale reproducible
benchmark for black-box HPO based on OpenML. In Vanschoren, J. and Yeung, S. (eds.),
Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks.
Curran Associates, 2021. B, 5

Probst, P., Boulesteix, A., and Bischl, B. Tunability: Importance of hyperparameters of machine
learning algorithms.Journal of Machine Learning Research, 20(53):1–32, 2019. 1

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A., and Gulin, A. Catboost: Unbiased boosting
with categorical features. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R. (eds.),Proceedings of the 31st International Conference on Advances in Neural
Information Processing Systems (NeurIPS'18), pp. 6639–6649. Curran Associates, 2018. 4.1

Purucker, L. and Beel, J. CMA-ES for post hoc ensembling in automl: A great success and salvageable
failure. In Faust, A., Garnett, R., White, C., Hutter, F., and Gardner, J. R. (eds.),Proceedings of the
Second International Conference on Automated Machine Learning, volume 224 ofProceedings of
Machine Learning Research, pp. 1/1–23. PMLR, 2023. 5

Quinlan, J. and Cameron-Jones, R. Oversearching and layered search in empirical learning. In
Proceedings of the 14th International Joint Conference on Arti�cial Intelligence, volume 2 of
IJCAI'95, pp. 1019–1024, 1995. 5

14

Rao, R., Fung, G., and Rosales, R. On the dangers of cross-validation. an experimental evaluation. In
Proceedings of the 2008 SIAM International Conference on Data Mining (SDM), pp. 588–596,
2008. B

Salinas, D., Seeger, M., Klein, A., Perrone, V., Wistuba, M., and Archambeau, C. Syne Tune: A
library for large scale hyperparameter tuning and reproducible research. In Guyon, I., Lindauer,
M., van der Schaar, M., Hutter, F., and Garnett, R. (eds.),Proceedings of the First International
Conference on Automated Machine Learning, pp. 16–1. Proceedings of Machine Learning Research,
2022. B

Schaffer, C. Selecting a classi�cation method by cross-validation.Machine Learning Journal, 13:
135–143, 1993. B

Swersky, K., Snoek, J., and Adams, R. Freeze-thaw Bayesian optimization.arXiv:1406.3896
[stats.ML], 2014. B

Talagrand, M.The generic chaining: upper and lower bounds of stochastic processes. Springer
Science & Business Media, 2005. C.2

Thornton, C., Hutter, F., Hoos, H., and Leyton-Brown, K. Auto-WEKA: Combined selection and
Hyperparameter Optimization of classi�cation algorithms. In Dhillon, I., Koren, Y., Ghani, R.,
Senator, T., Bradley, P., Parekh, R., He, J., Grossman, R., and Uthurusamy, R. (eds.),The 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'13),
pp. 847–855. ACM Press, 2013. 5, B

Turner, R., Eriksson, D., McCourt, M., Kiili, J., Laaksonen, E., Xu, Z., and Guyon, I. Bayesian
optimization is superior to random search for machine learning hyperparameter tuning: Analysis of
the Black-Box Optimization Challenge 2020. In Escalante, H. and Hofmann, K. (eds.),Proceedings
of the Neural Information Processing Systems Track Competition and Demonstration, pp. 3–26.
Curran Associates, 2021. 4.1

van der Vaart, A.Asymptotic statistics, volume 3. Cambridge university press, 2000. C.1

van Erven, T., Grünwald, P., Mehta, N., Reid, M., and Williamson, R. Fast rates in statistical and
online learning.Journal of Machine Learning Research, 16(54):1793–1861, 2015. C.1

van Rijn, J. and Hutter, F. Hyperparameter importance across datasets. In Guo, Y. and Farooq, F.
(eds.),Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD'18), pp. 2367–2376. ACM Press, 2018. 1

Vanschoren, J., van Rijn, J., Bischl, B., and Torgo, L. OpenML: Networked science in machine
learning.SIGKDD Explorations, 15(2):49–60, 2014. 4

Wainer, J. and Cawley, G. Empirical Evaluation of Resampling Procedures for Optimising SVM
Hyperparameters.Journal of Machine Learning Research, 18:1–35, 2017. B

Wainwright, M. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
university press, 2019. C.2

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. Scalable Gaussian process-based transfer
surrogates for Hyperparameter Optimization.Machine Learning, 107(1):43–78, 2018. G.1

Wu, J., Toscano-Palmerin, S., Frazier, P., and Wilson, A. Practical multi-�delity Bayesian optimization
for hyperparameter tuning. In Peters, J. and Sontag, D. (eds.),Proceedings of The 36th Uncertainty
in Arti�cial Intelligence Conference (UAI'20), pp. 788–798. PMLR, 2020. B

Zheng, A. and Bilenko, M. Lazy paired hyper-parameter tuning. In Rossi, F. (ed.),Proceedings of the
23rd International Joint Conference on Arti�cial Intelligence (IJCAI'13), pp. 1924–1931, 2013. 5,
B

Zimmer, L., Lindauer, M., and Hutter, F. Auto-Pytorch: Multi-�delity metalearning for ef�cient and
robust AutoDL.IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:3079–3090,
2021. 4.1, F.2

Zou, H. and Hastie, T. Regularization and variable selection via the elastic net.Journal of the Royal
Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005. 4.1

15

A Notation

Table 2: Notation table. We discuss all symbols used in the main paper.
X i Random vector, describing the features
Yi Random variable, describing the target

Z i = (X i ; Y i) Data point
D = f Z i gn

i =1 Dataset consisting ofiid random variables
n Number of observations
g Inducer/ML algorithm
h Model, created by the inducer viah = g� (D)
� Hyperparameter con�guration
� Finite set of all hyperparameter con�gurations
J j � j , i.e., the number of hyperparameter con�gurations

g� j Hyperparameterized inducer
� (�) Expected loss of a hyperparameterized inducer on the distribution of a dataset

` (Z ; h) Loss of a modelh on a fresh observationZ
M Number of folds in M-fold cross-validation
� Percentage of samples to be used for validation

I 1;j ; : : : ; I M;j � f 1; : : : ; n g M sets of validation indices, to be used for evaluating� j
Vm;j Validation data for foldm and con�guration� j
Tm;j Training data for foldm and con�guration� j

L (Vm;j ; g � j (Tm;j)) Validation loss for foldm and con�guration� j

b� (� j) M-fold validation loss
� 2 Increase in variance of validation loss caused by resampling
� 2 Decrease in correlation among validation losses caused by reshuf�ing

� i;j;M Resampling-related component of validation loss covariance
K (�; �) Kernel capturing the covariance of the pointwise losses between two HPCs
� (� j) Zero-mean Gaussian process, see Equation (2)

d Number of hyperparameters
� Curvature constant of covariance kernel
� Density of hyperparameter set�
m Local curvature at the minimum of the loss surface�
� Lower bound on the noise level

B (�) Part of the regret bound penalizing reshuf�ing
A (�) Part of the regret bound rewarding reshuf�ing

B Extended Related Work

Due to the black box nature of the HPO problem (Feurer & Hutter, 2019; Bischl et al., 2023),
gradient free, zeroth-order optimization algorithms such as BO (Garnett, 2023), Evolutionary Strate-
gies (Loshchilov & Hutter, 2016) or a simple random search (Bergstra & Bengio, 2012) have become
standard optimization algorithms to tackle vanilla HPO problems.

In the last decade, most research on HPO has been concerned with constructing new algorithms
that excel at �nding con�gurations with a low estimated generalization error. Examples include
BO variants such as as HEBO (Cowen-Rivers et al., 2022) or SMAC3 (Lindauer et al., 2022).
Another direction of HPO research has been concerned with speeding up the HPO process to allow
more ef�cient spending of compute resources. Multi�delity HPO, for example, turns the black box
optimization problem into a gray box one by making use of lower �delity approximations to the target
function, i.e., using fewer numbers of epochs or subsets of the data for cheap low-�delity evaluations
that approximate the costly high-�delity evaluation. Examples include bandit-based budget allocation
algorithms such as Successive Halving (Jamieson & Talwalkar, 2016), Hyperband (Li et al., 2018)
and their extensions that use non-random search mechanisms (Falkner et al., 2018; Awad et al., 2021;
Mallik et al., 2023) or algorithms making use of multi-�delity information in the context of BO
(Swersky et al., 2014; Klein et al., 2017; Wu et al., 2020; Kadra et al., 2023). Several works address
the problem of speeding up cross-validation techniques and use techniques that could be described as
grey box optimization techniques. Besides the ones mentioned in the main paper (Thornton et al.,
2013; Zheng & Bilenko, 2013), it is possible to employ racing techniques for model selection in
machine learning as demonstrated by Lang et al. (2015), and there has been a recent interest in
methods that adapt the cost of running full cross-validation procedures (Bergman et al., 2024; Buczak
et al., 2024).

When addressing the problem of HPO, we must acknowledge an inherent mismatch between the
explicit objective we optimize – namely, the estimated generalization performance of a model –
and the actual implicit optimization goal, which is to identify a con�guration that yields the best

16

generalization performance on new, unseen data. Typically, evaluations and comparisons of different
HPO algorithms focus exclusively on the �nal best validation performance (i.e., the objective that
is directly optimized), even though an unbiased estimate of performance on an external unseen test
set might be available. While this approach is logical for assessing the ef�cacy of an optimization
algorithm based on the metric it seeks to improve, relying solely on �nding an optimal validation
con�guration is bene�cial only if there is reason to assume a strong correlation between the optimized
validation performance and true generalization ability on new, unseen test data. This discrepancy can
be found deeply within the HPO community, where the evaluation of HPO algorithms on standard
benchmark libraries is usually done solely with respect to the validation performance (Eggensperger
et al., 2021; Pineda Arango et al., 2021; Salinas et al., 2022; P�sterer et al., 2022).5 This relationship
between validation performance (i.e., the estimated generalization error derived from resampling)
and true generalization performance (e.g., assessed through an outer holdout test set or additional
resampling) of an optimal validation con�guration found during HPO remains a largely unexplored
area of research.

In general, little research has focused on the selection of resampling types, let alone the automated
selection of resampling types (Guyon et al., 2010; Feurer et al., 2022). While we usually expect that a
more intensive resampling will reduce the variance of the estimated generalization error and thereby
improve the (rank) correlation between optimized validation and unbiased outer test performance
within HPCs, this bene�t is naturally offset by a higher computational expense. Overall, there is little
research on which resampling method to use in practice for model selection, and we only know of a
study for support vector machines (Wainer & Cawley, 2017), a simulation study for clinical prediction
models (Dunias et al., 2024), a study on feature selection (Molinaro et al., 2005) and a study on
fast CV (Bergman et al., 2024). In addition, ML-Plan (Mohr et al., 2018) proposed a two-stage
procedure. In a �rst stage (search), the tool uses planning on hierarchical task networks to �nd
promising machine learning pipelines on70%of the training data. In a second step (selection), it uses
100%of the training data and retrains the most promising candidates from the search step. Finally, it
uses a combination of the internal generalization error estimation that was used during search and
the0:75 percentile of the generalization error estimation from the selection step to make a more
unbiased selection of the �nal model. The paper found that this improves performance over using
only regular cross-validation for search and selection. The general consensus, that is in agreement
with our �ndings, is that CV or repeated CV generally leads to better generalization performance. In
addition, while there are theoretical works that compare the accuracy of estimating the generalization
error of holdout and CV (Blum et al., 1999), our goals is to correctly identify a single solution, which
generalizes well, see the excellent survey by Arlot & Celisse (2010) for a discussion on this topic.

Bouthillier et al. (2021) studied the sources of variance in machine learning experiments, and �nd that
the split into training and test data has the largest impact. Consequently, they suggest to reshuf�e the
data prior to splitting it into the training, which is then used for HPO, and the test set. We followed
their suggestion when designing our experiments and draw a new test sample for every replication,
see Section 4.1 and Appendix F. This dependence on the exact split was further already discussed in
the context of how much the outcome of a statistical test on results of machine learning experiments
depended on the exact train-test split (Bouckaert, 2004).

Finally, the �rst warning against comparing too many hypothesis using cross-validation was raised by
Schaffer (1993), and in addition to the works discussed in Section 5 in the main paper, also picked up
by Rao et al. (2008); Cawley & Talbot (2010). Moreover, the problem of �nding a correct "upper
objective" in a bilevel optimization problem has been noted (Guyon et al., 2010, 2015, 2019). Also,
in the related �eld of algorithm con�guration the problem has been identi�ed (Eggensperger et al.,
2019).

B.1 Current Treatment of Resamplings in HPO Libraries and Software

In Table 3, we provide a brief summary of how resampling is handled in popular HPO libraries and
software.6 For each library, we checked whether the core functionality, examples, or tutorials mention

5We admit that these benchmark libraries implement ef�cient benchmarking methods such as surro-
gate (Eggensperger et al., 2018; P�sterer et al., 2022) or tabular benchmarks (Pineda Arango et al., 2021).
It would be possible to adapt them to return the test performance, however, changes in the HPO evaluation
protocol, such as the one we propose, would not be feasible.

6This summary is not exhaustive but re�ects the general consensus observed in widely-used software.

17

the possibility of reshuf�ing the resampling during HPO or if the resampling is considered �xed. If
reshuf�ing is used in an example, mentioned, or if core functionality uses it, we mark it with a3 . If
it is unclear or inconsistent across examples and core functionality, we mark it with a ?. Otherwise,
we use a7. Our conclusion is that the concept of reshuf�ing resampling generally receives little
attention.

Table 3: Exemplary Treatment of Resamplings in HPO Libraries and Software

Software Reshuf�ed? Reference(s)

sklearn 7 GridSearchCV1/ RandomizedSearchCV2

HEBO 7 sklearn_tuner 3

optuna ? Inconsistency between examples4,5,6

bayesian-optimization 7 sklearn Example7,8

ax 7 CNN Example9

spearmint 7 No of�cial HPO Examples
scikit-optimize 7 BO for GBT Example7,10

SMAC3 7 SVM Example7,11

dragon�y 7 Tree Based Ensemble Example12

aws sagemaker 7 Blog Post13

raytune ? Inconsistency between examples14,15

hyperopt(-sklearn) ? Cost Function Logic16

7: no reshuf�ing, ?: both reshuf�ing and no reshuf�ing or unclear,3 : reshuf�ing
1 https://github.com/scikit- learn/scikit- learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3/sklearn/m

odel_selection/_search.py#L1263
2 https://github.com/scikit- learn/scikit- learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3/sklearn/m

odel_selection/_search.py#L1644
3 https://github.com/huawei-noah/HEBO/blob/b60f41aa862b4c5148e31ab4981890da6d41f2b1/HEBO/hebo/sklearn_t

uner.py#L73
4 https://github.com/optuna/optuna-integration/blob/15e6b0ec6d9a0d7f572ad387be8478c56257bef7/optuna_in

tegration/sklearn/sklearn.py#L223 here sklearn'scross_validate is used which by default does not reshuf�e the resampling
https://github.com/scikit- learn/scikit- learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3/sklearn/m
odel_selection/_validation.py#L186

5 https://github.com/optuna/optuna-examples/blob/dd56b9692e6d1f4fa839332edbcdd93fd48c16d8/pytorch/py
torch_simple.py#L79 here, data loaders for train and valid are instantiated within the objective of the trial but the data within the
loaders is �xed

6 https://github.com/optuna/optuna-examples/blob/dd56b9692e6d1f4fa839332edbcdd93fd48c16d8/xgboost/xgbo
ost_simple.py#L22 here, the train validation split is performed within the objective of the trial and no seed is set which results in
reshuf�ing https://github.com/scikit- learn/scikit- learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3/s
klearn/model_selection/_split.py#L2597

7 functionality relies on sklearn'scross_val_score which by default does not reshuf�e the resamplinghttps://github.com/sciki
t- learn/scikit- learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3/sklearn/model_selection/_validati
on.py#L631

8 https://github.com/bayesian-optimization/BayesianOptimization/blob/c7e5c3926944fc6011ae7ace29f7b5ed0f
9c983b/examples/sklearn_example.py#L32

9 https://github.com/facebook/Ax/blob/ac44a6661f535dd3046954f8fd8701327f4a53e2/tutorials/tune_cnn_serv
ice.ipynb#L39 andhttps://github.com/facebook/Ax/blob/ac44a6661f535dd3046954f8fd8701327f4a53e2/ax/util
s/tutorials/cnn_utils.py#L154

10 https://github.com/scikit-optimize/scikit-optimize/blob/a2369ddbc332d16d8ff173b12404b03fea472492/ex
amples/hyperparameter-optimization.py#L82C21-L82C36

11 https://github.com/automl/SMAC3/blob/9aaa8e94a5b3a9657737a87b903ee96c683cc42c/examples/1_basics/2_sv
m_cv.py#L63

12 https://github.com/dragonfly/dragonfly/blob/3eef7d30bcc2e56f2221a624bd8ec7f933f81e40/examples/tree_r
eg/skltree.py#L111

13 https://aws.amazon.com/blogs/architecture/field-notes-build-a-cross-validation-machine-learning-mod
el-pipeline-at-scale-with-amazon-sagemaker/

14 https://github.com/ray-project/ray/blob/3f5aa5c4642eeb12447d9de5dce22085512312f3/doc/source/tune/exa
mples/tune-pytorch-cifar.ipynb#L120 here, data loaders for train and valid are instantiated within the objective but the data
within the loaders are �xed

15 https://github.com/ray-project/ray/blob/3f5aa5c4642eeb12447d9de5dce22085512312f3/doc/source/tune/exa
mples/tune-xgboost.ipynb#L335 here, the train validation split is performed within the objective and no seed is set which results
in reshuf�ing https://github.com/scikit- learn/scikit- learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3
/sklearn/model_selection/_split.py#L2597

16 https://github.com/hyperopt/hyperopt-sklearn/blob/4bc286479677a0bfd2178dac4546ea268b3f3b77/hpsklearn
/estimator/_cost_fn.py#L144 dependence on random seed which by default is not set and there is no discussion of reshuf�ing and
behavior is somewhat unclear

18

C Proofs of the Main Results

C.1 Proof of Theorem 2.1

We imposestability assumptions on the learning algorithm similar to Bayle et al. (2020); Austern &
Zhou (2020). LetZ ; Z 1; : : : ; Z n ; Z 0

1; beiid random variables. De�neT = f Z i gn
i =1 , andT 0 asT

but withZ n replaced by the independent copyZ 0
n . De�ne

è
n (z; �) = `(z; g� (T)) � E[`(Z ; g� (T)) j T];

assume that eachg� (T) is invariant to the ordering inT , ` is bounded, and

max
� 2 �

Ef [è(Z ; g� (T)) � è(Z ; g� (T 0))]2g = o(1=n): (4)

This loss stabilityassumption is rather mild, see Bayle et al. (2020) for an extensive discussion.
Further, de�ne the riskR(g) = E[`(Z ; g)] and assume that for every� 2 � , there is a prediction
ruleg�

� such that

max
� 2 �

E [jR(g� (T)) � R(g�
�)j] = o(1=

p
n): (5)

This assumption requiresg� (T) to converge to some �xed prediction rule suf�ciently fast and serves
as a reasonable working condition for our purposes. It is satis�ed, for example, when` is the square
loss andg� is an empirical risk minimizer over a hypothesis classG� with �nite VC-dimension.
For further examples, see, e.g., Bousquet & Zhivotovskiy (2021), van Erven et al. (2015), and
references therein. The assumption could be relaxed, but this would lead to a more complicated
limiting distribution but with the same essential interpretation.
Theorem C.1. Under assumptions(4) and(5), it holds

p
n (b� (� j) � � (� j)) J

j =1 ! d N (0; �) ;

where

� j;j 0 = � i;j;M lim
n !1

Cov[�̀n (Z ; � j); �̀
n (Z ; � j 0)];

� j;j 0;M = lim
n !1

1
nM 2� 2

nX

i =1

MX

m =1

MX

m 0=1

Pr(i 2 I m;j \ I m 0;j 0):

Proof. De�ne

e� (� j) =
1

M

MX

m =1

E[L(Vm;j ; g� j (Tm;j)) j Tm;j]:

By the triangle inequality (�rst and second step), Jensen's inequality (third step), and (5) (last step),

E[je� (� j) � � (� j)j]

� max
1� m � M

E
� ��E[L (Vm;j ; g� j (Tm;j)) j Tm;j] � E[L (Vm;j ; g� j (Tm;j))]

�
� �

� max
1� m � M

E
h�
�
�E[L (Vm;j ; g� j (Tm;j)) j Tm;j] � E[L (Vm;j ; g�

� j
)]

�
�
�
i

+ max
1� m � M

E
h�
�
�E[L (Vm;j ; g� j (Tm;j))] � E[L (Vm;j ; g�

� j
)]

�
�
�
i

� 2 max
1� m � M

E
h�
�
�E[L (Vm;j ; g� j (Tm;j)) j Tm;j] � E[L (Vm;j ; g�

� j
)]

�
�
�
i

= 2 max
1� m � M

E
h�
�
�R(g� j (Tm;j)) � R(g�

� j
)
�
�
�
i

= o(1=
p

n):

Next, assumption (4) together with Theorem 2 and Proposition 3 of Bayle et al. (2020) yield

p
n (b� (� j) � e� (� j)) �

1
M

MX

m =1

1
�

p
n

X

i 2I m;j

�̀
n (Z i ; � j) ! p 0:

19

Now rewrite

1
M�

p
n

MX

m =1

X

i 2I m;j

�̀
n (Z i ; � j) =

1
M�

p
n

nX

i =1

MX

m =1

1(i 2 I m;j) �̀
n (Z i ; � j)

| {z }
:= � (j)

i;n

:

The sequence(� i;n)n
i =1 = (� (j)

i;n ; : : : ; � (j)
i;n)n

i =1 is a triangular array of independent, centered, and
bounded random vectors. Because1(Z i 2 Vm;j) andZ i are independent, it holds

Cov(� (j)
i;n ; � (j 0)

i;n) =
MX

m =1

MX

m 0=1

E[1(i 2 I m;j \ I m 0;j 0)]E[�̀n (Z i ; � j) �̀
n (Z i ; � j 0)];

so

lim
n !1

Cov

"
1

M�
p

n

nX

i =1

� (j)
i;n ;

1
M�

p
n

nX

i =1

� (j 0)
i;n

#

= lim
n !1

1
nM 2� 2

nX

i =1

Cov
h
� (j)

i;n ; � (j 0)
i;n

i
= � j;j 0:

Now the result follows from Lindeberg's central limit theorem for triangular arrays (e.g., van der
Vaart, 2000, Proposition 2.27).

C.2 Proof of Theorem 2.2

We want to bound the probability that� (�̂) � � (� �) is large. For some� > 0, de�ne the set of `good'
hyperparameters

� � = f � j : � (� j) � � (� �) � � g:

Now

Pr
�

� (b�) � � (� �) > �
�

= Pr
�

b� =2 � �

�

= Pr
�

min
� =2 � �

b� (�) < min
� 2 � �

b� (�)
�

� Pr
�

min
� =2 � �

b� (�) < min
� 2 � �= 2

b� (�)
�

= Pr
�

min
� =2 � �

� (�) + � (�) < min
� 2 � �= 2

� (�) + � (�)
�

� Pr
�

� + min
� =2 � �

� (�) < �= 2 + min
� 2 � �= 2

� (�)
�

= Pr
�

min
� =2 � �

� (�) � min
� 2 � �= 2

� (�) < � �=2
�

= Pr
�

max
� =2 � �

� (�) � max
� 2 � �= 2

� (�) > �= 2
�

: (� d= � �)

There is a tension between the two maxima. The more� 's there are in� �= 2 and the less they are
correlated, the more likely it is to �nd one� (�) that is large. This makes the probability small.
However, the less� is correlated, the larger ismax� =2 � � � (�), making the probability large. To
formalize this, use the Gaussian concentration inequality (Talagrand, 2005, Lemma 2.1.3):

Pr
�

max
� =2 � �

� (�) � max
� 2 � �= 2

� (�) > �= 2
�

� Pr
�

2

�
�
�
�max

� 2 �
� (�) � E

�
max
� 2 �

� (�)
� �
�
�
� > �= 2 � E

�
max

� 2 � �= 2

� (�)
�

+ E
�

max
� =2 � �

� (�)
��

� 2 exp

(

�

�
�=2 � E

�
max� 2 � �= 2 � (�)

�
+ E [max� =2 � � � (�)]

� 2

8� 2

)

;

provided�=2� E
�
max� 2 � �= 2 � (�)

�
+ E [max� =2 � � � (�)] � 0. We bound the two maxima separately.

20

Lower Bound for Maximum over the Good Set

Recall the de�nition ofm right before Theorem 2.2 and observe

� �= 2 = f � : � (�) � � (� �) � �=2g � f � : mk� � � � k2 � �=2g = f � : k� � � � k � (�=2m)1=2g

= B (� � ; (�=2m)1=2):

Pack the ballB (� � ; (�=2m)1=2) with smaller balls with radius� . We can always construct such
a packing with at least(�=2m� 2)d=2 elements. By assumption, each small ball contains at least
one element of� . Pick one element from each small ball and collect them into the set� 0

�= 2. By

construction,j� 0
�= 2j � (�=2m� 2)d=2 and

min
� 6= � 02 � 0

�= 2 j
k� � � 0k � �:

Sudakov's minoration principle (e.g., Wainwright, 2019, Theorem 5.30) gives

E
�

max
� 2 � �= 2

� (�)
�

�
1
2

q
log j� 0

�= 2j min
f � 6= � 0g\ � 0

�= 2

p
Var [� (�) � � (� 0)]

�
1
2

q
log j� 0

�= 2j min
k� � � 0k� �

p
Var [� (�) � � (� 0)]:

In general,

Var [� (�) � � (� 0)]

= K (� ; �) + K (� 0; � 0) � 2� 2K (� ; � 0)

= (1 � � 2)[K (� ; �) + K (� 0; � 0)] + � 2[K (� ; �) � K (� ; � 0)] + � 2[K (� 0; � 0) � K (� ; � 0)]

� 2� 2(1 � � 2):

Hence, we have

min
k� � � 0k� �

Var [� (�) � � (� 0)] � 2� 2(1 � � 2);

which implies

E
�

max
� 2 � �= 2

� (�)
�

�
1
2

�
p

d
p

1 � � 2
p

log(�=2m� 2) =: �
p

dA(�; �)=2:

Upper Bound for Maximum over the Bad Set

Dudley's entropy bound (e.g., Giné & Nickl, 2016, Theorem 2.3.6) gives

E
�

max
� =2 � �

� (�)
�

� 12
Z 1

0

p
logN (s)ds;

whereN (s) is the minimum number of points� 1; : : : ; � N (s) such that

sup
� 2 �

min
1� k � N (s)

p
Var [� (�) � � (� k)] � s:

Note that

sup
� ;� 02 �

p
Var [� (�) � � (� 0)] � 2�;

so N (s) = 1 for all s � 2� . For s2 � 4� 2(1 � � 2), we can use the trivial boundN (s) � J:
For s2 > 4� 2(1 � � 2), cover� with `2-balls of size(s=2�� �). We can do this with less than
N (s) � (6��=s)d _ 1 such balls. Let� 1; : : : ; � N be the centers of these balls. In general, it holds

Var [� (�) � � (� 0)]

= K (� ; �) + K (� 0; � 0) � 2� 2K (� ; � 0)

= (1 � � 2)[K (� ; �) + K (� 0; � 0)] + � 2[K (� ; �) � K (� ; � 0)] + � 2[K (� 0; � 0) � K (� ; � 0)]

� 2(1 � � 2)� 2 + 2 � 2� 2� 2k� � � 0k2:

21

Fors2 > 4� 2(1 � � 2), we thus have

sup
� 2 �

min
1� k � N (s)

Var [� (�) � � (� k)] � sup
k� � � 0k2 � (s=2� ��)2

Var [� (�) � � (� 0)]

� 2(1 � � 2)� 2 + 2 � 2� 2� 2(s=2� ��)2

� s2;

as desired. Now decompose the integral

Z 1

0

p
logN (s)ds =

Z 2�
p

1� � 2

0

p
logN (s)ds +

Z 2�

2�
p

1� � 2

p
logN (s)ds

� 2�
p

d
p

1 � � 2
p

logJ +
Z 2�

2�
p

1� � 2

p
logN (s)ds:

For the second term, compute

Z 2�

�
p

1� � 2

p
logN (s)ds �

p
d

Z 2�

2�
p

1� � 2

p
log(6��=s)+ ds

= �
p

d
Z 2

2
p

1� � 2

p
log(6�=s)+ ds

� �
p

d
� Z 2

0
log(6�=s)+ ds

� 1=2 �
2(1 �

p
1 � � 2)

� 1=2

= �
p

d
p

2 + 2 log(3�)+

�
2(1 �

p
1 � � 2)

� 1=2

= 2 �
p

d
p

1 + log(3�)+
�

(1 +
p

1 � � 2)1=2

� 2�
p

d�
p

1 + log(3�)+ :

We have shown that

E
�

max
� =2 � �

� (�)
�

� 24�
p

d
hp

1 � � 2
p

logJ + �
p

1 + log(3�)+

i
=: �

p
dB(�)=4:

Integrating Probabilities

Summarizing the two previous steps, we have

Pr
�

� (b�) � � (� �) > �
�

� 2 exp

8
><

>:
�

�
� � �

p
d[B (�) � A(�; �)]

� 2

36� 2

9
>=

>;
;

providedt � �
p

d[B (�) � A(�; �)]. Now for anys � 0 andt � 2es2
m� 2, it holds

A(�; s) � (� =�)
p

1 � � 2s =: A(�)s:

In particular, if

t � 2es2
m� 2 + �

p
d[B (�) � A(�)s] =: C;

we have

Pr
�

� (b�) � � (� �) > �
�

� 4 exp

8
><

>:
�

�
� � �

p
d[B (�) � A(�)s]

� 2

36� 2

9
>=

>;
:

22

Integrating the probability gives

E[� (b�) � � (� �)] =
Z 1

0
Pr

�
� (b�) � � (� �) > �

�
d�

=
Z C

0
Pr

�
� (b�) � � (� �) > �

�
d� +

Z 1

C
Pr

�
� (b�) � � (� �) > �

�
d�

� C +
Z 1

C
exp

8
><

>:
�

�
� � �

p
d[B (�) � A(�)s]

� 2

36� 2

9
>=

>;
d�

� C +
p

36�

= 2es2
m� 2 + �

p
d[B (�) � A(�)s] + 6 �:

Simplifying

The bound can be optimized with respect tos, but the solution involves the LambertW-function,
which has no analytical expression. Instead chooses for simplicity as

s =

s

log
�

�
2m� 2

�

+
:

which gives

E[� (b�) � � (� �)] � �
p

d

"

8 + B (�) � A(�)

s

log
�

�
2m� 2

� #

:

D Additional Results on the Density of Random HPC Grids

Lemma D.1. Suppose that theJ elements in� are drawn independently from a continuous densityp
with c := min k� k� 1 p(�) > 0. Then with probability at least1 � � ,

� .
� p

log(1=�)=J
� 1=d

;

and with probability 1,

� .
� p

log(J)=J
� 1=d

;

for all J suf�ciently large.

Proof. We want to bound the probability that there is a� such thatjB (� ; �) \ � j = 0 . In what
follows � is silently understood to have norm bounded by 1. Lete� 1; : : : ; e� N the centers of�= 2-balls
coveringfk � k � 1g, for which we may assumeN � (6=�)d. For e� k the closest center to� , it holds

k� 0 � � k � k � 0 � e� k k + ke� k � � k � k � 0 � e� k k + �= 2;

sok� 0 � e� k k � �= 2 impliesk� 0 � � k � � . We thus have

Pr(9� : jB (� ; �) \ � j = 0) = Pr

inf
�

JX

i =1

1fk � i � � k � � g � 0

!

� Pr

min
1� k � N

JX

i =1

1fk � i � e� k k � �= 2g � 0

!

:

23

Further

Pr

min
1� k � N

JX

i =1

1fk � i � e� k k � �= 2g � 0

!

= Pr

max
1� k � N

JX

i =1

� 1fk � i � e� k k � �= 2g � 0

!

� Pr

max
1� k � N

JX

i =1

E
h
1fk � i � e� k k � �= 2g

i
� 1fk � i � e� k k � �= 2g � J inf

�
E [1fk � i � � k � �= 2g]

!

:

It holds

E [1fk � i � � k � �= 2g] = Pr (k� i � � k � �= 2) =
Z

k� 0� � k� �= 2
p(� 0)d� 0 � cvol(B (0; �= 2))

= cvd(�= 2)d;

wherevd = vol(B (0; 1)). Now the union bound and Hoeffding's inequality give

Pr

min
1� k � N

JX

i =1

1fk � i � e� k k � �= 2g � 0

!

� N exp
�

�
Jc2v2

d(�= 2)2d

2

�

� (6=�)d exp
�

�
Jc2v2

d(�= 2)2d

2

�
:

Choosing

� = 2
� q

2 log(3d
p

Jcvd=�)=
p

Jcvd

� 1=d

gives

Pr(9� : jB (� ; �) \ � j = 0) � �=
q

2 log(3d
p

Jcvd);

which is bounded by� when
p

J � e1=2=3dcvd. Further, setting� = 2(
p

6 log(J)=
p

Jcvd)1=d

gives

Pr

min
1� k � N

JX

i =1

1fk � i � e� k k � �= 2g � 0

!

. J � 5=2;

so that

1X

J =1

Pr

min
1� j � J

min
1� k � N

jX

i =1

1fk � i � e� k k � �= 2g � 0

!

�
1X

J =1

J Pr

min
1� k � N

JX

i =1

1fk � i � e� k k � �= 2g � 0

!

.
1X

J =1

1
J 3=2

< 1 :

Now the Borel-Cantelli lemma (e.g., Kallenberg, 1997, Theorem 4.18) implies that, with probability
1,

jB (� ; �) \ � j � 1;

for all J suf�ciently large.

24

E Selected Validation Schemes

E.1 De�nition of Index Sets

Recall:

(i) (holdout) LetM = 1 andI 1;j = I 1 for all j = 1 ; : : : ; J , and some size-d�n e index setI 1.

(ii) (reshuf�ed holdout) LetM = 1 andI 1;1; : : : ; I 1;J be independently drawn from the uniform
distribution over all size-d�n esubsets fromf 1; : : : ; ng.

(iii) (M -fold CV) Let � = 1=M andI 1; : : : ; I M be a disjoint partition off 1; : : : ; ng, andI m;j =
I m for all j = 1 ; : : : ; J .

(iv) (reshuf�edM -fold CV) Let � = 1=M and(I 1;j ; : : : ; I M;j); j = 1 ; : : : ; J , be independently
drawn from the uniform distribution over disjoint partitions off 1; : : : ; ng.

(v) (M -fold holdout) LetI m ; m = 1 ; : : : ; M , be independently drawn from the uniform distribution
over size-d�n esubsets off 1; : : : ; ng and setI m;j = I m for all m = 1 ; : : : ; M; j = 1 ; : : : ; J .

(vi) (reshuf�edM -fold holdout) LetI m;j ; m = 1 ; : : : ; M; j = 1 ; : : : ; J , be independently drawn
from the uniform distribution over size-d�n esubsets off 1; : : : ; ng.

E.2 Derivation of Reshuf�ing Parameters in Limiting Distribution

Recall

� i;j;M =
1

nM 2� 2

nX

s=1

MX

m =1

MX

m 0=1

Pr(s 2 I m;i \ I m 0;j):

For all schemes in the proposition, the probabilities are independent of the indexs, so the average
overs = 1 ; : : : ; n can be omitted. We now verify the constants�; � from Table 1.

(i) It holds

Pr(s 2 I 1;i \ I 1;j) = Pr(s 2 I 1) = �:

Hence,
� i;j; 1 = 1=� = 1=� � 1 = � 2 � � 2:

(ii) (reshuf�ed holdout) This is a special case of part (vi) withM = 1 .

(iii) (M -fold CV) It holds

Pr(s 2 I m;i \ I m 0;j) = Pr(s 2 I m \ I m 0) =
�

1=M; m = m0;
0; m 6= m0:

Only M probabilities in the double sum are non-zero, whence

� i;j;M =
1

M 2� 2 � M=M = 1=� 2M 2 = 1 � 1 = � 2 � � 2;

where we used� = 1=M .

(iv) (reshuf�ed M -fold CV) It holds

Pr(s 2 I m;i \ I m 0;j) =

8
>><

>>:

1=M; m = m0; i = j
0; m 6= m0; i = j
1=M 2; m = m0; i 6= j
1=M 2; m 6= m0; i 6= j:

For i = j , only M probabilities in the double sum are non-zero. Also using� = 1=M , we get

� i;j;M =
1

M 2� 2 � M � 1=M = 1 = � 2:

For i 6= j ,

� i;j;M =
1

M 2� 2 � M 2 � 1=M 2 = 1 � 1 = � 2 � � 2:

25

(v) (M -fold holdout) It holds

Pr(s 2 I m;i \ I m 0;j) = Pr(s 2 I m \ I m 0) =
�

�; m = m0;
� 2; else:

This gives

� i;j;M =
1

M 2� 2 � [M � � + (M � 1)M � � 2] = [1=�M + (M � 1)=M] � 1 = � 2 � � 2:

for all i; j .
(vi) (reshuf�ed M -fold holdout) It holds

Pr(s 2 I m;i \ I m 0;j) =
�

�; m = m0; i = j
� 2; else:

For i = j , this gives

� i;j;M =
1

M 2� 2 � [M � � + (M � 1)M � � 2] = 1=�M + (M � 1)=M:

For i 6= j ,

� i;j;M =
1

M 2� 2 � (M 2 � � 2) = 1 :

This implies that(1) holds with� 2 = 1=M� + (M � 1)=M , � 2 = 1=(1=M� + (M � 1)=M).
Remark E.1. Although not technically covered by Theorem 2.1, performing independent bootstraps
for each� j correspond to reshuf�edn-fold holdout with� = 1=n. Accordingly,� �

p
2 and

� �
p

1=2.

F Details Regarding Benchmark Experiments

F.1 Datasets

We list all datasets used in the benchmark experiments in Table 4.

Table 4: List of datasets used in benchmark experiments. All information can be found on
OpenML (Vanschoren et al., 2014).

OpenML Dataset ID Dataset Name Size (n � p)

23517 numerai28.6 96320� 21
1169 airlines 539383� 7
41147 albert 425240� 78
4135 Amazon_employee_access 32769� 9
1461 bank-marketing 45211� 16
1590 adult 48842� 14
41150 MiniBooNE 130064� 50
41162 kick 72983� 32
42733 Click_prediction_small 39948� 11
42742 porto-seguro 595212� 57

Note that datasets serve as data generating processes (DGPs; Hothorn et al., 2005). As we are mostly
concerned with the actual generalization performance of the �nal best HPC found during HPO based
on validation performance we rely on a comparably large held out test set that is not used during
HPO. We therefore use5000data points sampled from a DGP as an outer test set. To further be able
to measure the generalization performance robustly for varying data sizes available during HPO, we
construct concrete tasks based on the DGPs by sampling subsets of (train_valid ; n) size500, 1000
and5000from the DGPs. This results in 30 tasks in total (10 DGPS� 3 train_valid sizes). For
more details and the concrete implementation of this procedure, see Appendix F.3. We also collected
another5000data points as an external validation set, but did not use it. Therefore, we had to tighten
the restriction to10000data points mentioned in the main paper to15000data points as the lower
bound on data points. To allow for stronger variation over different replications, we decided to use
20000as the �nal lower bound.

26

F.2 Learning Algorithms

Here we brie�y present training pipeline details and search spaces of the learning algorithms used in
our benchmark experiments.

The funnel-shaped MLP is based on sklearn's MLP Classi�er and is constructed in the following
way: The hidden layer size for each layer is determined bynum_layers andmax_units . We
start withmax_units and half the number of units for every subsequent layer to create a funnel.
max_batch_size is the largest power of 2 that is smaller than the number of training samples
available. We use ReLU as activation function and train the network optimizing logloss as a loss
function via SGD using a constant learning rate and Nesterov momentum for 100 epochs. Table 5
lists the search space (inspired from Zimmer et al. (2021)) used during HPO.

The Elastic Net is based on sklearn's Logistic Regression Classi�er. We train it for a maximum of
1000 iterations using the "saga" solver. Table 6 lists the search space used during HPO.

The XGBoost and CatBoost search spaces are listed in Table 7 and Table 8, both inspired from their
search spaces used in McElfresh et al. (2023).

For both the Elastic Net and Funnel MLP, missing values are imputed in the preprocessing pipeline
(mean imputation for numerical features and adding a new level for categorical features). Categorical
features are target encoded in a cross-validated manner using a 5-fold CV. Features are then scaled
to zero mean and unit variance via a standard scaler. For XGBoost, we impute missing values for
categorical features (adding a new level) and target encode them in a cross-validated manner using a
5-fold CV. For CatBoost, no preprocessing is performed.

XGBoost and CatBoost models are trained for 2000 iterations and stop early if the validation loss
(using the default internal loss function used during training, i.e., logloss) does not improve over a
horizon of 20 iterations. For retraining the best con�guration on the whole train and validation data,
the number of boosting iterations is set to the number of iterations used to �nd the best validation
performance prior to the stopping mechanism taking action.7

F.3 Exact Implementation

In the following, we outline the exact implementation of performing one HPO run for a given learning
algorithm on a concrete task (dataset� train_valid size) and a given resampling. We release all
code to replicate benchmark results and reproduce our analyses viahttps://github.com/slds-l
mu/paper_2024_reshuffling . For a given replication (in total 10):

1. We sample (without replacement)train_valid size (500, 1000 or 5000 points) andtest
size (always 5000) points from the DGP (i.e. a concrete dataset in Table 4). These are shared
for every learning algorithm (i.e. all learning algorithms are evaluated on the same data).

2. A given HPC is evaluated in the following way:

• The resampling operates on the train validation8 set of sizetrain_valid .
• The learning algorithm is con�gured by the HPC.
• The learning algorithm is trained on training splits and evaluated on validation splits

according to the resampling strategy. In case reshuf�ing is turned on, the training and
validation splits are recreated for every HPO. We compute the Accuracy, ROC AUC
and logloss when using a random search and compute ROC AUC when using HEBO
or SMAC3 and average performance over all folds for resamplings involving multiple
folds.

• For each HPC we then always re-train the model on alltrain_valid data being
available and evaluate the model on the held-outtest set to compute an outer estimate
of generalization performance for each HPC (regardless of whether it is the incumbent
for a given iteration or not).

7For CV and repeated holdout we take the average number of boosting iterations over the models trained on
the different folds.

8With train validation we refer to all data being available during HPO which is then further split by a
resampling into train and validation sets.

27

Table 5: Search Space for Funnel-Shaped MLP Classi�er.

Parameter Type Range Log

num_layers Int. 1 to 5 No
max_units Int. 64, 128, 256, 512 No
learning_rate Num. 1 � 10� 4 to 1 � 10� 1 Yes
batch_size Int. 16, 32, ..., max_batch_size No
momentum Num. 0.1 to 0.99 No
alpha Num. 1 � 10� 6 to 1 � 10� 1 Yes

Table 6: Search Space for Elastic Net Classi�er.

Parameter Type Range Log

C Num. 1 � 10� 6 to 1 � 104 Yes
l1_ratio Num. 0.0 to 1.0 No

Table 7: Search Space for XGBoost Classi�er.

Parameter Type Range Log

max_depth Int. 2 to 12 Yes
alpha Num. 1 � 10� 8 to 1.0 Yes
lambda Num. 1 � 10� 8 to 1.0 Yes
eta Num. 0.01 to 0.3 Yes

Table 8: Search Space for CatBoost Classi�er.

Parameter Type Range Log

learning_rate Num. 0.01 to 0.3 Yes
depth Int. 2 to 12 Yes
l2_leaf_reg Num. 0.5 to 30 Yes

3. We evaluate 500 HPCs when using random search and 250 HPC when using HEBO or
SMAC3 (SMAC4HPO facade).

As resamplings, we use holdout with a 80/20 train-validation split and 5 folds for CV, so that the
holdout strategy is just one fold of the CV and the fraction of data points being used for training and
respectively validation are the same across different resampling strategies. 5-fold holdout simply
repeats the holdout procedure �ve times and 5x 5-fold CV repeats the 5-fold CV �ve times. Each of
the four resamplings can be reshuf�ed or not (standard).

As mentioned above, the test set is only varied for each of the 10 replica (repetitions with different
seeds), but consistent for different tasks (i.e. the different learning algorithms are evaluated on the
same test set, similarly, also the different dataset subsets all share the same test set). This allows for
fair comparisons of different resamplings on a concrete problem (i.e. a given dataset,train_valid
size and learning algorithm). Additionally, for the random search, the 500 HPCs evaluated for a given
learning algorithm are also �xed over different dataset andtrain_valid size combinations. This
is done to allow for an isolation of the effect, the concrete resampling (and whether it is reshuf�ed
or not) has on generalization performance, reducing noise arising due to different HPCs. Learning
algorithms themselves are not explicitly seeded to allow for variation during model training over
different replications. Resamplings and partitioning of data are always performed in a strati�ed
manner with respect to the target variable.

For the random search, we only ran (standard and reshuf�ed) holdout and (standard and reshuf�ed)
5x 5-fold CV experiments (because we can simulate 5-fold CV and 5-fold holdout experiments based

28

on the results obtained from the 5x 5-fold CV (by only considering the �rst repeat or the �rst fold for
each of the �ve repeats).9

For running HEBO or SMAC3, each resampling (standard and reshuf�ed for holdout, 5-fold holdout,
5-fold CV, 5x 5-fold CV) has to be actually run due to the adaptive nature of BO.

For the random search experiments, this results in 10 (DGPs)� 3 (train_valid sizes)� 4 (learning
algorithms)� 2 (holdout or 5x 5-fold CV)� 2 (standard or reshuf�ed)� 10 (replications) = 4800
HPO runs,10 each involving the evaluation of 500 HPCs and each evaluation of an HPC involving
either 2 (for holdout; due to retraining on train validation data) or 26 (for 5x 5-fold CV; due to
retraining on train validation data) model �ts. In summary, the random search experiments involve
the evaluation of 2.4 Million HPCs with in total 33.6 Million model �ts.

Similarly, for the HEBO and SMAC3 experiments, this each results in 10 (DGPs)� 3 (train_valid
sizes)� 4 (learning algorithms)� 4 (holdout, 5-fold CV, 5x 5-fold CV or 5-fold holdout)� 2
(standard or reshuf�ed)� 10 (replications) = 9600 HPO runs11, each involving the evaluation of
250 HPCs and each evaluation of an HPC involving either 2 (for holdout; due to retraining on train
validation data), 6 (for 5-fold CV or 5-fold holdout; due to retraining on train validation data) or 26
(for 5x 5-fold CV; due to retraining on train validation data) model �ts. In summary, the HEBO and
SMAC3 experimentseachinvolve the evaluation of 2.4 Million HPCs with in total 24 Million model
�ts.

F.4 Compute Resources

We estimate our total compute time for the random search, HEBO and SMAC3 experiments to be
roughly 11.86 CPU years. Benchmark experiments were run on an internal HPC cluster equipped
with a mix of Intel Xeon E5-2670, Intel Xeon E5-2683 and Intel Xeon Gold 6330 instances. Jobs
were scheduled to use a single CPU core and were allowed to use up to 16GB RAM. Total emissions
are estimated to be an equivalent of roughly 6508.67 kg CO2.

G Additional Benchmark Results Visualizations

G.1 Main Experiments

In this section, we provide additional visualizations of the results of our benchmark experiments.

Figure 6 illustrates the trade-off between the �nal number of model �ts required by different resam-
plings and the �nal average normalized test performance (AUC ROC) after running random search
for a budget of500hyperparameter con�gurations. We can see that the reshuf�ed holdout on average
comes close to the �nal test performance of the overall more expensive 5-fold CV.

Below, we give an overview of the different types of additional analyses and visualizations we provide.
Normalized metrics, i.e., normalized validation or test performance refer to the measure being scaled
to [0; 1] based on the empirical observed minimum and maximum values obtained on the raw results
level (ADTM; see Wistuba et al., 2018). More concretely, for each scenario consisting of a learning
algorithm that is run on a given task (dataset� train_valid size) given a certain performance
metric, the performance values (validation or test) for all resamplings and optimizers are normalized
on the replication level to[0; 1] by subtracting the empirical best value and dividing by the range of
performance values. Therefore a normalized performance value of0 is best and1 is worst. Note that
we additionally provide further aggregated results on the learning algorithm level and raw results of
validation and test performance viahttps://github.com/slds-lmu/paper_2024_reshuffl
ing .

• Random search
– Normalized validation performance in Figure 7.

9We even could have simulated the vanilla holdout from the 5x 5-fold CV experiments by choosing an
arbitrary fold and repeat but choose not to do so, to have some sanity checks regarding our implementation by
being able to compare the "true" holdout with a the simulated holdout.

10Note that we do not have to take the 3 different metrics into account because random search allows us to
simulate runs for different metric post hoc.

11Note that HEBO and SMAC3 were only run for ROC AUC as the performance metric.

29

Figure 6: Trade-off between the �nal number of model �ts required by different resamplings and
the �nal average normalized test performance (AUC ROC) after running random search for a budget
of 500 hyperparameter con�gurations. Averaged over different tasks, learning algorithms and
replications separately for increasingn (train-validation sizes, columns). Shaded areas represent
standard errors.

– Normalized test performance in Figure 8.
– Improvement in test performance over 5-fold CV in Figure 9.
– Rank w.r.t. test performance in Figure 10.

• HEBO and SMAC3 vs. random search holdout

– Normalized validation performance in Figure 11.
– Normalized test performance in Figure 12.
– Improvement in test performance over standard holdout in Figure 13.
– Rank w.r.t. test performance in Figure 14.

• HEBO and SMAC3 vs. random search 5-fold holdout

– Normalized validation performance in Figure 15.
– Normalized test performance in Figure 16.
– Improvement in test performance over standard 5-fold holdout in Figure 17.
– Rank w.r.t. test performance in Figure 18.

• HEBO and SMAC3 vs. random search 5-fold CV

– Normalized validation performance in Figure 19.
– Normalized test performance in Figure 20.
– Improvement in test performance over 5-fold CV in Figure 21.
– Rank w.r.t. test performance in Figure 22.

• HEBO and SMAC3 vs. random search 5x 5-fold CV

– Normalized validation performance in Figure 23.
– Normalized test performance in Figure 24.
– Improvement in test performance over 5x 5-fold CV in Figure 25.
– Rank w.r.t. test performance in Figure 26.

30

Figure 7: Random search. Average normalized performance over tasks, learners and replications for
differentn (train-validation sizes, columns). Shaded areas represent standard errors.

Figure 8: Random search. Average normalized test performance over tasks, learners and replications
for differentn (train-validation sizes, columns). Shaded areas represent standard errors.

31

Figure 9: Random search. Average improvement (compared to standard 5-fold CV) with respect to
test performance of the incumbent over tasks, learners and replications for differentn (train-validation
sizes, columns). Shaded areas represent standard errors.

Figure 10: Random search. Average ranks (lower is better) with respect to test performance over tasks,
learners and replications for differentn (train-validation sizes, columns). Shaded areas represent
standard errors.

32

Figure 11: HEBO and SMAC3 vs. random search for holdout. Average normalized validation
performance (ROC AUC) over tasks, learners and replications for differentn (train-validation sizes,
columns). Shaded areas represent standard errors.

Figure 12: HEBO and SMAC3 vs. random search for holdout. Average normalized test performance
(ROC AUC) over tasks, learners and replications for differentn (train-validation sizes, columns).
Shaded areas represent standard errors.

Figure 13: HEBO and SMAC3 vs. random search for holdout. Average improvement (compared to
standard holdout) with respect to test performance (ROC AUC) of the incumbent over tasks, learners
and replications for differentn (train-validation sizes, columns). Shaded areas represent standard
errors.

33

Figure 14: HEBO and SMAC3 vs. random search for holdout. Average ranks (lower is better) with
respect to test performance (ROC AUC) of the incumbent over tasks, learners and replications for
differentn (train-validation sizes, columns). Shaded areas represent standard errors.

Figure 15: HEBO and SMAC3 vs. random search for 5-fold holdout. Average normalized validation
performance (ROC AUC) over tasks, learners and replications for differentn (train-validation sizes,
columns). Shaded areas represent standard errors.

Figure 16: HEBO and SMAC3 vs. random search for 5-fold holdout. Average normalized test
performance (ROC AUC) over tasks, learners and replications for differentn (train-validation sizes,
columns). Shaded areas represent standard errors.

34

Figure 17: HEBO and SMAC3 vs. random search for 5-fold holdout. Average improvement
(compared to standard 5-fold holdout) with respect to test performance (ROC AUC) of the incumbent
over tasks, learners and replications for differentn (train-validation sizes, columns). Shaded areas
represent standard errors.

Figure 18: HEBO and SMAC3 vs. random search for 5-fold holdout. Average ranks (lower is better)
with respect to test performance (ROC AUC) of the incumbent tasks, learners and replications for
differentn (train-validation sizes, columns). Shaded areas represent standard errors.

Figure 19: HEBO and SMAC3 vs. random search for 5-fold CV. Average normalized validation
performance (ROC AUC) over tasks, learners and replications for differentn (train-validation sizes,
columns). Shaded areas represent standard errors.

35

Figure 20: HEBO and SMAC3 vs. random search for 5-fold CV. Average normalized test performance
(ROC AUC) over tasks, learners and replications for differentn (train-validation sizes, columns).
Shaded areas represent standard errors.

Figure 21: HEBO and SMAC3 vs. random search for 5-fold CV. Average improvement (compared
to standard 5-fold CV) with respect to test performance (ROC AUC) of the incumbent over tasks,
learners and replications for differentn (train-validation sizes, columns). Shaded areas represent
standard errors.

Figure 22: HEBO and SMAC3 vs. random search for 5-fold CV. Average ranks (lower is better) with
respect to test performance (ROC AUC) of the incumbent over tasks, learners and replications for
differentn (train-validation sizes, columns). Shaded areas represent standard errors.

36

Figure 23: HEBO and SMAC3 vs. random search for 5x 5-fold CV. Average normalized validation
performance (ROC AUC) over tasks, learners and replications for differentn (train-validation sizes,
columns). Shaded areas represent standard errors.

Figure 24: HEBO and SMAC3 vs. random search for 5x 5-fold CV. Average normalized test
performance (ROC AUC) over tasks, learners and replications for differentn (train-validation sizes,
columns). Shaded areas represent standard errors.

Figure 25: HEBO and SMAC3 vs. random search for 5x 5-fold CV. Average improvement (compared
to standard 5x 5-fold CV) with respect to test performance (ROC AUC) of the incumbent over tasks,
learners and replications for differentn (train-validation sizes, columns). Shaded areas represent
standard errors.

37

Figure 26: HEBO and SMAC3 vs. random search for 5x 5-fold CV. Average ranks (lower is better)
with respect to test performance (ROC AUC) of the incumbent over tasks, learners and replications
for differentn (train-validation sizes, columns). Shaded areas represent standard errors.

38

G.2 Ablation on M-fold holdout

Based on the 5x 5-fold CV results we further simulated differentM -fold holdout resamplings
(standard and reshuf�ed) by taking M repeats from the �rst fold of the 5x 5-fold CV. This allows us
to get an understanding of the effect more folds have onM -fold holdout, especially in the context of
reshuf�ing.

Regarding normalized validation performance we observe that more folds generally result in a less
optimistically biased validation performance (see Figure 27). Looking at normalized test performance
(Figure 28) we observe the general trend that more folds result in better test performance – which is
expected. Reshuf�ing generally results in better test performance compared to the standard resampling
(with the exception of logloss where especially in the case of a single holdout, reshuf�ing can hurt
generalization performance). This effect is smaller, the more folds are used, which is in line with our
theoretical results presented in Table 1. Looking at improvement compared to standard 5-fold holdout
with respect to test performance and ranks with respect to test performance, we observe that often
reshuf�ed 2-fold holdout results that are highly competitive with standard 3, 4 or 5-fold holdout.

Figure 27: Random search. Average normalized validation performance over tasks, learners and
replications for differentn (train-validation sizes, columns). Shaded areas represent standard errors.

39

	Introduction
	Theoretical Analysis
	Problem Statement and Setup
	How Reshuffling Affects the Loss Surface
	How Reshuffling Affects HPO Performance

	Simulation Study
	Design
	Results

	Benchmark Experiments
	Experimental Setup
	Experimental Results

	Discussion
	Notation
	Extended Related Work
	Current Treatment of Resamplings in HPO Libraries and Software

	Proofs of the Main Results
	Proof of Theorem 2.1
	Proof of Theorem 2.2

	Additional Results on the Density of Random HPC Grids
	Selected Validation Schemes
	Definition of Index Sets
	Derivation of Reshuffling Parameters in Limiting Distribution

	Details Regarding Benchmark Experiments
	Datasets
	Learning Algorithms
	Exact Implementation
	Compute Resources

	Additional Benchmark Results Visualizations
	Main Experiments
	Ablation on M-fold holdout

