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Abstract

Modeling and producing lifelike clothed human images has attracted researchers’
attention from different areas for decades, with the complexity from highly articu-
lated and structured content. Rendering algorithms decompose and simulate the
imaging process of a camera, while are limited by the accuracy of modeled variables
and the efficiency of computation. Generative models can produce impressively
vivid human images, however still lacking in controllability and editability. This
paper studies photorealism enhancement of rendered images, leveraging generative
power from diffusion models on the controlled basis of rendering. We introduce
a novel framework to translate rendered images into their realistic counterparts,
which consists of two stages: Domain Knowledge Injection (DKI) and Realis-
tic Image Generation (RIG). In DKI, we adopt positive (real) domain finetuning
and negative (rendered) domain embedding to inject knowledge into a pretrained
Text-to-image (T2I) diffusion model. In RIG, we generate the realistic image corre-
sponding to the input rendered image, with a Texture-preserving Attention Control
(TAC) to preserve fine-grained clothing textures, exploiting the decoupled features
encoded in the UNet structure. Additionally, we introduce SynFashion dataset,
featuring high-quality digital clothing images with diverse textures. Extensive
experimental results demonstrate the superiority and effectiveness of our method
in rendered-to-real image translation.

1 Introduction

Modeling and simulating digital humans and clothing has achieved significant progress [1, 2, 3, 4, 5],
while leveraging these 3D assets for fashion e-commerce still remains a challenging problem. Due
to the imperfection of 3D models and the approximation in rendering algorithms, rendered images
cannot yet replace fashion photos taken by a camera, with deficiency in the realism of rendered human
faces and skin, clothing shape and fabric, etc. This paper studies transferring rendered fashion images
into their realistic counterparts, which is inherently an Image-to-Image (I2I) translation problem.

Existing works on improving the realism of rendered images mainly resort to retrieving and blending
real image patches [6], or train a GAN-based network [7, 8, 9] due to lack of paired training data.
Another line of works can tackle this problem as general I2I translation [10, 11, 12, 13]. However,
these methods may still suffer from several limitations: Firstly, their image generation pipelines have
limited power to utilize real image resources for highly-detailed enhancement and may suffer from
instability and mode collapse from adversarial training. Moreover, they either focus on indoor/outdoor
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scene enhancement while keeping coarse object-level semantic layout, or try to maintain face identity
in training through loss constraints on sketches, and thus have difficulty in preserving fine-grained
texture in clothing images.

In this paper, we propose a novel framework based on diffusion models for rendered-to-real fashion
image translation to address above limitations. Our main idea consists of two aspects: Firstly,
we propose to leverage abundant generative prior from pretrained Text-to-Image (T2I) diffusion
models [14], and apply simple adaptation to realistic image generation under the guidance of distilled
rendered prior. Secondly, we adopt a texture-preserving mechanism by extracting spatial image
structure through attention from an inversion pipeline.

To achieve this, we design a diffusion-based method consisting of two stages: Domain Knowledge
Injection (DKI) and Realistic Image Generation (RIG). During DKI, we first finetune a pretrained
T2I diffusion model [14] on real fashion photos with derived captions from BLIP [15], to adapt its
capability in generating high-quality images to our target domain. After this adaptation, we propose
to guide the image generation towards the negative direction of rendered effect. Inspired by Textual
Inversion [16], we distill a general rendered "concept" with thousands of rendered fashion images
by training a negative domain embedding vector based on the adapted base model. During RIG, we
employ a DDIM inversion [17] pipeline to first invert a rendered image into the latent noise map, and
then generate its corresponding real image using the previous embedding as a negative guidance [18].
Similar to recent training-free controls in T2I generation method [19, 20, 21, 22], we discover that
the attention map in the shallow layers of the UNet contains rich spatial image structure and can be
used for fine-grained texture-preserving during the generation. Specifically, we inject query and key
of the self-attention from the rendered image inversion and generation pipeline to the rendered-to-real
image generation pipeline. This largely improves the consistency of intricate clothing texture details.

We evaluate our method on a public rendered Face Synthetics dataset [1] and our collected SynFashion
Dataset with fine-grained digital clothing and abundant texture variations. Empirical results comparing
to previous works and experimental analysis demonstrate the efficacy of our method. Our main
contributions are three-folds:
(1) We propose a novel framework to address rendered-to-real fashion image translation by utilizing
generative prior from pretrained diffusion models.
(2) We inject rendered-to-real domain knowledge into a pretrained T2I diffusion model through
positive domain finetuning and negative domain embedding, and design a texture-preserving attention
control to preserve fine-grained clothing textures during the translation.
(3) We collect a high-quality rendered fashion image dataset using the professional design software
Style3D Studio, and plan to release the data with our paper to promote research in this important area.

2 Related Works

2.1 Rendered-to-real Image Translation

Improving the realism of rendered images has been a long-standing problem due to the inherent
limitations of rendering pipelines and the rich potential for commercial applications. CG2Real [6]
proposes to retrieve similar images from a large collection of real photos and then applies local style
transfer to upgrade color, tone and texture of the CG image. Deep CG2Real [7] adopts a two-stage
deep learning framework to first transfer OpenGL images to PBR (Physically-Based Rendering)
images, and then translates PBR to real images, disentangling lighting and texture in a CycleGAN-
like [23] framework. [8] enhances photorealism under the guidance of a set of input G-buffers and
learns the network with a perceptual discriminator. [9] proposes to learn a rendered image generator
for human faces, which can encode the same face identity but different "style" from a real face image
generator, based on StyleGAN [24, 25]. These methods all utilize limited data for generative training,
while we propose to adapt diffusion models pretrained on large datasets for better image generation
quality. Besides, applying these methods to fashion images often leads to the failure to preserve
fine-grained clothing textures.

2.2 Image-to-image Translation

Transferring a rendered fashion image into its realistic counterpart is inherently an image-to-image
(I2I) translation problem, which has attracted wide interest in different realms of research [26, 27, 28,
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Figure 1: The overall pipeline of our proposed method.

29, 30, 31]. Pix2Pix [32] utilizes a conditional-GAN [33, 34] and applies pixel-wise regularization
based on paired training data, which is unavailable in many problem settings. Cycle-GAN [23]
proposes to utilize cycle consistency [35, 36, 37, 38] and optimizes a two-sided mapping between
input source domain and output target domain. CUT [10] addresses the computational redundancy
and over-restriction in this framework by simplifying it to one-sided [39, 40, 11] and introduces
a patch-wise contrastive loss [41, 42, 43] for re�ned local constraints. UNSB [12] proposes an
iterative re�nement method based on Schrödinger bridge to overcome potential mode collapse in
GAN generation, while still has dif�culty in faithfully translating high-resolution images. Different
from general I2I tasks and domain adaptation, our method focuses on photorealism enhancement
and can utilize more target-domain real photos for high-quality generation training, and thus can
deal with imbalanced source-target training set. Style transfer [44, 45, 46] is a speci�c type of I2I
task and can manage to transfer input source image to an arbitrary style [13, 47, 48, 49, 50] given
one/few-shot target domain images as reference. These methods mainly focus on transferring style
attributes like semantics, brushstrokes, colors, or material, while rendered-to-real requires preserving
and enhancing complicated �ne-grained details. Human/portrait relighting [51, 52] modi�es the
nuanced lighting condition in the input image, while does not focus on enhancing realism and should
leave geometry and materials untouched. Super-resolution methods [53, 54, 55, 56, 57, 58] address
detail enhancement, while their success largely relies on synthesizing pseudo low-resolution images
to obtain training pairs [59, 60], which is non-trivial for rendered-to-real problem.

2.3 Diffusion-based Image Synthesis

Recent progress in Text-to-Image (T2I) generation [14, 61, 62] based on diffusion models [63,
64, 65] opens up new opportunity for advancing rendered-to-real image translation. Many works
have explored the possibility of utilizing abundant generative prior in pretrained diffusion models.
Some [66, 16] apply the adaptation of generation for a new concept with a few images, through
either �netuning the base model [66], or optimizing a text embedding [16]. Others [67, 68] leverage
text as guidance to edit a given image. However, rendered-to-real translation lies in the nuance
of changes, which is too subtle to de�ne as a "concept" or to capture with a few images. [69, 70]
leverage diffusion models for texture estimation or PBR synthesis, while mainly focusing on the
generation of certain variables for the rendering pipeline, rather than subtle modi�cation of preset
variables in a given input image. Additionally, [19, 20, 21, 22] discover that the attention in the SD
UNet captures rich image features and can apply to content preservation and modi�cation. In our
work, we utilize self-attention in shallow layers from the rendered image inversion, to impose the
consistency of �ne-grained texture in image translation.

3 Method

3.1 Preliminaries

Latent Diffusion Models. In diffusion framework, the forward diffusion process begins by generating
noisy imagesx t from clean imagesx0 sampled from a speci�ed data distribution, accompanied by
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their respective noise labels� . These pairs are used to train a score estimator [71] � � usually based
on the UNet architecture. The score estimator can serve as an effective approximation of the score
functionr logp(x) which directs the inverse denoising process to generate new data samples.

With distinguished capabilities in synthesizing images, the Latent Diffusion Model (LDM) [14] is
selected as the backbone of our method. The LDM employs a pre-trained AutoEncoder to transform
the diffusion process from pixel space to latent space and integrates a conditional branch, facilitating
faster training and more �exible embedding of conditions. Speci�cally, the pre-trained Encoder
E(�)�rst encodes images into latent spacez = E(x). Following this, the score estimator network� �
is trained by taking the latentz, stept and conditionsc as input to predict the noise labels:

min
�

Ez= E(x ) ;� �N (0 ;I ) ;t � U(1 ;T ) k� � � � (zt ; t; c)k2
2 (1)

For text to image generation task, conditionc is usually the text embedding generated from text
prompty through a tokenizer and a pretrained CLIP [72] modelc = � (y). The intermediate noisy
latentzt is generated through the formula [64]:

zt =
p

�� (t)z0 +
p

1 � �� (t)�; � � N (0; I ) (2)
�� is the cumulative product of the noise coef�cients at each step. During the sampling process, the
trained score estimator takes random Gaussian noise as input, along with text embedding as condition.
It progressively predicts the noise added at each step, completing the denoising process to obtainẑ0.
The �nal image is obtained by the pretrained decoderx̂0 = D(ẑ0).

Textual Inversion. Textual inversion [16] introduces a new paradigm to T2I generation models,
allowing the model to learn a new concept by setting a placeholder token "[C]" and obtaining the
corresponding text embeddinĝv as a learnable vector. This vector is then trained and optimized using
a few images represent this new concept:

v̂ = arg min
v

Ez= E(x ) ;� �N (0 ;I ) ;t � U (1 ;T ) k� � � � (zt ; t; v)k2
2 (3)

During training, the network parameters are all �xed, only the embedding is optimized.

DDIM Sampling and Inversion. Inversion is an effective method for �nding the corresponding
noise map of an image and achieving training-free control during the generation process. DDIM
inversion is widely used due to its clear principles and easy implementation. The DDIM sampling
process is [17]:

zt � 1 =
p

�� t � 1
zt �

p
1 � �� t � � (zt ; t; c)

p
�� t

+
p

1 � �� t � 1� � (zt ; t; c) (4)

By simply assumingzt � 1 � zt and rewriting the sampling process in reverse direction, the following
DDIM Inversion [17] formula is given:

zt =
p

�� t
zt � 1 �

p
1 � �� t � 1� � (zt � 1; t; c)

p
�� t � 1

+
p

1 � �� t � � (zt � 1; t; c) (5)

Unlike direct noise addition, the DDIM Inversion allows for the original information of the image to
be well preserved, enhancing the stability in the subsequent generation process.

3.2 Overall Pipeline

Given a computer-rendered fashion imagexcg, the goal of our method is to transform it into a
corresponding realistic imagex r while preserving the garment's detailed textures. De�ning realism
and helping model understand what is "realistic" remains an open question. The challenge can be
divided into two sub-tasks: one is making the fashion image appear realistic by enhancing aspects
like wrinkles, lighting and color, which re�ect true-to-life expressions. Another one is to maintain
the texture details of the garment to achieve �ne-grained, controllable generation.

As shown in Fig. 1, our method comprises two stages: Domain Knowledge Injection (DKI) and
Realistic Image Generation (RIG). During the DKI phase, we infuse the model with information from
both the rendered and realistic domains through �ne-tuning and domain inversion. In the subsequent
generation phase, we utilize negative domain embeddingvnd to stimulate the model's potential for
generating realistic images and employ self-attention control to preserve texture details. For a better
understanding, details will be further elaborated in Section 3.3 and Section 3.4.

4



3.3 Domain Knowledge Injection

Target Domain Knowledge InjectionTo enhance the ability of the base SD model� � to generate
realistic images, especially concerning the appearance of garments and models, we use real studio-
shot imagesx tr to �ne-tune the base model. This process injects real domain information into the
model, thereby increasing its potential to generate authentic visual details, the �ne-tuning process
can be formulated as:

� �
� = arg min

� �

Ez= E(x tr ) ;� �N (0 ;I ) ;t � U (1 ;T ) k� � � � (zt ; t; v tr )k2
2 (6)

where� � is the pretrained SD model,vtr is the embedding of the text description of thex tr .

Source Domain Knowledge InjectionFor the source domain rendered data, we hope that the
model can understand its characteristics and deviated from the rendered data manifold as much as
possible during the generation process. After the �rst step �ne-tuning, we assume that the model
has already enhanced its representation of the real domain manifold. If we can make the model
deviate from the rendered data manifold, it can better express the characteristics of realistic images.

Figure 2: The diagram of Texture-preserving Attention Con-
trol (TAC).

Inspired by the concepts of Textual In-
version and Classi�er-Free Guidance
(CFG) with negative prompts, we ex-
pand the concept of Textual Inversion
to Domain Inversion. We train a neg-
ative domain embedding on a �ne-
tuned base model using a large num-
ber of rendered images. This negative
domain embedding guides the model
to avoid certain content, here is the
rendered domain characteristics, dur-
ing the generation process.

Speci�cally, given that textual descrip-
tions of what is real and rendered
are limited, it is dif�cult to guide the
model to generate images with satisfactory realism or to precisely direct it not to produce images
with a rendered feel using text prompts only. Therefore, we consider using negative domain embed-
dingvnd trained on a large number of rendered images for guidance to inject the rendered domain
knowledge to the model. It's worth nothing that unlike textual inversion, which typically optimizes a
small embedding space with few images to represent a speci�c concept, such as a particular object in
personalized generation or an easily expressible style. The concept of rendered domain in our task is
much more general. Using a small embedding space corresponding to few images to represent this
would easily lead to over-�tting to the content of the training images. We use the largest available
embedding size to train the negative domain embedding, which is corresponding to the placeholder
token size of 75:

v̂nd = arg min
v

Ez= E(x cg ) ;� �N (0 ;I ) ;t � U (1 ;T ) k� � � �
� (zt ; t; v)k2

2 (7)

During the training of negative domain embedding, we freeze the parameters in the �ne-tuned model
� �

� , and �nd thevnd through direct optimization with a certain number of rendered images.

3.4 Realistic Image Generation

Negative Embedding GuidanceAfter domain knowledge injection, we can use the negative domain
embedding to guide the model in generating realistic images. During each denoising step, the negative
domain embedding guidance is de�ned by:

~� �
� (zt ; t; vnd ) = w � � �

� (zt ; t; v? ) + (1 � w) � � �
� (zt ; t; vnd ) (8)

wherev? denotes the embedding of Null text. With a guidance scalew larger than 1, the negative
domain embedding becomes effective. Unlike traditional CFG guidance, here we do not use any
positive prompts processed through CLIP to obtain the embedding as conditions. Instead, we directly
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Figure 3: Results on our proposed SynFashion Dataset. (Please zoom in for details.)

employ a Null text embedding. The initial noise latent is obtained through DDIM inversion of the
given rendered image. During the denoising process, we replace the CLIP conditioning branch, since
the negative domain embedding is trained on a �ne-tuned model, it can interact more effectively with
the base model's latent space. This consistency allows for more precise adjustments in the latent
manifold compared to embedding derived from text via CLIP.

Texture-preserving Attention Control (TAC) Inspired by previous work [19, 22], the attention
features in the diffusion UNet, which includes both cross attention and self attention, hold rich
information critical for generating the new images. Cross attention typically handles the attributes
and semantics of the generated image, while self-attention maps play a crucial role in preserving
geometric shapes and intricate details. The initial noise latentẐ t derived from the DDIM inversion of
the original rendered image can be used in unconditional generation and extract the texture related
attention features as shown in Fig. 2. However, directly replacing all self-attention maps can lead
to a decrease in the realism of the generated images. We argue that this is because the attention
map contains both the texture details of the garment and the general rendered domain characteristics.
Therefore, we propose to control the self attention feature only in the shallow layers of the denoising
UNet to decouple the texture details feature from the general rendered domain features. During
the implementation, we also �nd that in the deep feature spaces with higher downsampling rates, it
becomes challenging to identify features related to the texture details. Thus, our TAC is de�ned as:

cQt ; cK t = TAC
�
Qt

cg; K t
cg; Qt

r ; K t
r ; t

�
=

�
Qt

cg ; K t
cg if t < 
T; f > F

Qt
r ; K t

r otherwise
(9)

where
 is the parameter that indicates how many steps before the TAC should be applied andf is
the feature size of different layers, only those layers exceeding the speci�ed sizeF undergo TAC,
particularly in the shallow layers. Speci�cally, the cg-domain self-attention features are derived from
the reverse sampling process starting from the noisy latent, which is obtained by performing DDIM
inversion on the input image latent. In contrast, the r-domain self-attention features differ due to the
incorporation of negative domain guidance and the self-attention injection.
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