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Figure 1: MVGamba is a unified 3D generation framework build on Gaussian Splatting, which can
generate high-quality 3D contents in a feed-forward manner in sub-seconds.

Abstract

Recent 3D large reconstruction models (LRMs) can generate high-quality 3D
content in sub-seconds by integrating multi-view diffusion models with scalable
multi-view reconstructors. Current works further leverage 3D Gaussian Splatting
as 3D representation for improved visual quality and rendering efficiency. How-
ever, we observe that existing Gaussian reconstruction models often suffer from
multi-view inconsistency and blurred textures. We attribute this to the compromise
of multi-view information propagation in favor of adopting powerful yet compu-
tationally intensive architectures (e.g., Transformers). To address this issue, we
introduce MVGamba, a general and lightweight Gaussian reconstruction model
featuring a multi-view Gaussian reconstructor based on the RNN-like State Space
Model (SSM). Our Gaussian reconstructor propagates causal context containing
multi-view information for cross-view self-refinement while generating a long
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sequence of Gaussians for �ne-detail modeling with linear complexity. With off-
the-shelf multi-view diffusion models integrated, MVGamba uni�es 3D generation
tasks from a single image, sparse images, or text prompts. Extensive experiments
demonstrate that MVGamba outperforms state-of-the-art baselines in all 3D content
generation scenarios with approximately only0:1� of the model size. The codes
are available athttps://github.com/SkyworkAI/MVGamba .

1 Introduction

We address the challenge of crafting 3D content from a single image, sparse-view images, or text
input, which can facilitate a broad range of applications,e.g., Virtual Reality, immersive �lming,
digital gaming and animation. Previous research on 3D generation has investigated distilling 2D
diffusion priors into 3D representations via score distillation sampling (SDS) [1]. Although these
optimization-based approaches exhibit strong zero-shot generation capability with high-�delity
rendering quality [2–5], they are extremely time- and memory-intensive, often requiring hours to
produce a single 3D asset, thus not practical for a real-world scenario.

With the advent of large-scale open-world 3D datasets [6–8], recent 3D large reconstruction models
(LRMs) [9–12] integrate multi-view diffusion models [13–15] with scalable multi-view 3D recon-
structor to regress a certain 3D representation (e.g. Triplane-NeRF [16, 17], mesh) in a feed-forward
manner. Speci�cally, current LRMs [18–20] adopt aone image (or text)! mulit-view images! 3D
diagram to predict 3D Gaussian Splatting (3DGS) [21] parameters, thereby ensuring the rendering
ef�ciency while preserving �ne details. Given a single image or text prompt, they �rst generate a set
of images using multi-view diffusion models, which are then fed into a multi-view reconstructor (e.g.,
U-Net [22] or Transformer [23]), mapping image tokens to 3D Gaussians with superior generation
speed and unprecedented quality.

However, we observe that existing feed-forward Gaussian reconstruction models typically adopt
powerful yet computationally intensive architectures [23, 24] to generate long sequences of Gaussians
for intricate 3D modeling. Such approaches inevitably compromise the integrity of multi-view infor-
mation propagation to manage computational costs. For instance, they use local [18] or mixed [19]
attention on limited multi-view image tokens or even deal each view separately and simply merge
the predicted Gaussians afterwards [20]. Consequently, the generated 3D models often suffer from
multi-view inconsistency and blurred textures, as illustrated in Figure 2(a). These issues indicate
that current compromise strategies fail to translate into coherent, high-quality outputs in practice.
This raises a crucial question:How can we preserve the integrity of multi-view information while
ef�ciently generating a suf�ciently long sequence of Gaussians?

To address this issue, in this paper, we introduceMulti-View GaussianMamba (MVGamba), a
general and lightweight Gaussian reconstruction model. At its core, MVGamba features a multi-view
Gaussian reconstructor based on the recently introduced RNN-like architecture Mamba [25], which
expands the given multi-view images into a long sequence of 3D Gaussian tokens and processes them
recurrently in a causal manner. By adopting causal context propagation, our approach ef�ciently
maintains multi-view information integrity and further enables cross-view self-re�nement from earlier
to current views. Additionally, our Gaussian reconstructor enables the �ne-detailed generation of
long Gaussian sequences with linear complexity [26, 27] in a single forward process, eliminating the
need for any post hoc operations used in previous work.

More concretely, we �rst patchify the multi-view images intoN tokens and rearrange them according
to a cross-scan order [27, 28], resulting in4� N image tokens for selective scanning. These tokens are
then processed through a series of Mamba blocks for state space sequence modeling. Subsequently,
we feed the output Gaussian sequence into a lightweight Multi-Layer Perceptron (MLP) for channel-
wise knowledge selection, followed by a set of linear decoders to obtain the Gaussian parameters
representing high-quality 3D content (Sec. 3.2). Compared to previous LRMs [11, 29, 30], our
MVGamba features many computationally ef�cient components: a single-layer 2D convolution image
tokenizer replaces the pre-trained DINO [31] transformer encoder, a lightweight MLP combined with
linear decoders replaces the deep MLP decoder, and most importantly, linear complexity Mamba
blocks replace quadratic complexity Transformer blocks (Figure 2(b)). Together, these designs ensure
ef�cient training and inference while achieving higher generation quality (Sec. 4). Moreover, to
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Figure 2:(a) Previous Gaussian reconstruction models sacri�ce the integrity of multi-view informa-
tion for computationally intensive architectures, resulting in multi-view inconsistency and blurred
textures.(b) Comparison of FLOPs between self-attention in Transformers and SSM in Mamba.
Detailed FLOPs data are provided in Table 3.

directly convert the generated Gaussians into smooth textured polygonal meshes, we alternatively
incorporate a 3DGS variant — 2DGS [32] — for accurate geometric modeling and mesh extraction.

We conducted comprehensive qualitative and quantitative experiments to verify the ef�cacy of our
proposed MVGamba. The experimental results demonstrate that MVGamba (49M parameters)
outperforms other latest LRMs [19, 29, 33] and even optimization-based methods [34, 35] on the task
of text-to-3D generation, single-view reconstruction and sparse-view reconstruction with roughly
only 0:1� of the model size. The contributions and novelties of our paper are summarized as follows:

• We point out that directly generating a suf�ciently long sequence of Gaussians with full multi-view
information is crucial for consistent and �ne-detailed 3D generation.

• We introduce MVGamba, a novel feed-forward pipeline that incorporates causal context propagation
for cross-view self-re�nement, allowing the ef�cient generation of long sequences of 2D/3D
Gaussians for high-quality 3D content modeling.

• Extensive experiments demonstrate that MVGamba is a potentiallygeneralsolution for 3D content
generation, including text-to-3D, image-to-3D and sparse-view reconstruction task.

2 Related Work

3D Generation.Previous approaches for generating high-�delity 3D models predominantly used
SDS-based optimization techniques [1, 36] and their variants [2–5, 34, 37]. These methods yield
high-quality 3D generations but require hours for the per-instance optimization process to converge.
Pioneered by the large reconstruction model (LRM) [29], recent works [10, 11, 30, 38] show that
image tokens can be directly mapped to 3D representations, typically triplane-NeRF, in a feed-
forward manner via a scalable transformer-based architecture [23] with large-scale 3D training
data [6–8]. Among them, Instant3D [11] integrates LRM with multi-view image diffusion models [13–
15, 39, 40], using four generated images for better quality. To avoid inef�cient volume rendering
and limited triplane resolution, some concurrent works [18–20] follow Instant3D and introduce 3D
Gaussian Splatting [21] into sparse-view LRM variants. Speci�cally, GRM [18] and GS-LRM [20]
use pixel-aligned Gaussian with a pure transformer-based reconstruction model, increasing the
number of Gaussians through image feature upsampling and per-pixel merge operations. LGM [19]
combines the 3D Gaussians from different views using a convolution-based asymmetric U-Net [22].
Our MVGamba, on the other hand, directly processes multi-view conditions causally, recurrently
generating a long sequence of Gaussians for coherent and high-�delity 3D modeling.

Mamba model for visual applications.Recent advancements in State Space Models (SSMs) [17,
41, 42], notably Mamba [25], have gained prominence in long sequence modeling for harmoniz-
ing computational ef�ciency and model versatility [43–46]. Following Mamba's progress, there
has been a surge in applying this framework to critical vision domains, including generic vision
backbones [26, 27, 47, 48], multi-modal streams [49, 50], and vertical applications, especially in
medical image processing [51–56]. Speci�cally, VMamba [27] pioneers a purely Mamba-based
backbone to handle intensive prediction tasks. Similarly, Vim [26] leverages bidirectional SSMs
for data-dependent global visual context without image-speci�c biases. Subsequent works progress
with advanced selective scanning algorithms [47, 48], integration with other networks [57, 58], and
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Figure 3:(a) Multi-view Gaussian reconstructor (Sec. 3.2):Multi-view inputs with ray embedding
are used for causal sequence modeling, predicting Gaussians rendered at novel views and supervised
with ground truth images.(b) Uni�ed inference pipeline (Sec. 3.4):MVGamba combines multi-view
diffusion models and Gaussian reconstructor to generate high-quality 3D content in sub-seconds.

adapted structural designs [59, 59, 60]. Concurrently, Gamba [61] marries Mamba with 3DGS for
single-view reconstruction with limited texture quality and generalization capacity. In this paper, we
explore and demonstrate the ef�ciency and long-sequence modeling capacity of Mamba in various
3D generation tasks with large-scale pre-training.

3 Method

In this section, we present our MVGamba, designed to ef�ciently generate 3D content through a
two-stage pipeline. In the �rst stage, we utilize off-the-shelf multi-view diffusion models, including
MVDream [14] and ImageDream [13], to generate multi-view images based on an input text prompt
or a single image. In the second stage, equipped with this multi-view image generator, we introduce
an SSM-based multi-view reconstructor to generate Gaussians from multi-view images. Speci�cally,
we �rst provide a brief overview of 3D Gaussian splatting and its variants (Sec. 3.1). Next, we
describe the core architecture of our multi-view Gaussian reconstructor (Sec. 3.2), followed by
detailed elaboration of our robust training objectives (Sec. 3.3). With above large-scale pre-training,
we are able to chain these two stages to produce high-�delity 3D content in seconds (Sec. 3.4).

3.1 Preliminary: Gaussian Splatting

Introduced by [21], vanilla 3D Gaussian Splatting (3DGS) �ts a 3D scene from multi-view images
with a collection of 3D Gaussians. Variants of Gaussian Splatting [62, 63], typically 2DGS, leverage
2D Gaussian primitives instead, excelling in the vanilla version for more accurate geometry recon-
struction. Generally, each Gaussian is composed of its 3D center� 2 R3, 3D scales 2 R3 or 2D
scale* s 2 R2, associated colorc 2 R3, opacity� 2 R, and a rotation quaternionq 2 R4. These
parameters can be collectively denoted byG, with Gi = f � i ; si ; ci ; � i ; qi g denoting the parameter of
thei -th Gaussian. These Gaussians can then be splatted onto the image plane and rendered in real
time via the differentiable tiled rasterizer [21, 62].

3.2 SSM-based Gaussian reconstructor

The core of MVGamba is a feed-forward multi-view Gaussian reconstructor. As depicted in Fig-
ure 3(a), our reconstructor transforms multi-view input images with camera embedding [64] into 3D
contents represented by 3D Gaussians [21] or its variants [62, 63] in a feed-forward manner. This
reconstructor comprises an SSM-based processor to expand and process multi-view image tokens as
Gaussian sequences, and a light-weight Gaussian decoder to predict attributes for each Gaussian.

* 2DGS collapses the 3D volume into a set of 2D oriented planar Gaussian disks to model surfaces intrinsically.
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Expanding multi-view images as sequences.Given a posed multi-view image setf vi ; � i g, we
�rst densely embed the camera pose� i 2 R4� 4 for each viewvi 2 RH � W � 3 using Plücker rays [30],
denoted asPi 2 RH � W � 6. The pixel values and ray embeddings are concatenated into a 9-channel
fused map, which is then tokenized using a non-overlapping convolution with a kernel size ofp � p:

V i = Conv(Concat(vi ; Pi )) ; (1)

whereV i 2 Rh� w � C is the tokenized feature map;h = H=p, w = W=p; C is the embedding
dimension. Note that considering the light-weight architectural design, our image tokenizer is
much simpler than the pre-trained DINO [31] utilized by previous LRMs, which we empirically
�nd to be redundant for low-level 3D reconstruction. With the tokenized multi-view features, we
then adopt a cross-scan order [27] to rearrange them as sequence. Speci�cally, we scan the image
tokens sequentially along four different directions:top-left ! bottom-right , bottom-right
! top-left , top-right ! bottom-left , andbottom-left ! top-right , which allows each
token to integrate information from all adjacent tokens. This cross-scan rearrangement results in a
sequence that is4� longer:

X = Pscan(Concat(f V i g)) ; (2)
whereX 2 R4Nhw � C denotes the expanded Gaussian sequences,N denotes the view number, and
Pscandenotes the cross-scan operation on each view.

Causal sequence modeling with State Space Model.Inspired by [25, 61], we model the Gaussian
sequences via an adapted SSM-based processor. In detail, given the expanded Gaussian sequenceX ,
we �rst add a learnable positional embeddingE element-wise to it and derive the initial Gaussian
sequenceX 0. Then, we feedX 0 into L stacked SSM layers for recurrent causal sequence modeling,
formulated as:

X k = SSMk (X k � 1; Ak ; Bk ; � k ) (3)
whereX k denotes Gaussian sequence output by thek-th layer, andSSMk denotes thek-th SSM layer
with vanilla Mamba [25] structure;Ak , Bk and� k are parameters of SSM layer dependent on the
input sequenceX k � 1. Note that we are modeling Gaussian sequences rather than integrating spatial
information as in existing vision Mamba models [26, 27, 47]. Therefore, we adopt 1D convolution
instead of 2D convolution in the Mamba blocks, similar to other sequential modeling SSMs [25, 58,
65]. Through state space sequence modeling, we successfully propagate the causal context containing
the multi-view information from earlier states to later states with linear complexity. This approach
ef�ciently incorporates multi-view information causally from the initial condition onward, thereby
making full use of all Gaussian tokens through cross-view self-re�nement. As discussed in Sec. 5, this
causal sequential generation of Gaussian tokens provides the model with unprecedented robustness
and self-correction abilities, even under inconsistent or noisy input conditions.

Decoding causal token sequences into Gaussians.Each token in the processed causal sequence
X L is treated as a separate 3D Gaussian token. We �rst apply a single hidden layer MLP toX L ,
where the width of the hidden layer is4C and the output channels revert toC. This process is denoted
asZ = MLP (X L ), which aims for channel-wise knowledge selection [24, 66, 67]. We then apply
sub-heads to derive each attribute of 3DGS with separate linear projections. Speci�cally, we predict
the position [61] by discretizing the coordinates where position� i is clamped to[� 1; 1]3. The scale
si is predicted with a learnable linear projection followed by asoftplus activation. The opacity� i is
predicted with a linear projection followed bysigmoid activation. Regarding the color attributeci ,
we predict the RGB values instead of the spherical harmonics adopted by the original 3DGS[21], as
our reconstructor is mainly trained on synthetic 3D datasets free of light variation.

However, unlike other Gaussian attributes, the rotation quaternions are quite sensitive and dif�cult to
predict directly, and hence are often set canonical isotropic and �xed in several recent works [61, 68].
On the other hand, some works [19, 33] predict the rotation without any constraints, but this often
causes artifacts and corrupted generations in practice. To address this issue, we design a novel rotation
decoder, dubbed RotNet, which balances prediction �exibility and restriction. Our RotNet consists of
a set of32pre-de�ned rotation quaternions, denoted asT , which forms a canonical rotation space,
and a learnable linear projection matrix� to predict the logits of these quaternions. The predicted
logits are then transformed into a probability distribution using the Gumbel-Softmax [69], enabling
differentiation through the discrete selection process by adding noise sampled from the Gumbel
distribution to the logitsp 2 R32 before applying the softmax function:

p = softmax(� Z + g); where gk = � log(� log(uk )) ; uk � Uniform(0; 1): (4)
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In this way, we convert the rotation prediction into a32-class classi�cation task in a fully differentiable
way, which allows for direct selection via theargmax operation during inference. We refer to
AppendixD for more detailed explanations. These decoded Gaussians are �nally passed into the
differentiable rasterization pipeline [21] for image-level supervision.

3.3 Stable Training of MVGamba

Bridging the training-inference gap. In the training phase, multi-view images are collected from
the ground-truth blendering of 3D objects, while they are generated by diffusion models during
inference. To mitigate such domain gap: (1) Following LGM [19], we leverage the grid distortion
and orbital camera jitter as two data augmentations with a30%probability to simulate inconsistent
pixels and inaccurate camera poses, respectively. (2) We directly use ImageDream [13] as a synthetic
data engine to generate multi-view images input and conduct a joint training with the ground-truth
renderings from the 3D training dataset. In practice, with a5% chance, we train MVGamba with
synthetic input to mimic the inference pattern for more robust generation results.

Overall training objective. During the training phase, we differentiably render the RGB imagevi
and alpha maskv�

i of theN = 4 input views and another six novel views for image-level supervision.
Our �nal objective then comprises four key terms:

L =
X

v i

1
jjvi jj

L MSE(vi ; vgt
i ) + � maskL MSE(v�

i ; v� gt
i ) + � LPIPSL LPIPS(vi ; vgt

i ) + � regL reg; (5)

whereL MSE andL mask represent the mean square error loss in the RGB image and the alpha mask,
respectively;L LPIPS represents the well-adopted VGG-based perceptual loss [70] ; L reg is the opacity
L1 regularization lossk1 � � i k encourage more ef�cient use of each Gaussian by enforcing higher
density.� mask, L LPIPS and� reg are the trade-off coef�cients that balance each loss.

3.4 Uni�ed 3D Generation Inference

During inference (Figure 3(b)), the pre-trained reconstructor can be smoothly combined with any off-
the-shelf multi-view diffusion models to ef�ciently predict a set of Gaussians, which facilitates both
text-to-3D and image-to-3D generation. Typically, we leverage ImageDream [13] and MVDream [14]
to produce4 multi-view images with anchored poses [11] from a single image or text prompt,
respectively. For mesh extraction, following Huang et al.[62], we utilize truncated signed distance
fusion (TSDF) [71] that fuse the depth maps rendered from the output Gaussians to obtain a smooth
polygonal mesh.

4 Experiment

4.1 Experimental Settings

Training dataset. We obtain the multi-view images from Objaverse [7] for MVGamba pre-training.
Following [19, 72], we �ltered 80k valid high-quality 3D objects. We then used Blender under
uniform lighting to render 25 views of RGBA images with their alpha masks at a resolution of 512�
512, in the elevation range of5� to 30� with rotationf 15� � r jr 2 [0; 23]; r 2 Ng. To align with the
camera con�gurations in ImageDream [13] and MVDream [14], at each training step, we select4
images of a certain object as input views with the same elevations, while rotations separated by90� ,
denoted asf � + 90 � � k j k 2 0; 1; 2; 3g and another random set of6 views as supervision.

Implementation details. MVGamba is trained on 32 NVIDIA A100 (80G) with batch size 512
for about 2 days. We adopt gradient checkpointing and mixed-precision training with BF16 data
type to ensure ef�cient training and inference. We use the AdamW optimizer with learning rate
1 � 10� 3 and weight decay0:05, following a linear learning rate warm-up for15 epochs with cosine
decay to1 � 10� 5. The output Gaussians are rendered at512� 512resolution for mean square error
loss and resized to256� 256for LPIPS loss for memory ef�ciency. The trade-off coef�cients that
balancing each loss were set as� mask = 1 :0, � LPIPS = 0 :6 and� reg = 0 :001. We also follow the
common practice [19] to clip the gradient with a maximum norm of1:0. The detail of MVGamba
model con�guration is included inAppendixD.
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Figure 4: Qualitative comparison in image-to-3D and text-to-3D generation. Please refer toAp-
pendixC for more generation results.

4.2 Comparison against Baselines

In this section, we compare MVGamba with previous state-of-the-art instant 3D generation methods
in image-to-3D, text-to-3D generation, and sparse-view reconstruction tasks. For each task, we �rst
elaborate on the evaluation metrics and baseline methods, then perform an extensive qualitative and
quantitative comparison.

Single image-to-3D generation.We make comparisons to recent methods, including optimization-
based DreamGaussian [34], Wonder3D [73]; feed-forward methods LGM [19], TripoSR [74] and
Triplane-Gaussian [33] and One-2345++ [75]. We adopted the of�cial codebase and pre-trained
model weight for all the above methods and we are quite con�dent that the baselines presented are the
�nest re-implementations we have come across†. We evaluated the generation quality of MVGamba
with a wide range of wild images in Figure 4. We use well-adopted PSNR, SSIM and LPIPS for
quantitative measurement in the GSO [76] dataset following [18], with a total of 16 test views
with equidistant azimuth and� 10 � 10 degree elevations. As illustrated in Figure 4, MVGamba
maintains high �delity and plausible generation in most scenarios. In contrast, Triplane-Gaussian
severely suffers from �at and blurred views, which is a notoriously ill-posed challenge, as stated by
Instant3D [11]. Moreover, LGM frequently showcases multi-view inconsistency with a transparent
surface, which may be attributed to its suboptimal parameter constraints and merge operation. In

†Note that Instant3D [11], GS-LRM [20] and GRM [18] are not included for comparison in the current
version, as no code has been publicly released yet.
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