Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track
Carl Hvarfner, Erik Hellsten, Frank Hutter, Luigi Nardi
Gaussian processes are the model of choice in Bayesian optimization and active learning. Yet, they are highly dependent on cleverly chosen hyperparameters to reach their full potential, and little effort is devoted to finding good hyperparameters in the literature. We demonstrate the impact of selecting good hyperparameters for GPs and present two acquisition functions that explicitly prioritize hyperparameter learning. Statistical distance-based Active Learning (SAL) considers the average disagreement between samples from the posterior, as measured by a statistical distance. SAL outperforms the state-of-the-art in Bayesian active learning on several test functions. We then introduce Self-Correcting Bayesian Optimization (SCoreBO), which extends SAL to perform Bayesian optimization and active learning simultaneously. SCoreBO learns the model hyperparameters at improved rates compared to vanilla BO, while outperforming the latest Bayesian optimization methods on traditional benchmarks. Moreover, we demonstrate the importance of self-correction on atypical Bayesian optimization tasks.