Decompose a Task into Generalizable Subtasks in Multi-Agent Reinforcement Learning

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Zikang Tian, Ruizhi Chen, Xing Hu, Ling Li, Rui Zhang, Fan Wu, Shaohui Peng, Jiaming Guo, Zidong Du, Qi Guo, Yunji Chen


In recent years, Multi-Agent Reinforcement Learning (MARL) techniques have made significant strides in achieving high asymptotic performance in single task. However, there has been limited exploration of model transferability across tasks. Training a model from scratch for each task can be time-consuming and expensive, especially for large-scale Multi-Agent Systems. Therefore, it is crucial to develop methods for generalizing the model across tasks. Considering that there exist task-independent subtasks across MARL tasks, a model that can decompose such subtasks from the source task could generalize to target tasks. However, ensuring true task-independence of subtasks poses a challenge. In this paper, we propose to \textbf{d}ecompose a \textbf{t}ask in\textbf{to} a series of \textbf{g}eneralizable \textbf{s}ubtasks (DT2GS), a novel framework that addresses this challenge by utilizing a scalable subtask encoder and an adaptive subtask semantic module. We show that these components endow subtasks with two properties critical for task-independence: avoiding overfitting to the source task and maintaining consistent yet scalable semantics across tasks. Empirical results demonstrate that DT2GS possesses sound zero-shot generalization capability across tasks, exhibits sufficient transferability, and outperforms existing methods in both multi-task and single-task problems.