Text Alignment Is An Efficient Unified Model for Massive NLP Tasks

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Yuheng Zha, Yichi Yang, Ruichen Li, Zhiting Hu


Large language models (LLMs), typically designed as a function of next-word prediction, have excelled across extensive NLP tasks. Despite the generality, next-word prediction is often not an efficient formulation for many of the tasks, demanding an extreme scale of model parameters (10s or 100s of billions) and sometimes yielding suboptimal performance.In practice, it is often desirable to build more efficient models---despite being less versatile, they still apply to a substantial subset of problems, delivering on par or even superior performance with much smaller model sizes.In this paper, we propose text alignment as an efficient unified model for a wide range of crucial tasks involving text entailment, similarity, question answering (and answerability), factual consistency, and so forth. Given a pair of texts, the model measures the degree of alignment between their information. We instantiate an alignment model through lightweight finetuning of RoBERTa (355M parameters) using 5.9M examples from 28 datasets. Despite its compact size, extensive experiments show the model's efficiency and strong performance: (1) On over 20 datasets of aforementioned diverse tasks, the model matches or surpasses FLAN-T5 models that have around 2x or 10x more parameters; the single unified model also outperforms task-specific models finetuned on individual datasets; (2) When applied to evaluate factual consistency of language generation on 23 datasets, our model improves over various baselines, including the much larger GPT-3.5 (ChatGPT) and sometimes even GPT-4; (3) The lightweight model can also serve as an add-on component for LLMs such as GPT-3.5 in question answering tasks, improving the average exact match (EM) score by 17.94 and F1 score by 15.05 through identifying unanswerable questions.