Adversarially Robust Distributed Count Tracking via Partial Differential Privacy

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Zhongzheng Xiong, Xiaoyi Zhu, zengfeng Huang

Abstract

We study the distributed tracking model, also known as distributed functional monitoring. This model involves $k$ sites each receiving a stream of items and communicating with the central server. The server's task is to track a function of all items received thus far continuously, with minimum communication cost. For count tracking, it is known that there is a $\sqrt{k}$ gap in communication between deterministic and randomized algorithms. However, existing randomized algorithms assume an "oblivious adversary" who constructs the entire input streams before the algorithm starts. Here we consider adaptive adversaries who can choose new items based on previous answers from the algorithm. Deterministic algorithms are trivially robust to adaptive adversaries, while randomized ones may not. Therefore, we investigate whether the $\sqrt{k}$ advantage of randomized algorithms is from randomness itself or the oblivious adversary assumption. We provide an affirmative answer to this question by giving a robust algorithm with optimal communication. Existing robustification techniques do not yield optimal bounds due to the inherent challenges of the distributed nature of the problem. To address this, we extend the differential privacy framework by introducing "partial differential privacy" and proving a new generalization theorem. This theorem may have broader applications beyond robust count tracking, making it of independent interest.