P-Flow: A Fast and Data-Efficient Zero-Shot TTS through Speech Prompting

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Sungwon Kim, Kevin Shih, rohan badlani, Joao Felipe Santos, Evelina Bakhturina, Mikyas Desta, Rafael Valle, Sungroh Yoon, Bryan Catanzaro


While recent large-scale neural codec language models have shown significant improvement in zero-shot TTS by training on thousands of hours of data, they suffer from drawbacks such as a lack of robustness, slow sampling speed similar to previous autoregressive TTS methods, and reliance on pre-trained neural codec representations. Our work proposes P-Flow, a fast and data-efficient zero-shot TTS model that uses speech prompts for speaker adaptation. P-Flow comprises a speech-prompted text encoder for speaker adaptation and a flow matching generative decoder for high-quality and fast speech synthesis. Our speech-prompted text encoder uses speech prompts and text input to generate speaker-conditional text representation. The flow matching generative decoder uses the speaker-conditional output to synthesize high-quality personalized speech significantly faster than in real-time. Unlike the neural codec language models, we specifically train P-Flow on LibriTTS dataset using a continuous mel-representation. Through our training method using continuous speech prompts, P-Flow matches the speaker similarity performance of the large-scale zero-shot TTS models with two orders of magnitude less training data and has more than 20$\times$ faster sampling speed. Our results show that P-Flow has better pronunciation and is preferred in human likeness and speaker similarity to its recent state-of-the-art counterparts, thus defining P-Flow as an attractive and desirable alternative. We provide audio samples on our demo page: [https://research.nvidia.com/labs/adlr/projects/pflow](https://research.nvidia.com/labs/adlr/projects/pflow)