Finite Population Regression Adjustment and Non-asymptotic Guarantees for Treatment Effect Estimation

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Mehrdad Ghadiri, David Arbour, Tung Mai, Cameron Musco, Anup B. Rao


The design and analysis of randomized experiments is fundamental to many areas, from the physical and social sciences to industrial settings. Regression adjustment is a popular technique to reduce the variance of estimates obtained from experiments, by utilizing information contained in auxiliary covariates. While there is a large literature within the statistics community studying various approaches to regression adjustment and their asymptotic properties, little focus has been given to approaches in the finite population setting with non-asymptotic accuracy bounds. Further, prior work typically assumes that an entire population is exposed to an experiment, whereas practitioners often seek to minimize the number of subjects exposed to an experiment, for ethical and pragmatic reasons.In this work, we study the problems of estimating the sample mean, individual treatment effects, and average treatment effect with regression adjustment. We propose approaches that use techniques from randomized numerical linear algebra to sample a subset of the population on which to perform an experiment. We give non-asymptotic accuracy bounds for our methods and demonstrate that they compare favorably with prior approaches.