Evaluating Post-hoc Explanations for Graph Neural Networks via Robustness Analysis

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper


Junfeng Fang, Wei Liu, Yuan Gao, Zemin Liu, An Zhang, Xiang Wang, Xiangnan He


This work studies the evaluation of explaining graph neural networks (GNNs), which is crucial to the credibility of post-hoc explainability in practical usage. Conventional evaluation metrics, and even explanation methods -- which mainly follow the paradigm of feeding the explanatory subgraph and measuring output difference -- always suffer from the notorious out-of-distribution (OOD) issue. In this work, we endeavor to confront the issue by introducing a novel evaluation metric, termed OOD-resistant Adversarial Robustness (OAR). Specifically, we draw inspiration from the notion of adversarial robustness and evaluate post-hoc explanation subgraphs by calculating their robustness under attack. On top of that, an elaborate OOD reweighting block is inserted into the pipeline to confine the evaluation process to the original data distribution. For applications involving large datasets, we further devise a Simplified version of OAR (SimOAR), which achieves a significant improvement in computational efficiency at the cost of a small amount of performance. Extensive empirical studies validate the effectiveness of our OAR and SimOAR.