GPT-ST: Generative Pre-Training of Spatio-Temporal Graph Neural Networks

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Zhonghang Li, Lianghao Xia, Yong Xu, Chao Huang


In recent years, there has been a rapid development of spatio-temporal prediction techniques in response to the increasing demands of traffic management and travel planning. While advanced end-to-end models have achieved notable success in improving predictive performance, their integration and expansion pose significant challenges. This work aims to address these challenges by introducing a spatio-temporal pre-training framework that seamlessly integrates with downstream baselines and enhances their performance. The framework is built upon two key designs: (i) We propose a spatio-temporal mask autoencoder as a pre-training model for learning spatio-temporal dependencies. The model incorporates customized parameter learners and hierarchical spatial pattern encoding networks. These modules are specifically designed to capture spatio-temporal customized representations and intra- and inter-cluster region semantic relationships, which have often been neglected in existing approaches. (ii) We introduce an adaptive mask strategy as part of the pre-training mechanism. This strategy guides the mask autoencoder in learning robust spatio-temporal representations and facilitates the modeling of different relationships, ranging from intra-cluster to inter-cluster, in an easy-to-hard training manner. Extensive experiments conducted on representative benchmarks demonstrate the effectiveness of our proposed method. We have made our model implementation publicly available at