Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track
Weichao Mao, Haoran Qiu, Chen Wang, Hubertus Franke, Zbigniew Kalbarczyk, Ravishankar Iyer, Tamer Basar
Multi-agent reinforcement learning (MARL) has primarily focused on solving a single task in isolation, while in practice the environment is often evolving, leaving many related tasks to be solved. In this paper, we investigate the benefits of meta-learning in solving multiple MARL tasks collectively. We establish the first line of theoretical results for meta-learning in a wide range of fundamental MARL settings, including learning Nash equilibria in two-player zero-sum Markov games and Markov potential games, as well as learning coarse correlated equilibria in general-sum Markov games. Under natural notions of task similarity, we show that meta-learning achieves provable sharper convergence to various game-theoretical solution concepts than learning each task separately. As an important intermediate step, we develop multiple MARL algorithms with initialization-dependent convergence guarantees. Such algorithms integrate optimistic policy mirror descents with stage-based value updates, and their refined convergence guarantees (nearly) recover the best known results even when a good initialization is unknown. To our best knowledge, such results are also new and might be of independent interest. We further provide numerical simulations to corroborate our theoretical findings.