Dream the Impossible: Outlier Imagination with Diffusion Models

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Xuefeng Du, Yiyou Sun, Jerry Zhu, Yixuan Li


Utilizing auxiliary outlier datasets to regularize the machine learning model has demonstrated promise for out-of-distribution (OOD) detection and safe prediction. Due to the labor intensity in data collection and cleaning, automating outlier data generation has been a long-desired alternative. Despite the appeal, generating photo-realistic outliers in the high dimensional pixel space has been an open challenge for the field. To tackle the problem, this paper proposes a new framework Dream-OOD, which enables imagining photo-realistic outliers by way of diffusion models, provided with only the in-distribution (ID) data and classes. Specifically, Dream-OOD learns a text-conditioned latent space based on ID data, and then samples outliers in the low-likelihood region via the latent, which can be decoded into images by the diffusion model. Different from prior works [16, 95], Dream-OOD enables visualizing and understanding the imagined outliers, directly in the pixel space. We conduct comprehensive quantitative and qualitative studies to understand the efficacy of Dream-OOD, and show that training with the samples generated by Dream-OOD can significantly benefit OOD detection performance.