InsActor: Instruction-driven Physics-based Characters

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Xiao Ma, Liang Pan, Ziwei Liu

Abstract

Generating animation of physics-based characters with intuitive control has long been a desirable task with numerous applications. However, generating physically simulated animations that reflect high-level human instructions remains a difficult problem due to the complexity of physical environments and the richness of human language. In this paper, we present $\textbf{InsActor}$, a principled generative framework that leverages recent advancements in diffusion-based human motion models to produce instruction-driven animations of physics-based characters.Our framework empowers InsActor to capture complex relationships between high-level human instructions and character motions by employing diffusion policies for flexibly conditioned motion planning.To overcome invalid states and infeasible state transitions in planned motions, InsActor discovers low-level skills and maps plans to latent skill sequences in a compact latent space. Extensive experiments demonstrate that InsActor achieves state-of-the-art results on various tasks, including instruction-driven motion generation and instruction-driven waypoint heading. Notably, the ability of InsActor to generate physically simulated animations using high-level human instructions makes it a valuable tool, particularly in executing long-horizon tasks with a rich set of instructions. Our project page is available at [jiawei-ren.github.io/projects/insactor/index.html](https://jiawei-ren.github.io/projects/insactor/index.html)