Distributional Learning of Variational AutoEncoder: Application to Synthetic Data Generation

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Seunghwan An, Jong-June Jeon

Abstract

The Gaussianity assumption has been consistently criticized as a main limitation of the Variational Autoencoder (VAE) despite its efficiency in computational modeling. In this paper, we propose a new approach that expands the model capacity (i.e., expressive power of distributional family) without sacrificing the computational advantages of the VAE framework. Our VAE model's decoder is composed of an infinite mixture of asymmetric Laplace distribution, which possesses general distribution fitting capabilities for continuous variables. Our model is represented by a special form of a nonparametric M-estimator for estimating general quantile functions, and we theoretically establish the relevance between the proposed model and quantile estimation. We apply the proposed model to synthetic data generation, and particularly, our model demonstrates superiority in easily adjusting the level of data privacy.