Augmentation-Free Dense Contrastive Knowledge Distillation for Efficient Semantic Segmentation

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Jiawei Fan, Chao Li, Xiaolong Liu, Meina Song, Anbang Yao


In recent years, knowledge distillation methods based on contrastive learning have achieved promising results on image classification and object detection tasks. However, in this line of research, we note that less attention is paid to semantic segmentation. Existing methods heavily rely on data augmentation and memory buffer, which entail high computational resource demands when applying them to handle semantic segmentation that requires to preserve high-resolution feature maps for making dense pixel-wise predictions. In order to address this problem, we present Augmentation-free Dense Contrastive Knowledge Distillation (Af-DCD), a new contrastive distillation learning paradigm to train compact and accurate deep neural networks for semantic segmentation applications. Af-DCD leverages a masked feature mimicking strategy, and formulates a novel contrastive learning loss via taking advantage of tactful feature partitions across both channel and spatial dimensions, allowing to effectively transfer dense and structured local knowledge learnt by the teacher model to a target student model while maintaining training efficiency. Extensive experiments on five mainstream benchmarks with various teacher-student network pairs demonstrate the effectiveness of our approach. For instance, DeepLabV3-Res18|DeepLabV3-MBV2 model trained by Af-DCD reaches 77.03\%|76.38\% mIOU on Cityscapes dataset when choosing DeepLabV3-Res101 as the teacher, setting new performance records. Besides that, Af-DCD achieves an absolute mIOU improvement of 3.26\%|3.04\%|2.75\%|2.30\%|1.42\% compared with individually trained counterpart on Cityscapes|Pascal VOC|Camvid|ADE20K|COCO-Stuff-164K. Code is available at