Team-PSRO for Learning Approximate TMECor in Large Team Games via Cooperative Reinforcement Learning

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper


Stephen McAleer, Gabriele Farina, Gaoyue Zhou, Mingzhi Wang, Yaodong Yang, Tuomas Sandholm


Recent algorithms have achieved superhuman performance at a number of two-player zero-sum games such as poker and go. However, many real-world situations are multi-player games. Zero-sum two-team games, such as bridge and football, involve two teams where each member of the team shares the same reward with every other member of that team, and each team has the negative of the reward of the other team. A popular solution concept in this setting, called TMECor, assumes that teams can jointly correlate their strategies before play, but are not able to communicate during play. This setting is harder than two-player zero-sum games because each player on a team has different information and must use their public actions to signal to other members of the team. Prior works either have game-theoretic guarantees but only work in very small games, or are able to scale to large games but do not have game-theoretic guarantees. In this paper we introduce two algorithms: Team-PSRO, an extension of PSRO from two-player games to team games, and Team-PSRO Mix-and-Match which improves upon Team PSRO by better using population policies. In Team-PSRO, in every iteration both teams learn a joint best response to the opponent's meta-strategy via reinforcement learning. As the reinforcement learning joint best response approaches the optimal best response, Team-PSRO is guaranteed to converge to a TMECor. In experiments on Kuhn poker and Liar's Dice, we show that a tabular version of Team-PSRO converges to TMECor, and a version of Team PSRO using deep cooperative reinforcement learning beats self-play reinforcement learning in the large game of Google Research Football.