Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Zebin You, Yong Zhong, Fan Bao, Jiacheng Sun, Chongxuan LI, Jun Zhu


In an effort to further advance semi-supervised generative and classification tasks, we propose a simple yet effective training strategy called *dual pseudo training* (DPT), built upon strong semi-supervised learners and diffusion models. DPT operates in three stages: training a classifier on partially labeled data to predict pseudo-labels; training a conditional generative model using these pseudo-labels to generate pseudo images; and retraining the classifier with a mix of real and pseudo images. Empirically, DPT consistently achieves SOTA performance of semi-supervised generation and classification across various settings. In particular, with one or two labels per class, DPT achieves a Fr├ęchet Inception Distance (FID) score of 3.08 or 2.52 on ImageNet $256\times256$. Besides, DPT outperforms competitive semi-supervised baselines substantially on ImageNet classification tasks, *achieving top-1 accuracies of 59.0 (+2.8), 69.5 (+3.0), and 74.4 (+2.0)* with one, two, or five labels per class, respectively. Notably, our results demonstrate that diffusion can generate realistic images with only a few labels (e.g., $<0.1$%) and generative augmentation remains viable for semi-supervised classification. Our code is available at *https://github.com/ML-GSAI/DPT*.