One Fits All: Power General Time Series Analysis by Pretrained LM

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Tian Zhou, Peisong Niu, xue wang, Liang Sun, Rong Jin

Abstract

Although we have witnessed great success of pre-trained models in natural language processing (NLP) and computer vision (CV), limited progress has been made for general time series analysis. Unlike NLP and CV where a unified model can be used to perform different tasks, specially designed approach still dominates in each time series analysis task such as classification, anomaly detection, forecasting, and few-shot learning. The main challenge that blocks the development of pre-trained model for time series analysis is the lack of a large amount of data for training. In this work, we address this challenge by leveraging language or CV models, pre-trained from billions of tokens, for time series analysis. Specifically, we refrain from altering the self-attention and feedforward layers of the residual blocks in the pre-trained language or image model. This model, known as the Frozen Pretrained Transformer (FPT), is evaluated through fine-tuning on all major types of tasks involving time series. Our results demonstrate that pre-trained models on natural language or images can lead to a comparable or state-of-the-art performance in all main time series analysis tasks, as illustrated in Figure1. We also found both theoretically and empirically that the self-attention module behaviors similarly to principle component analysis (PCA), an observation that helps explains how transformer bridges the domain gap and a crucial step towards understanding the universality of a pre-trained transformer. The code is publicly available at https://anonymous.4open.science/r/Pretrained-LM-for-TSForcasting-C561.