Achieving $\mathcal{O}(\epsilon^{-1.5})$ Complexity in Hessian/Jacobian-free Stochastic Bilevel Optimization

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Yifan Yang, Peiyao Xiao, Kaiyi Ji


In this paper, we revisit the bilevel optimization problem, in which the upper-level objective function is generally nonconvex and the lower-level objective function is strongly convex. Although this type of problem has been studied extensively, it still remains an open question how to achieve an $\mathcal{O}(\epsilon^{-1.5})$ sample complexity in Hessian/Jacobian-free stochastic bilevel optimization without any second-order derivative computation. To fill this gap, we propose a novel Hessian/Jacobian-free bilevel optimizer named FdeHBO, which features a simple fully single-loop structure, a projection-aided finite-difference Hessian/Jacobian-vector approximation, and momentum-based updates. Theoretically, we show that FdeHBO requires $\mathcal{O}(\epsilon^{-1.5})$ iterations (each using $\mathcal{O}(1)$ samples and only first-order gradient information) to find an $\epsilon$-accurate stationary point. As far as we know, this is the first Hessian/Jacobian-free method with an $\mathcal{O}(\epsilon^{-1.5})$ sample complexity for nonconvex-strongly-convex stochastic bilevel optimization.