On the Sublinear Regret of GP-UCB

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Justin Whitehouse, Aaditya Ramdas, Steven Z. Wu


In the kernelized bandit problem, a learner aims to sequentially compute the optimum of a function lying in a reproducing kernel Hilbert space given only noisy evaluations at sequentially chosen points. In particular, the learner aims to minimize regret, which is a measure of the suboptimality of the choices made.Arguably the most popular algorithm is the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm, which involves acting based on a simple linear estimator of the unknown function.Despite its popularity, existing analyses of GP-UCB give a suboptimal regret rate, which fails to be sublinear for many commonly used kernels such as the Matern kernel. This has led to a longstanding open question: are existing regret analyses for GP-UCB tight, or can bounds be improved by using more sophisticated analytical techniques?In this work, we resolve this open question and show that GP-UCB enjoys nearly optimal regret. In particular, our results yield sublinear regret rates for the Matern kernel, improving over the state-of-the-art analyses and partially resolving a COLT open problem posed by Vakili et al. Our improvements rely on a key technical contribution --- regularizing kernel ridge estimators in proportion to the smoothness of the underlying kernel $k$. Applying this key idea together with a largely overlooked concentration result in separable Hilbert spaces (for which we provide an independent, simplified derivation), we are able to provide a tighter analysis of the GP-UCB algorithm.