Is Heterogeneity Notorious? Taming Heterogeneity to Handle Test-Time Shift in Federated Learning

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental


Yue Tan, Chen Chen, Weiming Zhuang, Xin Dong, Lingjuan Lyu, Guodong Long


Federated learning (FL) is an effective machine learning paradigm where multiple clients can train models based on heterogeneous data in a decentralized manner without accessing their private data. However, existing FL systems undergo performance deterioration due to feature-level test-time shifts, which are well investigated in centralized settings but rarely studied in FL. The common non-IID issue in FL usually refers to inter-client heterogeneity during training phase, while the test-time shift refers to the intra-client heterogeneity during test phase. Although the former is always deemed to be notorious for FL, there is still a wealth of useful information delivered by heterogeneous data sources, which may potentially help alleviate the latter issue. To explore the possibility of using inter-client heterogeneity in handling intra-client heterogeneity, we firstly propose a contrastive learning-based FL framework, namely FedICON, to capture invariant knowledge among heterogeneous clients and consistently tune the model to adapt to test data. In FedICON, each client performs sample-wise supervised contrastive learning during the local training phase, which enhances sample-wise invariance encoding ability. Through global aggregation, the invariance extraction ability can be mutually boosted among inter-client heterogeneity. During the test phase, our test-time adaptation procedure leverages unsupervised contrastive learning to guide the model to smoothly generalize to test data under intra-client heterogeneity. Extensive experiments validate the effectiveness of the proposed FedICON in taming heterogeneity to handle test-time shift problems.