One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper

Authors

Ba-Hien Tran, Giulio Franzese, Pietro Michiardi, Maurizio Filippone

Abstract

Generative Models (GMs) have attracted considerable attention due to their tremendous success in various domains, such as computer vision where they are capable to generate impressive realistic-looking images. Likelihood-based GMs are attractive due to the possibility to generate new data by a single model evaluation. However, they typically achieve lower sample quality compared to state-of-the-art score-based Diffusion Models (DMs). This paper provides a significant step in the direction of addressing this limitation. The idea is to borrow one of the strengths of score-based DMs, which is the ability to perform accurate density estimation in low-density regions and to address manifold overfitting by means of data mollification. We propose a view of data mollification within likelihood-based GMs as a continuation method, whereby the optimization objective smoothly transitions from simple-to-optimize to the original target. Crucially, data mollification can be implemented by adding one line of code in the optimization loop, and we demonstrate that this provides a boost in generation quality of likelihood-based GMs, without computational overheads. We report results on real-world image data sets and UCI benchmarks with popular likelihood-based GMs, including variants of variational autoencoders and normalizing flows, showing large improvements in FID score and density estimation.