A Bounded Ability Estimation for Computerized Adaptive Testing

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper


Yan Zhuang, Qi Liu, Guanhao Zhao, Zhenya Huang, Weizhe Huang, Zachary Pardos, Enhong Chen, Jinze Wu, Xin Li


Computerized adaptive testing (CAT), as a tool that can efficiently measure student's ability, has been widely used in various standardized tests (e.g., GMAT and GRE). The adaptivity of CAT refers to the selection of the most informative questions for each student, reducing test length. Existing CAT methods do not explicitly target ability estimation accuracy since there is no student's true ability as ground truth; therefore, these methods cannot be guaranteed to make the estimate converge to the true with such limited responses. In this paper, we analyze the statistical properties of estimation and find a theoretical approximation of the true ability: the ability estimated by full responses to question bank. Based on this, a Bounded Ability Estimation framework for CAT (BECAT) is proposed in a data-summary manner, which selects a question subset that closely matches the gradient of the full responses. Thus, we develop an expected gradient difference approximation to design a simple greedy selection algorithm, and show the rigorous theoretical and error upper-bound guarantees of its ability estimate. Experiments on both real-world and synthetic datasets, show that it can reach the same estimation accuracy using 15\% less questions on average, significantly reducing test length.