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Figure 7: Detailed schematic of the MPN architecture employed by ASMR. Given a graph G, the
global features g, node features XV , and edge features XE are linearly embedded into separate latent
spaces. From here, L message passing steps are performed. The resulting latent features per node are
interpreted as a local observation encoding and can be given to an RL policy or value function.

A Message Passing Network Architecture605

Given a graph G = (V, E ,XV ,XE ,g), Message Passing Networks (MPN) [32, 37, 38] are GNN
consisting of L Message Passing Steps. Each step l receives the output of the previous step and
updates the features XV , XE for all nodes v ∈ V and edges e ∈ E , as well as globals g. Using linear
embeddings x0

v , x0
e, and g0 of the initial node, edge, and global features, the l-th step is given as

xl+1
e = f l

E(x
l
v,x

l
u,x

l
e,g

l), with e = (u, v),

xl+1
v = f l

V(x
l
v,

⊕
e=(v,u)∈E

xl+1
e ,gl), and gl+1 = f l

g(
⊕
v∈V

xl+1
v ,

⊕
e∈E

xl+1
e ,gl).

The operator ⊕ is a permutation-invariant aggregation such as a sum, max, or mean operator. Each f l
·606

is a learned function that we generally parameterize as a simple MLP. The network’s final output is a607

learned representation xL
v for each node v ∈ V . Figure 7 provides a schematic overview of the full608

MPN architecture.609

B Systems of Equations610

In its most general form, the FEM is used to approximate the solution u(x) for the set of test functions611

v, which satisfies the weak formulation ∀x : ∀v(x) : a(u(x),v(x)) = l(v(x)) of the underlying612

system of equations. In the following, we describe the specific equations and boundary conditions613

used for our experiments.614

B.1 Laplace’s Equation615

Let Ω be a domain with an inner boundary ∂Ω0 and an outer boundary ∂Ω1. We seek a solution u(x)
that satisfies the weak formulation of the Laplace Equation∫

Ω

∇u(x) · ∇v(x) dx = 0

for all test functions v(x). Additionally, the solution has to satisfy the Dirichlet boundary conditions616

u(x) = 0, x ∈ ∂Ω0 and u(x) = 1,x ∈ ∂Ω1.

We use a unit square (0, 1)2 for the outer boundary ∂Ω0 of the domain and add a randomly sampled617

square hole, whose borders are considered to be the inner boundary ∂Ω1. The size of the hole618

is sampled from the uniform distribution U(0.05, 0.25)2, and its mean position is sampled from619

U(0.2, 0.8)2. We add the closest distance to the inner boundary as an additional node feature.620
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B.2 Poisson’s Equation621

The weak formulation of the considered Poisson problem is given as622 ∫
Ω

∇u(x) · ∇v(x) dx =

∫
Ω

f(x)v(x) dx ∀v.

Here, f(x) : Ω → R denotes the load function and v(x) the test function. In addition to the623

weak formulation, the solution must be zero on the boundary ∂Ω of the domain Ω. We model624

Poisson’s Equation on L-shaped domains Ω, using a rectangular cutoff whose lower left corner625

is sampled from p0 ∼ U(0.2, 0.95)2, resulting in a domain Ω = (0, 1)2\(p0 × (1, 1)). On this626

domain, we sample a Gaussian Mixture Model with 3 components. The mean of each component is627

sampled from U(0.1, 0.9)2, using rejection sampling to ensure that all means lie within the domain.628

The components’ covariances are determined by first drawing diagonal covariances, where each629

dimension is drawn independently from a log-uniform distribution exp(U(log(0.0003, 0.003))). The630

diagonal covariances are then rotated by a random angle in U(0, 180) to produce Gaussians with a631

full covariance matrix. The component weights are drawn from the distribution exp(N(0, 1))+1 and632

subsequently normalized, where the 1 in the end is used to ensure that all components have relevant633

weight. Here, the evaluation of the load function f at the respective face midpoint is added as a node634

feature.635

B.3 Stokes flow636

Let u(x) be the velocity field and p(x) the pressure field. We consider a Stokes flow of a fluid
through a channel. Therefore, we seek a solution u and p, which satisfy the weak formulation of the
Stokes flow without a forcing term

ν

∫
Ω

∇v · ∇u dx−
∫
Ω

(∇ · v)p dx = 0 ∀v∫
Ω

(∇ · u)q dx = 0 ∀q,

wherein v(x) and q(x) denote the test functions [88]. In addition, we assume a no-slip condition637

u = 0 at both the top and bottom of the channel, and an inlet-profile defined as638

u(x = 0, y) = uPy(1− y) + sin (φ+ 2πy).

At the outlet, the gradient of velocity ∇u = 0 is set to zero. For stability purposes, we use P1/P2639

Taylor-Hood-elements, i.e., quadratic shape functions for the velocity and linear shape functions640

for the pressure [87]. We sample the quadratic part uP of the velocity inlet from a log-uniform641

distribution exp(U(log(0.5, 2))). The domains are a class of trapezoids that we derive from the unit642

square by randomly choosing 2 of the 4 vertices and adding a random inward-facing y offset drawn643

from U(0, 0.45) to these points. The resulting trapezoid is subsequently normalized to lie in (0, 1)2.644

We add the parabolic part of the inlet velocity of the current PDE as a global feature. We optimize645

the meshes for the prediction of the velocity norm and use linear shape functions for the numerical646

error approximation in 1 for simplicity.647

B.4 Linear Elasticity648

We are looking for the steady-state deformation of a solid under stress, due to displacements at the
boundary of the part ∂Ω. Here, we are interested in both the norm of the deformation and the norm
of the stress. The weak formulation of the considered problem on the domain Ω without body forces
is given as [89] ∫

Ω

σ (ε (u)) : ε (v) dx = 0.

Here, u(x) is the displacement field, v(x) is the test function, and ε (u) = 1
2 (∇u+ (∇u)⊤) is the649

strain tensor. σ (ε) is the stress tensor, which is given as σ (ε) = 2µε+ λtr(ε)I in a linear-elastic650

and isotropic case. The Lamé parameters λ = Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) can be calculated with651

the problem specific Young’s modulus E = 1 and the Poisson ratio ν = 0.3. The displacement652
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u(x = 0, y) = u0 on the left side of the boundary is specified by a task-dependent parameter653

u0, whereas the displacement u(x = L, y) = 0 is set to zero on the right boundary. The stress654

σ · n = 0 is zero normal to the boundary at both the top and bottom of the part. We use the same655

class of L-shaped domains as in the Poisson problem in Section B.2 and set uP by drawing a random656

angle from U [0, π] to pull on the domain from different angles, and add random magnitude from657

U(0.2, 0.8). We add the task-dependent displacement uP as a global feature. We are interested in658

the norm of the displacement field u and the resulting Von-Mises stress, giving us a 2-dimensional659

objective. We weight both dimensions equally in the reward.660

B.5 Non-stationary Heat Diffusion661

We consider a non-stationary thermal diffusion problem defined by the weak formulation∫
Ω

∂u

∂t
dx+

∫
Ω

a∇u · ∇v dx =

∫
Ω

fv dx ∀v,

wherein u denotes the temperature, v the test function, a the thermal diffusivity and f a heat662

distribution, given as663

f = q exp (−100 ((x− xp(τ)) + (y − yp(τ)))) .

The position of the maximum heat entry pτ (τ) = (xp(τ), yp(τ)) is changing over time, while its664

magnitude is scaled by a factor q. The temperature u ∈ ∂Ω is set to zero on all boundaries. For665

the time-integration, the implicit euler method is applied. We use a total of τmax = 20 time steps in666

{0.5, . . . , 10}, a scaling factor of q = 1000 and a diffusivity a = 0.001. The position of the heat667

source at step τ is linearly interpolated as pτ = p0 + τ
τmax

(pτmax − p0), where the start and goal668

positions p0 and pτmax are randomly drawn from the domain. To create our domains, we start with 10669

points that are equidistantly placed on a circle with center (0.5, 0.5) and radius 0.4. Each point is670

distorted by a random value drawn from U(−0.2, 0.2)2. We then normalize the resulting points to671

be in (0, 1)2 and calculate the convex hull. The result is a family of convex polygons with up to 10672

vertices. We measure the error of the final simulation step, and provide the distance to the start and673

end position of the heat source as additional node features.674

C Further Experiments675

C.1 Experiment Details676

All experiments are repeated for n = 10 random seeds with randomized PDEs and network param-677

eters. All PDEs are normalized to be in (0, 1)2. We train all policies on 100 training PDEs and678

evaluate the resulting final policies on 100 different evaluation PDEs that we keep consistent across679

random seeds for better comparability. All experiments are run for up to 3 days on 8 cores of an Intel680

Xeon Platinum 8358 CPU.681

In terms of total compute, we train 4 different learned methods, namely the 3 RL baselines and our682

method, on 5 separate tasks. Each experiment is repeated for 10 different target mesh resolutions and683

10 repetitions, resulting in 5 · 4 · 10 · 10 = 2000 main experiments, each of which is run for up to684

3 days. Additionally, we use a similar amount of compute for the combined ablations, preliminary685

experiments and error-based heuristics.686

For practical purposes, we add an element threshold βmax in our environments, and terminate an687

episode with a large negative reward when this threshold is exceeded.688

C.2 Maximum Reward689

Equation 2 scales the reduction in error of each element by its area. This modification encourages the690

policy to focus on smaller elements, effectively shifting the objective from an reduction in average691

error across the mesh to a minimization of error densities.692
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Figure 8: Pareto plot of normalized Top 0.1% of errors and number of final mesh elements for (Left)
PPO and DQN for all RL baselines on the Laplace equation and (Right) PPO and DQN for ASMR on
the Poisson task. PPO generally results in better performance, with the exception of Argmax, which
is slightly better when using DQN. The performance of Argmax is likely a result of the comparatively
simple action space of only refining a single element per environment step.

An alternate way to phrase this objective is to make the reward depend on the reduction in maximum
error per element. For this, we modify the error estimate per element of Equation 1 to read

êrr(Ωt
i) ≈ max

Ω∗
m⊆Ωt

i

∣∣∣uΩ∗(pΩ∗
m
)− uΩt(pΩ∗

m
)
∣∣∣,

and subsequently drop the area scaling and replace the sum in Equation 2 with a maximum, i.e.,

r′(Ωt
i) :=

(
err(Ωt

i)−max
j

Mt
ijerr(Ωt+1

j )

)
− α

∑
j

Mt
ij − 1

 .

While conceptually simpler than our reward formulation, evaluating the decrease in maximum error693

optimizes only this objective, and may result in degenerate meshes when looking at the overall error.694

Figure 6 compares this alternate reward formulation to that of ASMR. We find that it performs well695

when considering the Top 0.1% of errors, but that it fails to generate meshes with a low overall error.696

D Extended Results697

D.1 Baseline Algorithms698

The left of Figure 8 shows results for the RL baseline methods for both PPO and DQN as the RL699

backbone. We find that PPO performs better for VDGN and Sweep, while DQN seems to be better700

for Argmax. For the PPO variant of VDGN, we factorize the value function instead of the Q-function,701

i.e., we define the value function of the full mesh as the sum of value functions of the individual mesh702

elements.703

D.2 Ablations.704

Proximal Policy Optimization and Deep Q-Networks. The right of Figure 8 compares ASMR705

with PPO and DQN as the RL algorithms. We find that a using a mean instead of a sum for the706

agent mapping of the targets of the Q-values increases training stability, and thus use it for the DQN707

experiments with ASMR. However, the PPO variant still performs significantly better than the DQN708

one. As such, we use PPO as the RL algorithm for ASMR for all other experiments.709
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Figure 9: Pareto plot of normalized Top 0.1% of errors and number of final mesh elements for
Poisson’s Equation. (Left) Omitting either the solution or evaluation of the load function per element
significantly decreases the performance of our approach. Adding explicit node positions is slightly
detrimental to the performance, likely because it causes the observation to no longer be equivariant
to e.g., reflection. (Right) Performance is reduced for fewer training PDEs, but stabilizes around
100 PDEs. Interestingly, ASMR achieves acceptable performance when using a single training PDE,
which is likely a result of our spatial problem formulation.

Node Features. ASMR utilizes both task-dependent information, such as the evaluation of the710

load function for Poisson’s Equation, and the local solution u(x) per mesh element as part of its711

observation graph. Here, we experiment how the performance is affected if either of these features712

is omitted. Additionally, we consider a variant where we include explicit (x, y) positions of each713

element midpoint as node features. The results are shown on the left of Figure 9 We find that both714

the task-dependent features and the solution are important for the performance of our approach. Not715

adding positional features slightly improves performance, presumably because the features assign716

a fixed position to each mesh element, causing the observation graph to no longer be equivariant717

to rotation, translation and reflection. Interestingly, ASMR provides reasonable refinements even718

without solution information, suggesting that the RL algorithm is able to detect relevant regions of719

the PDE from just an encoding of the domain and the boundary conditions.720

Number of Training PDEs Since calculating the fine-grained reference Ω∗ is slow for large meshes721

and complex tasks, we want to minimize the number of unique PDEs that we need during training.722

We use 100 PDEs in our other experiments, and additionally visualize results for 1, 10 and 1000723

training PDEs on the right of Figure 9. We find that fewer than 100 PDEs lead to less stable and724

reliable results, and that there is only a minor advantage in using 1000 PDEs compared to our 100.725

Noticeably, a single training PDE results in acceptable refinements in most cases, which hints at726

significant generalization capabilities that are likely due to our spatial treatment of the underlying727

task.728

D.3 Runtime comparison.729

We compare the wallclock-time of our approach with that of directly computing the fine-grained730

uniform mesh Ω∗. For our approach, we measure the cumulative time of creating an initial coarse731

mesh, and then iteratively solving the problem on this mesh, computing the resulting observation732

graph, feeding the observation graph to the policy to obtain actions, and using these actions to refine733

the mesh a total of T = 6 times. For the uniform mesh, we simply measure the time it takes to refine734

the coarse mesh 6 times and to subsequently solve the problem on the resulting mesh. We use a735

single 8-Core AMD Ryzen 7 3700X Processor for all measurements. Figure 10 shows the results736

for all considered tasks. We find that our approach is always significantly faster than computing737

the fine-grained mesh despite the comparatively large computational overhead. Further, the final738
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Figure 10: Wallclock-time (in seconds) of ASMR for different numbers of elements compared to
the uniform reference Ω∗. The dotted lines represent the wallclock-time of creating and solving Ω∗,
while the full lines represent a quadratic regression of the wallclock-time of our method for different
numbers of final elements. On average, Ω∗ contains about 105 elements, with concrete numbers
varying depending on the domain. Our approach is significantly faster than the reference for all tasks.

resolution of the computed meshes trades off the wallclock-time of the method, meaning that ASMR739

can be trained to generate coarser or finer meshes depending on task-specific computational budgets.740

Notably, for the Navier Stokes equations, which use P1/P2 Taylor-Hood-elements, our method is741

more than 30 times faster than Ω∗ even for highly refined final meshes.742

D.4 Generalization capabilities.743

We qualitatively test the generalization capabilities of our method by employing it for different744

Poisson tasks. For this, we consider the 4 different domain types used in throughout the main745

experiments, plus a simple rectangular domain Ω = (0, 1)2. We sample 3 random domains from746

each class, and use Gaussian Mixture Model load functions with 1, 3 and 5 components respectively.747

Figure 11 shows refinements of an ASMR policy with α = 0.0075 for the resulting 3× 5 problems.748

We find that ASMR generalizes across all domains and load functions, which is likely a result of the749

Swarm RL setting, where each mesh element is governed by its own agent.750

D.5 Target Mesh Resolutions751

All RL methods use some parameter to control the number of target elements of the final refined752

mesh. ASMR and VDGN use an element penalty α, Sweep uses a budget Nmax, and Argmax different753

numbers of rollout steps T . We visualize the effect of different target resolutions in Figure 12. The754

results indicate that ASMR provides meshes with consistent numbers of elements for a given target755

resolution, while the other RL methods produce meshes with different numbers of elements for the756

same or similar target resolutions. The concrete target resolution parameters used for our experiments757

are found in Table 1.758
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Figure 11: Final refined meshes of ASMR for different domains and Poisson’s equation with a
Gaussian Mixture Model load with 1, 3 and 5 components. Even though ASMR is only trained on
L-shaped domains with 3 components in the load function, it generalizes to different domains as well
as more and less complex loads.

D.6 Alternate Error Metrics759

Section 5 evaluates all approaches on the normalized average of the Top 0.1% of errors of the760

numerical integration. The left of Figure 13 instead shows the error of the Top 5% of integration761

points for the Poisson task. We find that the results similar to that of Figure 4, i.e., that approaches that762

perform well on the highest 0.1% of errors also generally show good results on a larger percentage763

of errors.764

Using the notation of Section 3, we can also measure the mean remaining error of the final refinement765

ΩT compared to the reference Ω∗ via its normalized mean error, i.e., as766 ∑
r Area(Ω∗

m)
∣∣uΩ∗(pΩ∗

m
)− uΩT (pΩ∗

m
)
∣∣∑

r Area(Ω∗
m)

∣∣uΩ∗(pΩ∗
m
)− uΩ0(pΩ∗

m
)
∣∣ .

This metric can be seen as a Top 100% error, except that each integration point is additionally767

scaled with the area of its corresponding reference element. The right of Figure 13 shows results768

for this linear error for the Poisson equation. Figure 14 displays results for the Laplace equation769

and the Stokes flow, and results for the linear elasticity and heat diffusion tasks are shown in Figure770

15. The general trends for the linear errors are consistent with the Top 0.1% errors of Section 5.771

Since this metric focuses on the mean instead of the maximum error, the Local Oracle performs772

better than on the Top 0.1% metric, reaching or surpassing the performance of the Local Maximum773

Oracle on most tasks. Still, both local oracle heuristics seem to perform different and in some cases774

sub-optimal, likely due to global dependencies in the PDEs and due to the remesher enforcing a775

conforming solution. ASMR provides accurate refinements that optimize both the Top 0.1% and the776

remaining linear error on most tasks. For e.g., the linear elasticity task, the refinements provided by777

ASMR significantly outperform both error-based oracle heuristics, likely because this task has global778

dependencies that can be learned by the RL algorithm, but are ignored by the local heuristics. For the779

Stokes flow, a simple uniform refinement seems to be sufficient to reduce the mean remaining error,780

suggesting that the distribution of total error mass is comparatively homogeneous. The behavior of781

different variants of our reward function on this metric are provided in Figure 6.782
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Figure 12: Pareto plot of normalized Top 0.1% of errors and number of final mesh elements for the
linear elasticity task for all RL methods. Small blue dots indicate a random seed trained on a coarse
target mesh resolution, which corresponds to large element penalties α for ASMR and VDGN, a small
budget Nmax for Sweep and a low number of rollout steps T for Argmax. Large red dots correspond to
a finer target mesh resolution, and the purple dots interpolate between the two. Details on the target
resolution parameters are found in Table 1. We find that ASMR provides high-quality refinements
with consistent numbers of final mesh elements for any given target resolution, whereas the other
methods yield widely different results for similar target resolutions when trained on different random
seeds.

23



ASMR (Ours) VDGN Sweep Argmax
Local Oracle Local Maximum Oracle Uniform Refinement

0 2 4 6 8

0.01

0.05

0.1

0.5

1

Elements (×10
3
)

To
p
5
%

of
E

rr
or

s

Poisson

0 2 4 6 8

0.01

0.05

0.1

0.5

1

Elements (×10
3
)

M
ea

n
R

em
ai

ni
ng

E
rr

or

Poisson

Figure 13: Pareto plot of the normalized (Left) Top 5% of errors and (Right) mean remaining error
and number of final mesh elements for the Poisson equation. The results are similar to the Top
0.1% of errors as seen in Figure 4. The Top 5% metric interpolates between the Top 0.1% and the
mean remaining error. We find that the performance of the Local Maximum Oracle degrades when
evaluating more integration points, likely because it only focuses on the maximum error of each
element by construction. ASMR provides refinements that perform well on all considered metrics.
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Figure 14: Pareto plot of the normalized mean remaining error for (Left) the Laplace equation and
(Right) the Stokes flow. The mean remaining error weights areas with high error less when compared
to the Top 0.1% of errors. As a result, both the uniform refinement and the methods that produce
more uniform meshes, such as Sweep, perform better on this metric. For the Stokes flow task, the
mesh must be relatively uniform across the full length of the domain to reduce the total error mass,
which likely causes the uniform refinements to be comparatively good.
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Figure 15: Pareto plot of the normalized mean remaining error for (Left) the linear elasticity and
(Right) the heat diffusion task. The mean remaining error weights areas with high error less when
compared to the Top 0.1% of errors. Thus, uniform refinements and methods that produce uniform
refinements generally perform better on this metric. Interestingly, ASMR outperforms both the Local
Oracle and the Local Maximum Oracle on the linear elasticity task, likely because the task has global
dependencies that are respected by our RL framework, but are ignored by the local heuristics.

E Hyperparameters783

E.1 General Hyperparameters784

We use the same hyperparameters across all methods and environments unless mentioned otherwise.785

PPO. We largely follow the suggestions of [90] for our PPO parameters. We train each PPO policy786

for a total of 800 iterations. In each iteration, the algorithm samples 256 environment transitions and787

then trains on them for 5 epochs with a batch size of 32. The value function loss is multiplied with788

a factor of 0.5 and we clip the gradient norm to 0.5. The policy and value function clip ranges are789

chosen to be 0.2. We normalize the observations with a running mean and standard deviation. The790

discount factor is γ = 0.99 and advantages are estimated via Generalized Advantage Estimate [91]791

with λ = 0.95.792

DQN. For DQN-based approaches, we instead train for 24 ∗ 800 = 19200 steps, where each step793

consists of executing an environment transition and then drawing a batch of samples 32 samples from794

the replay buffer for a single gradient update. Since every environment transition describes a full795

refinement step, including a mesh and its solution, we keep a total of 5000 transitions in the replay796

buffer. We additionally draw 500 initial random replay buffer samples before the first training step.797

During training, we draw actions using a Boltzmann distribution over the predicted Q-values per798

agent, where we linearly decrease the temperature of the distribution from 10 to 0.01 in the first 9600799

steps. We find that this action selection strategy leads to more correlated actions when compared to800

an epsilon greedy action sampling, which stabilizes the training for our iterative mesh refinement801

problems. We update the target networks using Polyak averaging at a rate of 0.99 per step. Further,802

we follow previous work [92] and combine a number of common improvements for DQNs, namely803

double Q-learning [93], dueling Q-networks [94] and prioritized experience replay [95].804

Neural Networks. All networks are implemented in PyTorch [96] and trained using the ADAM805

optimizer [97] with a learning rate of 3.0e-4 unless mentioned otherwise. All MLPs use 2 hidden806

layers and a latent dimension of 32. We use separate MPNs for the policy and the value function.807

Each MPN consists of 2 message passing steps, where each update function is represented as an808

MLP with LeakyReLU activation functions. The policy and value function heads are additional809

MLPs with tanh activation functions acting on the final latent node features of the MPN. All message810

aggregations
⊕

are mean aggregations. Additionally, we apply Layer Normalization [98] and811
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Residual Connections [99] independently for the node, edge and global features after each message812

passing step.813

E.2 Baseline-Specific Parameters814

To accommodate the step-wise nature of Argmax and Sweep, we increase the size of their replay buffer815

to 10000 when using DQN. For Argmax, we use a maximum refinement depth of 10 refinements816

per element to avoid numerical instabilities during simulation, skipping actions that try to refine817

elements that have been refined too often. We consider environment sequences of up to T = 400818

steps since the method marks only one element at a time. Due to the computational demand of819

this method, we only evaluate it on 10 instead of 100 evaluation PDEs. For Sweep, the agent is820

placed on a random mesh element for each training step and may decide not to refine this element,821

resulting in no change in the mesh. Here, we follow the proposed hyperparameters for this approach822

and train each rollout for 200 steps. As this approach is based on purely local agents, we adapt823

our input features per element to consist of our regular node features, the global resource budget824

proposed by the authors, the mean solution and area of the element’s neighbors and the average825

distance to them. The global budget is controlled via a maximum number of elements Nmax, allowing826

to get refinements of different granularity. To accommodate for less overall changes in the mesh,827

we increase the number of environment transitions of PPO to 512, and the number of DQN steps to828

96 ∗ 800 = 76800. Finally, we use a learning rate of 1.0e-5 instead of 3.0e-4 for the DQN variant of829

VDGN to stabilize its training.830

E.3 Refinement Hyperparameters831

The AMR methods considered in this work use different parameters to control the granularity of the832

final refined mesh. ASMR and VDGN use an element penalty α, while Sweep considers an element833

budget Nmax. Similarly, Argmax varies the number of rollout steps T , and the Local Oracle and Local834

Maximum Oracle use different error thresholds θ. For each method and task, we choose 10 different835

values for the refinement parameter that showcase a wide range of final mesh resolutions. Table 1836

lists the different ranges for these parameters for the different tasks. For stability purposes, we set837

a maximum number of 20000 elements for all experiments except for the Sweep baseline, as this838

baseline uses its own element budget instead. If this number is surpassed, a constant penalty of 1000839

is subtracted from the reward and the episode terminates early.840

Table 1: Ranges for the different refinement hyperparameters for all tasks. ASMR and VDGN apply
an element penalty α, but only ASMR scales the area of each element with its area in Equation 3.
Sweep uses an element budget Nmax. Argmax varies the number of rollout steps T , and the Local
Oracle and Local Maximum Oracle make use of different error thresholds θ.

Method Task
Laplace Poisson Stokes Flow Lin. Elasticity Diffusion

ASMR (α) [0.01, 0.3] [0.002, 0.1] [0.006, 0.15] [0.01, 0.15] [0.003, 0.3]
VDGN (α) [2e−5, 5e−2] [2e−5, 5e−2] [3e−4, 5e−3] [1e−5, 1e−2] [5e−6, 5e−3]
Sweep (Nmax) [200, 3000] [400, 5000] [200, 3000] [500, 6000] [400, 5000]
Argmax (T ) [25, 400] [25, 400] [25, 400] [25, 400] [25, 400]
Local Oracle (θ) [0.25, 1.00] [0.1, 1.0] [0.16, 1.0] [0.02, 1.0] [0.03, 1.0]
L. Max. Oracle (θ) [0.20, 1.0] [0.2, 1.0] [0.1, 1.0] [0.01, 1.0] [0.02, 1.0]
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F Visualizations841

We provide additional visualizations for our method on all tasks, and for all methods on the Poisson842

task. All visualizations show the final refined mesh of the respective method for 5 different refinement843

levels on 3 randomly selected PDEs. For the RL methods, all policies are taken from the first844

repetition of the 10 random seeds conducted for the respective experiment.845

F.1 ASMR Refinements846

We visualize exemplary refinements of ASMR policies for all considered tasks. The visualizations are847

given in Figure 16 (Laplace’s equation), Figure 17 (Poisson’s equation), Figure 18 (Stokes equation),848

Figure 19 (Linear Elasticity), and Figure 20 (Heat Diffusion). Across all tasks, ASMR is able to849

provide highly accurate refinements for different numbers of total elements.850

F.2 Baseline Comparisons851

Figure 21 shows refinements for Argmax for different total timesteps T , Figure 22 presents VDGN852

with different α values. Figure 23 visualizes refinements of Sweep for a varying number of maximum853

elements Nmax, and Figures 24 and 25 show refinements of the Local Oracle and Local Maximum854

Oracle for different values of the threshold θ.855

The visualizations show that the RL baselines struggle to provide consistent high-quality refinements856

for different mesh resolutions. The Argmax baseline sometimes focuses on uninteresting regions of857

the mesh or refines the same area too often. Generally, VDGN performs well, but it tends not to focus858

enough on the interesting regions of the domain. Sweep provides almost uniform refinements for859

most PDEs and element budgets, likely as a result of the misalignment in the environment transitions860

between training and inference. Finally, the error-based heuristics greedily refine the elements with861

the largest errors of their respective metric. For the Local Maximum Oracle, only the areas with the862

highest error are repeatedly refined every step, while the Local Oracle refines more uniformly as it863

considers the total error mass per mesh element. Both behaviors lead to locally optimal refinements on864

their respective metric, but may cause issues for PDEs with global dependencies [86] and conforming865

refinements.866

F.3 Element Markings867

Figure 26 visualizes a full rollout of our method, including the markings of the elements after every868

step.869
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α = 0.2 α = 0.1 α = 0.075 α = 0.03 α = 0.015

Figure 16: Final refined meshes of ASMR for randomly sampled PDEs for the Laplace equation for
different element penalties α.

α = 0.1 α = 0.05 α = 0.03 α = 0.01 α = 0.0075

Figure 17: Final refined meshes of ASMR for randomly sampled PDEs for the Poisson equation for
different element penalties α.
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α = 0.1 α = 0.075 α = 0.025 α = 0.009 α = 0.008

Figure 18: Final refined meshes of ASMR for randomly sampled PDEs for the Stokes flow task for
different element penalties α.

α = 0.2 α = 0.15 α = 0.1 α = 0.075 α = 0.05

Figure 19: Final refined meshes of ASMR for randomly sampled PDEs for the linear elasticity task
for different element penalties α. The visualizations show the deformed meshes, which are originally
L-shaped.
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α = 0.3 α = 0.1 α = 0.075 α = 0.05 α = 0.03

Figure 20: Final refined meshes of ASMR for randomly sampled PDEs for the non-stationary heat
diffusion task for different element penalties α.

T = 25 T = 50 T = 100 T = 250 T = 350

Figure 21: Final refined meshes of the Argmax baseline for the Poisson equation on randomly sampled
PDEs for different environment rollout lengths T .
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α = 0.05 α = 0.01 α = 0.005 α = 0.002 α = 0.001

Figure 22: Final refined meshes of the VDGN baseline for the Poisson equation on randomly sampled
PDEs for different element penalties α.

Nmax = 100 Nmax = 300 Nmax = 500 Nmax = 1000 Nmax = 2000

Figure 23: Final refined meshes of the Sweep baseline for the Poisson equation on randomly sampled
PDEs for different maximum numbers of elements Nmax.
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θ = 0.9 θ = 0.6 θ = 0.5 θ = 0.4 θ = 0.2

Figure 24: Final refined meshes of the Local Oracle baseline for the Poisson equation on randomly
sampled PDEs for different error thresholds θ.

θ = 0.9 θ = 0.6 θ = 0.5 θ = 0.4 θ = 0.2

Figure 25: Final refined meshes of the Local Maximum Oracle baseline for the Poisson equation on
randomly sampled PDEs for different error thresholds θ.
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Figure 26: Visualization of a full rollout of our method on a Poisson task, including the markings of
the elements after every step. The figures in the first and third row show the markings, and the second
and fourth row show the resulting refined meshes.
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