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Abstract

Cohen et al. (2021) empirically study the evolution of the largest eigenvalue
of the loss Hessian, also known as sharpness, along the gradient descent (GD)
trajectory and observe the Edge of Stability (EoS) phenomenon. The sharpness
increases at the early phase of training (referred to as progressive sharpening),
and eventually saturates close to the threshold of 2/(step size). In this paper, we
start by demonstrating through empirical studies that when the EoS phenomenon
occurs, different GD trajectories (after a proper reparameterization) align on a
specific bifurcation diagram independent of initialization. We then rigorously
prove this trajectory alignment phenomenon for a two-layer fully-connected linear
network and a single-neuron nonlinear network trained with a single data point.
Our trajectory alignment analysis establishes both progressive sharpening and EoS
phenomena, encompassing and extending recent findings in the literature.

1 Introduction
It is widely believed that implicit bias or regularization of gradient-based methods plays a key role in
generalization of deep learning (Vardi, 2022). There is a growing literature (Gunasekar et al., 2017,
2018; Soudry et al., 2018; Arora et al., 2018, 2019; Ji and Telgarsky, 2019a; Woodworth et al., 2020;
Chizat and Bach, 2020; Yun et al., 2021) studying how the choice of optimization methods induces an
implicit bias towards specific solutions among the many global minima in overparameterized settings.

Cohen et al. (2021) identify a surprising implicit bias of gradient descent (GD) towards global minima
with a certain sharpness1 value depending on the step size η. Specifically, for reasonable choices of η,
(a) the sharpness of the loss at the GD iterate gradually increases throughout training until it reaches
the stability threshold2 of 2/η (known as progressive sharpening), and then (b) the sharpness saturates
close to or above the threshold for the remainder of training (known as Edge of Stability (EoS)). These
findings have sparked a surge of research aimed at developing a theoretical understanding of the
progressive sharpening and EoS phenomena (Arora et al., 2022; Lyu et al., 2022; Wang et al., 2022;
Ahn et al., 2023; Chen and Bruna, 2023; Zhu et al., 2023). In this paper, we study these phenomena
through the lens of bifurcation theory, both empirically and theoretically.

Motivating observations: Figure 1 illustrates the GD trajectories with different initializations
and fixed step sizes trained on three types of two-dimensional functions: (a) log(cosh(xy)),
(b) 1

2 (tanh(x)y)
2, and (c) 1

2 (ELU(x)y)2, where x and y are scalars. The functions L : R2 → R
have sharpness y2 at the global minimum (0, y) for all three models. These toy models can be viewed
as examples of single-neuron models, where (a) represents a linear network with log-cosh loss, while
(b) and (c) represent nonlinear networks with squared loss. These simple models can capture some
interesting aspects of neural network training in the EoS regime, which are summarized below:

1Throughout this paper, the term “sharpness” means the maximum eigenvalue of the training loss Hessian.
2For quadratic loss, GD becomes unstable if the sharpness is larger than a threshold of 2/(step size).
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Figure 1: GD trajectories align on the bifurcation diagram at the Edge of Stability. We run GD
on toy models with step size η = 2/25 in (a), and η = 2/400 in (b) and (c). Distinct colors indicate
independent runs of GD with varying initializations. Top row: GD trajectories closely follow the
bifurcation diagram of the map x 7→ x−η @

@xL(x, y) and asymptotically reaches the bifurcation point
(0,
p
2/η). Bottom row: the sharpness reaches 2/η, and xt typically shows 2-period oscillating

dynamics. The theoretical prediction λ̃(qt) (dashed lines, defined in Theorems 4.4 and C.4) in (a) and
(b) approximates the sharpness along the GD trajectory and demonstrates progressive sharpening.

• EoS phenomenon: GD converges to a global minimum near the point (0,
p

2/η) with sharpness
close to 2/η. During the convergence phase, the training dynamics exhibit period-2 oscillations.

• For different initializations, GD trajectories for a given step size align on the same curve. For
example, Figure 1a shows that GD trajectories with different initializations closely follow a
specific U-shaped curve until convergence. We call this phenomenon trajectory alignment.

• In Figures 1b and 1c, GD trajectories are aligned on a curve with a fractal structure that qual-
itatively resembles the bifurcation diagram of a typical polynomial map, such as the logistic
map. Particularly, Figure 1c demonstrates a period-halving phase transition in the GD dynamics,
shifting from period-4 oscillation to period-2 oscillation.

• Surprisingly, the curve that GD trajectories approach and follow coincides with the bifurcation
diagram of a one-dimensional map x 7→ x − η @

@xL(x, y) with a fixed “control parameter” y.
The stability of its fixed point x = 0 changes at the bifurcation point (x, y) = (0,

p
2/η), where

period-doubling bifurcation occurs. Note that this point is a global minimum with sharpness 2/η.

Interestingly, such striking behaviors can also be observed in more complex models, up to a proper
reparameterization, as we outline in the next subsection.

1.1 Our contributions

In this paper, we discover and study the trajectory alignment behavior of (reparameterized) GD
dynamics in the EoS regime. To our best knowledge, we are the first to identify such an alignment
with a specific bifurcation diagram independent of initialization. Our empirical findings are rigorously
proven for both two-layer fully-connected networks and single-neuron nonlinear networks. Our main
contributions are summarized below:

• In Section 2, we introduce a novel canonical reparameterization of training parameters, which
incorporates the data, network, and GD step size. This reparameterization allows us to study the
trajectory alignment phenomenon in a unified framework. Through empirical study, Section 3
demonstrates that the alignment property of GD trajectories is not limited to toy models but also
occurs in wide and deep networks trained on real-world dataset. Furthermore, we find that the
alignment trend becomes more pronounced as the network width increases.
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• In Section 4, we use our canonical reparameterization to establish the trajectory alignment
phenomenon for a two-layer fully-connected linear network trained with a single data point. Our
theoretical analysis rigorously proves both progressive sharpening and the EoS phenomenon,
extending the work of Ahn et al. (2023) to a much broader class of networks and also providing
more accurate bounds on the limiting sharpness.

• Our empirical and theoretical analyses up to Section 4 are applicable to convex Lipschitz losses,
hence missing the popular squared loss. In Section 5, we take a step towards handling the squared
loss. Employing an alternative reparameterization, we prove the same set of theorems as Section 4
for a single-neuron nonlinear network trained with a single data point under squared loss.

1.2 Related works

The Edge of Stability (EoS) phenomenon has been extensively studied in recent years, with many
works seeking to provide a deeper understanding of the evolution of sharpness and the oscillating
dynamics of GD. Jastrzębski et al. (2019) and Jastrzebski et al. (2020) observe that step size affects
the sharpness along the optimization trajectory. Cohen et al. (2021) first formalize EoS through
empirical study, and subsequent works have built on their findings. Ahn et al. (2022) analyze EoS
through experiments and identify the relations between the behavior of loss, iterates, and sharpness.
Ma et al. (2022) suggest that subquadratic growth of the loss landscape is the key factor of oscillating
dynamics. Arora et al. (2022) show that (normalized) GD enters the EoS regime, by verifying the
convergence to some limiting flow on the manifold of global minimizers. Wang et al. (2022) divide
GD trajectory into four phases and explain progressive sharpening and EoS by using the norm of
output layer weight as an indicator of sharpness. Lyu et al. (2022) prove that normalization layers
encourage GD to reduce sharpness. Damian et al. (2023) use the third-order Taylor approximation of
the loss to theoretically analyze EoS, assuming the existence of progressive sharpening. Lee and Jang
(2023) propose a new sharpness measure using batch gradient distribution and characterize EoS for
SGD. Concurrent to our work, Wu et al. (2023) study the logistic regression problem with separable
dataset and establish that GD exhibits an implicit bias toward the max-margin solution in the EoS
regime, extending prior findings in the small step size regime (Soudry et al., 2018; Ji and Telgarsky,
2019b).

Some recent works rigorously analyze the full GD dynamics for some toy cases and prove that the
limiting sharpness is close to 2/η. Zhu et al. (2023) study the loss (x, y) 7→ 1

4 (x
2y2 − 1)2 and prove

that the sharpness converges close to 2/η with a local convergence guarantee. Notably, Ahn et al.
(2023) study the function (x, y) 7→ ℓ(xy) where ℓ is convex, even, and Lipschitz, and provide a
global convergence guarantee. The authors prove that when ℓ is log-cosh loss or square root loss, the
limiting sharpness in the EoS regime is between 2/η −O(η) and 2/η. Our theoretical results extend
their results on a single-neuron linear network to a two-layer fully-connected linear network and
provide an improved characterization on the limiting sharpness, tightening the gap between upper
and lower bounds to only O(η3).

The trajectory alignment phenomenon is closely related to Zhu et al. (2023) which shows empirical
evidence of bifurcation-like oscillation in deep neural networks trained on real-world data. However,
their empirical results do not show the alignment property of GD trajectory. In comparison, we
observe that GD trajectories align on the same bifurcation diagram, independent of initialization.

Very recently, Kreisler et al. (2023) observe a similar trajectory alignment phenomenon for scalar
linear networks, employing a reparameterization based on the sharpness of the gradient flow solution.
However, their empirical findings on trajectory alignment are confined to scalar linear networks,
and do not provide a theoretical explanation. In contrast, our work employs a novel canonical
reparameterization and offers empirical evidence for the alignment phenomenon across a wide range
of networks. Moreover, we provide theoretical proofs for two-layer linear networks and single-neuron
nonlinear networks.

2 Preliminaries
Notations. For vectors u and v, we denote the ℓp norm of u by ∥u∥p , their tensor product as u⊗v,
and u ⊗ u by u
2. For a matrix A, we denote the spectral norm by ∥A∥2. Given a function L and
a parameter �, we use λmax(�) := λmax(∇2

�L(�)) to denote the sharpness (i.e., the maximum
eigenvalue of the loss Hessian) at �. We use asymptotic notations with subscripts (e.g., O‘(·),
O�;‘(·)) in order to hide constants that depend on the parameters or functions written as subscripts.
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2.1 Problem settings

We study the optimization of neural networkf ( � ; � ) : Rd ! R parameterized by� . We focus on a
simple over-parameterized setting trained on a single data pointf (x ; y)g, wherex 2 Rd andy 2 R.
We consider the problem of minimizing the empirical risk

L (� ) = `(f (x ; � ) � y);

where` is convex, even, and twice-differentiable with`00(0) = 1 . We minimizeL using GD with
step size� : � t +1 = � t � � r � L (� t ). The gradient and the Hessian of the function are given by

r � L (� ) = `0(f (x ; � ) � y)r � f (x ; � );

r 2
� L (� ) = `00(f (x ; � ) � y)( r � f (x ; � )) 
 2 + `0(f (x ; � ) � y)r 2

� f (x ; � ):

Suppose that� � be a global minimum ofL , i.e.,f (x ; � � ) = y. In this case, the loss Hessian and
the sharpness at� � are simply characterized as

r 2
� L (� � ) = ( r � f (x ; � � )) 
 2; and � max (� � ) = kr � f (x ; � � )k2

2: (1)

2.2 Canonical reparameterization

De�nition 2.1 (canonical reparameterization). For given step size� , the canonical reparameterization
of � is de�ned as

(p; q) :=
�

f (x ; � ) � y;
2

� kr � f (x ; � )k2
2

�
: (2)

Under the canonical reparameterization,p = 0 represents global minima, and Eq.(1) implies that
the point(p; q) = (0 ; 1) is a global minimum with sharpness2=� . Note that(p; q) alone does not,
in general, uniquely determine the value of� . Rather, the motivation for this reparameterization
technique is to effectively analyze the complex GD dynamics in the high-dimensional parameter
space by reducing it to a 2-dimensional representation. The update ofp can be written as

pt +1 = f (x ; � t +1 ) � y = f
�
x ; � t � �` 0(f (x ; � t ) � y)r � f (x ; � t )

�
� y

� f (x ; � t ) � r � f (x ; � t )> (�` 0(f (x ; � t ) � y)r � f (x ; � t )) � y

= ( f (x ; � t ) � y) � �` 0(f (x ; � t ) � y)kr � f (x ; � )k2
2

= pt �
2`0(pt )

qt
; (3)

which can be obtained by �rst-order Taylor approximation onf for small step size� .3

2.3 Bifurcation analysis

Motivated from the approximated1-step update rule given by Eq.(3), we conduct the bifurcation
analysis on this one-dimensional map, consideringqt as a control parameter. We �rst review some
basic notions used in bifurcation theory (Strogatz, 1994).

De�nition 2.2 (stability of �xed point). Let z0 be a �xed point of a differentiable mapf : R ! R,
i.e., f (z0) = z0. We sayz0 is a stable �xed pointof f if jf 0(z)j < 1, and we sayz0 is anunstable
�xed point of f if jf 0(z)j > 1.

De�nition 2.3 (stability of periodic orbit). A pointz0 is called a period-p point of a mapf : R ! R
if z0 is the �xed point off p and f j (z0) 6= z0 for any1 � j � p � 1. The orbit ofz0, given by
f zj = f j (z0) j j = 0 ; 1; : : : ; p � 1g is called the period-p orbit of f . A period-p orbit is stable
(unstable) if its elements are stable (unstable) �xed points off p, i.e.,

Q p� 1
j =0 jf 0(zj )j < 1 (> 1).

Now we analyze the bifurcation of the one-parameter family of mappingsf q : R ! R given by

f q(p) := p
�

1 �
2r (p)

q

�
; (4)

whereq is a control parameter andr is a differentiable function satisfying Assumption 2.4 below.

3The approximation is used just to motivate Lemma 2.1; in our theorems, we analyze the exact dynamics.

4



(a) � = 5 (b) � = 10 (c) qt
r ( p t ) andp vs. t

Figure 2:(a), (b) GD trajectories of two-layer fully-connected linear networks trained withdifferent
initialization scale � . Each color corresponds to a single run of GD. Smaller initialization scale falls
into the gradient �ow regime, whereas larger initialization falls into the EoS regime.(c) In the EoS
regime, qt

r (pt ) approaches1 in the early phase of training, whereaspt converges to0 relatively slowly.

Assumption 2.4. A functionr : R ! R is even, continuously differentiable,r (0) = 1 , r 0(0) = 0 ,
r 0(p) < 0 for anyp > 0, andlimp!1 r (p) = lim p!�1 r (p) = 0 . In other words,r is a smooth,
symmetric bell-shaped function with the maximum valuer (0) = 1 .

We note that Eq.(3) can be rewritten aspt +1 = f qt (pt ) if we de�ne r by r (p) := ` 0(p)
p for p 6= 0 and

r (0) := 1 . Below are examples of` for which the correspondingr 's satisfy Assumption 2.4. These
loss functions were previously studied by Ahn et al. (2023) to explain EoS for(x; y) 7! `(xy).

• log-coshloss:` log -cosh(p) := log(cosh(p)) . Note`0
log -cosh(p) = tanh( p).

• square-root loss:̀sqrt(p) :=
p

1 + p2. Note`0
sqrt(p) = pp

1+ p2
.

If r satis�es Assumption 2.4, then for any0 < q � 1, there exists a nonnegative numberp such that
r (p) = q, and the solution is unique which we denote byr̂ (q). In particular,r̂ : (0; 1] ! R� 0 is a
function satisfyingr (r̂ (q)) = r (� r̂ (q)) = q for anyq 2 (0; 1].

Lemma 2.1(period-doubling bifurcation off q). Suppose thatr is a function satisfying Assump-

tion 2.4. Letp� = supf p � 0 j xr 0(x )
r (x ) > � 1 for anyjxj � pg andc = r (p� ). If p� = 1 , we choose

c = 0 . Then, the one-parameter family of mappingsf q : R ! R given by Eq.(4) satis�es

(i) If q > 1, p = 0 is the stable �xed point.

(ii) If q 2 (c;1), p = 0 is the unstable �xed point andf� r̂ (q)g is the stable period-2 orbit.

Proof. The mapf q has the unique �xed pointp = 0 for anyq > 0. Sincejf 0
q(0)j = j1 � 2

q j, p = 0 is
a stable �xed point ifq > 1 andp = 0 is an unstable �xed point if0 < q < 1. Now suppose that
q 2 (c;1). Then, we havef q(r̂ (q)) = � r̂ (q) andf q(� r̂ (q)) = r̂ (q), which implies thatf� r̂ (q)g is a

period-2 orbit of f q. Then,jf 0
q(r̂ (q)) j = jf 0

q(� r̂ (q)) j =
�
�
�1 + 2r̂ (q) r 0( r̂ (q))

q

�
�
� < 1 implies thatf� r̂ (q)g

is a stable period-2 orbit.

According to Lemma 2.1, the stability of the �xed pointp = 0 undergoes a change atq = 1 , resulting
in the emergence of a stable period-2 orbit. The point(p; q) = (0 ; 1) is referred to as thebifurcation
point, where aperiod-doublingbifurcation occurs. Abifurcation diagramillustrates the points
asymptotically approached by a system as a function of a control parameter. In the case of the map
f q, the corresponding bifurcation diagram is represented byp = 0 for q � 1 andp = � r̂ (q) (or
equivalently,q = r (p)) for q 2 (c;1).

It is worth noting that the period-2 orbit f� r̂ (p)g becomes unstable forq 2 (0; c). If we chooser to
ber (p) = ` 0(p)

p for p 6= 0 andr (0) = 1 , then1 + pr 0(p)
r (p) = ` 00(p)

r (p) > 0 for all p, assuming̀ is convex.
Consequently, forlog-coshloss and square root loss we havec = 0 , indicating that the period-2 orbit
of f q remains stable for allq 2 (0; 1). However, in Section 5, we will considerr with c > 0, which
may lead to additional bifurcations.
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(a)m = 64 , L = 3 (b) m = 256, L = 3 (c) m = 256, L = 10

Figure 3: GD trajectories oftanh-activated neural networks withvarying width and depth. Each
color corresponds to a single run of GD. We observe that the wider network (m = 256) exhibits a
stronger trajectory alignment phenomenon compared to the narrower network (m = 64). Figure 3c
depicts the trajectories for a deeper network (L = 10), which also shows the trajectory alignment
phenomenon.

3 Trajectory Alignment of GD: An Empirical Study

In this section, we conduct experimental studies on the trajectory alignment phenomenon in GD
dynamics under the canonical reparameterization proposed in Section 2.

We consider a fully-connectedL-layer neural networkf ( � ; � ) : Rd ! R written as

f (x ; � ) = w >
L � (W L � 1� (� � � � (W 2� (W 1x )) � � � )) ;

where� is an activation function,W 1 2 Rm � d, W l 2 Rm � m for 2 � l � L � 1, andwL 2 Rm .
All L layers have the same width ofm. We minimize the empirical riskL (� ) = `(f (x ; � ) � y).
We visualize GD trajectories under the canonical parameterization, where each plot shows �ve
different randomly initialized weights using Xavier initialization multiplied with a rescaling factor of
� . For this analysis, we �x the training data point and hyperparameters asx = e1 = (1 ; 0; : : : ; 0),
y = 1 , � = 0 :01, d = 10, and focus on thelog-coshloss for`, with either� (t) = t (linear) or
� (t) = tanh( t). We note that the trajectory alignment phenomenon is consistently observed in other
settings, including square root loss, different activations (e.g., ELU), and various hyperparameters, in
particular for suf�ciently wide networks (additional experimental results are provided in Appendix A).

The effect of initialization scale. In Figures 2a and 2b, we examine the effect of the initialization
scale� on GD trajectories in a two-layer fully-connected linear network with a width ofm = 256. In
Figure 2a, when the weights are initialized with a smaller scale (� = 5 ), the initial value ofq is greater
than1, and it converges towards the minimum with only a small change inqt until convergence. In
this case, the limiting sharpness is relatively smaller than2=� , and the EoS phenomenon does not
occur. This case is referred to as thegradient �ow regime(Ahn et al., 2023). On the other hand,
in Figure 2b, when the weights are initialized with a larger scale (� = 10), the initial value ofq is
less than1, and we observe convergence towards the point (close to)(p; q) = (0 ; 1). This case is
referred to as theEoS regime. We note that choosing larger-than-standard scale� is not a necessity
for observing EoS; we note that even with� = 1 , we observe the EoS regime when� is larger.

Trajectory alignment on the bifurcation diagram. In order to investigate the trajectory alignment
phenomenon on the bifurcation diagram, we plot the bifurcation diagramq = r (p) = ` 0(p)

p and
observe that GD trajectories tend to align with this curve, which depends solely on`. Figure 2b
clearly demonstrates this alignment phenomenon. Additionally, we analyze the evolution ofqt

r (pt )

andpt in Figure 2c. We observe that the evolution ofqt
r (pt ) follows two phases. InPhase I, qt

r (pt )
approaches to1 quickly. In Phase II, the ratio remains close to1. Notably, the convergence speed
of qt

r (pt ) towards1 is much faster than the convergence speed ofpt towards0. In Sections 4 and 5,
we will provide a rigorous analysis of this behavior, focusing on the separation between Phase I and
Phase II.

The effect of width and depth. In Figure 3, we present the GD trajectories oftanh-activated
networks with different widths and depths (� = 5 ). All three cases belong to the EoS regime, where
GD converges to a point close to(p; q) = (0 ; 1), resulting in a limiting sharpness near2=� . However,
when comparing Figures 3a and 3b, we observe that the trajectory alignment phenomenon is not
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