
A DiskANN Algorithm398

Algorithm 1 RobustPruningpi, U, α,Rq

1: Input Vertex i, candidate neighbor set U ,
pruning parameter α, degree limit R(default
R is n if not given)

2: Result Update Noutpiq, the set of out-
neighbors of i

3: U Ð U Y Noutpiq
4: Noutpiq Ð ∅
5: while U ‰ ∅ and |Noutpiq| ă R do
6: v Ð argminvPU Dpxv, xiq

7: Noutpiq Ð Noutpiq Y v
8: U Ð Uzv
9: U Ð tv1 P U : Dpxv, xv1 q ¨ α ą

Dpxi, xv1 qu

10: end while

Algorithm 2 GreedySearchps, q, Lq

1: Input Graph G “ pV,Eq, seed s, query
point q, queue length limit L

2: Output visited vertex list U
3: A Ð tsu

4: U Ð ∅
5: while AzU ‰ ∅ do
6: v Ð argminvPAzU Dpxv, qq

7: A Ð A Y Noutpvq

8: U Ð U Y v
9: if |A| ą L then

10: A Ð top L closest vertices to q in A
11: end if
12: end while
13: sort U in increasing distance from q
14: return U

Algorithm 3 DiskANN indexing algorithm (with fast preprocessing)

1: Input Point set P “ tx1...xnu, degree limit R, queue length L
2: Output A proximity graph G “ pV,Eq where V “ t1..nu are associated with point sets P .
3: G Ð randomly sample a R-regular graph on vertex set V “ t1..nu

4: s Ð vertex for the point closest to the centroid of P
5: for k “ 1 to 2 do
6: σ Ð a random permutation of r1...ns

7: for i “ 1 to n do
8: U Ð GreedySearchps, xσpiq, Lq

9: RobustPruningpσpiq, U, α,Rq

10: for vertex j in Noutpσpiqq do
11: Noutpjq Ð Noutpjq Y σpiq
12: if |Noutpjq| ą R then
13: RobustPruningpj,Noutpjq, α,Rq

14: end if
15: end for
16: end for
17: end for

Algorithm 4 DiskANN indexing algorithm (with slow preprocessing)

1: Input Vertex set P “ tx1...xnu, parameters: degree limit R
2: Output A proximity graph G “ pV,Eq where V “ t1..nu are associated with point sets P .
3: s Ð vertex for the point closest to the centroid of P
4: for i “ 1 to n do
5: Noutpiq Ð RobustPruningpi, V, α,Rq

6: end for

In this section we give an overview of the DiskANN procedures. For the full description the reader is399

referred to the original paper [19].400

The data structure is based on a directed graph G over the set P , i.e., the set of vertices V of G are401

associated with the set of points P . After the graph is constructed, to answer a given query q, the402

algorithm performs search starting from some vertex s. In what follows we describe the search and403

insertion procedure in more detail.404

12

The search procedure, GreedySearchps, q, Lq, has the following parameters: the start vertex s, the405

query point q, and the queue size L. It performs a best-first-search using a queue of with a bounded406

length L, until the L vertices v with the smallest value of Dpv, qq seen so far are all scanned. Upon407

completion, it returns a list of vertices in an increasing distance from q where the first vertex (or the408

first k vertices) are answers for the query. Note that as long as the graph is connected, the procedure409

runs for at least L steps. The total running time of the procedure is bounded by the number of steps410

times the out-degree bound of the graph G.411

The construction of the graph G “ pV,Eq is done by a repeated invocation of a procedure called412

RobustPruning. For any vertex v, a set of vertices U (specified later), and parameters α ą 1 and413

R, RobustPruningpv, U, α,Rq proceeds as follows. First, the set U is sorted in the increasing order414

of the distance to v. The algorithm traverses this sequence in order. After encountering a new vertex415

u, the algorithm deletes all other vertices w from U such that Dpu,wq ¨ α ă Dpv, wq. Finally, the416

node v is connected to all vertices in U that have not been pruned.417

The starting point of the DiskANN data structure construction algorithm4 is the following simple418

procedure: for each vertex v, execute RobustPruningpv, U, α,Rq with U “ V and R “ n. That is,419

robust pruning is applied to all vertices in the graph. We refer to this procedure as slow preprocessing,420

as it can be seen that a naive implementation of this method takes time Opn3q. Although the421

construction time is slow, we show that this construction method provably constructs a graph whose422

degree depends only logarithmically on the aspect ratio of the graph (assuming constant doubling423

dimension), and guarantees that the greedy search procedure has polylogarithmic running time. We424

note that this result is inspired by an observation in [19] about convergence of greedy search in a425

logarithmic number of steps, though to obtain our result we also need to bound the degree of the426

search graph and analyze the approximation ratio.427

Since the slow-preprocessing-algorithm is too slow in practice, the authors of [19] propose a faster428

heuristic method to construct the graph G, which we call fast preprocessing method. At the be-429

ginning, the graph G is initialized to be a random R-regular graph. Then the construction of430

the graph G “ pV,Eq is done incrementally. The construction algorithms make two passes of431

the point set in random order. For each vertex v met, the algorithm computes a set of vertices432

U “ GreedySearchps, xv, Lq (for some starting vertex s) and then calls the pruning procedure433

on U , not V . That is, it executes RobustPruningpv, U, α,Rq. After pruning is performed, the434

insertion procedure adds both edges pv, uq and pu, vq for all vertices u P U output by the prunning435

procedure. Finally, if the degree of any of u P U exceeds a threshold R, then the set of neighbors of u436

is pruned via RobustPruningpu,Noutpuq, α,Rq as well. This construction method is implemented437

and evaluated in the paper.438

B Dependence on aspect ratio ∆439

Consider the following 1-dimensional data set with n “ 2k points located at txiu
n
i“1, where

xi “

"

αi for 1 ď i ď k

2αk ` αkβ ´ α2k`1´i for k ă i ď n

and β “ maxp 1
α´1 , α ´ 1q. This is a symmetric line starting from 0 to p2 ` βqαk. Each point’s440

distance toward the closer endpoint is α times larger than that of the previous point.441

Lemma B.1. The graph G “ pV,Eq built on the above instance using the slow preprocessing version442

of DiskANN satisfies the following properties:443

(1) For any i P rk ` 1, ns, pi, kq P E and pi, jq R E for any j ă k444

(2) For any j ă i ď k, pi, jq P E if and only if j “ i ´ 1445

Since the xi’s are symmetric, the same properties also hold in the other direction.446

Proof. (1): For any i P rk ` 1, ns, we can check that no vertex j such that k ă j ă i can delete k447

from i’s neighborhood, because xj´xk

xi´xk
ą

αkβ
αkβ`αk ě 1

α . Thus, we have pi, kq P E. Similarly, we448

4See the discussion in Section 2.2 of [19].

13

have that k will delete any vertex j ă k from i’s neighborhood because xk´xj

xi´xj
ď αk

αk`αkβ
ď 1

α .449

These two inequalities use that β “ maxp 1
α´1 , α ´ 1q450

(2): For any i P r1, ks, xi´1 is the closest point on xi’s left, so pi, i´ 1q P E. Then, for any j ă i´ 1,451

j will be deleted from i’s neighbor by i ´ 1 because xi´1´xj

xi´xj
ă αi´1

αi “ 1
α .452

Proof of Theorem 3.5. Based on the graph properties in Lemma B.1, let us determine the length453

of the shortest path from a starting point s (selected arbitrarily by the DiskANN algorithm) to a454

constant approximate nearest neighbor of a given query q. We select our query q to be either 0 or455

2αk ` αkβ, i.e., one of the two endpoints of the data set, whichever is farther from xs. To find an456

Op1q-approximate nearest neighbor of the query q within l steps of GreedySearch, there should be at457

least one path with less than l hops from s to q’s approximate nearest neighbor. WLOG, let’s assume458

q “ 0 and s ą k. By Property (1) of Lemma B.1, among t1...ku, the vertex k is the only neighbor459

of any vertex on the right of k. By Property (2) of Lemma B.1, for any vertex i P r1, ks, its only460

neighbor on its left is i ´ 1. Therefore, it takes at least l ě Ωpnq and l ě Ωplog∆q steps for slow461

preprocessing DiskANN with GreedySearch to reach any Op1q- approximate nearest neighbor in this462

constructed instance.463

C More experimental results464

C.1 Hard instance for KD-Tree based nearest neighbor search algorithm465

Some nearest neighbor search algorithms use KD-tree to find the entry point for greedy search. In466

this case, we design a hard instance where KD-tree cannot get good entry point close to the nearest467

neighbor. See Figure 7. We draw our constructed instance for n “ 106. It is easy to mimic this468

instance for other data sizes.469

Figure 7: Our constructed hard instance
for SPTAG on the scale n “ 106.
The instance lives in a two-dimensional
Euclidean space, and therefore has a
constant doubling dimension. Black
dots (solid or hollow) are points in the
database, the red dot is the query point.
Grids are only used to show the layout
structure. See section C.1 for detailed
description.

Description of instance in Figure 7 Our instance has 6 dimensions, where the first two dimensions470

of the instance are similar to Figure 2 but with different choices of parameters. Again, the vertex set V471

consists of three sets of points M,P, P 1 (with size 0.1n, 0.1n, 0.8n respectively) and a single answer472

point a: M is a
a

|M | ˆ
a

|M | square grid with unit length 1 and with bottom right corner m “473

p´109, 109q. P is a vertical chain of points consisting of unit intervals from pl “ p´109,´0.05nq to474

ph “ p´109, 0.05nq. P 1 is a
a

|P 1| ˆ
a

|P 1| square grid with unit length 1 whose bottom left corner475

is p1 “ p0, 109q. The answer point is a “ p0, 3 ˚ 108q. The query point is q “ p´3 ˚ 108, 0q. For a476

vertex v P M Y P 1 Y tau, each of v’s other 4 coordinates are sampled from a uniform distribution477

14

supported on r5 ˚ 107, 6 ˚ 107s. For a vertex v P P , its other 4 coordinates are sampled from a478

uniform distribution supported on r107, 2 ˚ 107s. And for point q, its other 4 coordinates are all 0.479

Note that though such choices of parameters are tailored to the implementation of KD-trees used in480

SPTAG and EFANNA in [35], some general ideas are reusable for constructing hard instances for481

other implementations.482

Intuition for instance in Figure 7 The main reason why we construct a new example here is to483

handle the use of KD-tree to search for a good starting point. Implementation of KD-tree provided484

in [35] always randomly picks one of the top 5 dimensions with the largest variance as the splitting485

dimension, and divides the vertices into two halves at their mean. In Figure 7, because of the486

separation on the other 4 dimensions, our construction can make sure that KD-tree quickly gets to a487

subtree with vertices only in P . Then KD-tree will only horizontally split the chain from ph to pl488

or split via the other 4 dimensions. In the vertical axis, the coordinates for vertices in P and a are489

quite close, so KD-tree will assign them a low distance estimation based on only a horizontal split,490

resulting in KD-tree scanning all vertices on the chain before scanning other vertices outside of the491

set P . As long as we make the KD-tree select a vertex in P as the starting point, we can ensure (as in492

Figure 2) that GreedySearch will scan all vertices in P before going to M or P 1.493

C.2 More experiments on other popular nearest neighbor search algorithms494

We further test the other 7 popular nearest neighbor search algorithms studied in the survey [35]. We495

use the same setting as in Section 4. We run each algorithm for 20 different data sizes n P t105, 2 ¨496

105, . . . , 2 ¨ 106u using hard instances in Figure 4, Figure 2, or Figure 7 (introduced in Appendix C.1).497

We plot the Recall@5 rate for answering the query with queue length L equal to pn where the498

percentage p is enumerated from the set 1%, 2%, . . . , 12%, 15%, 18%, 20%, 30%, 40%, 50%.499

NGT [18] We use NGT’s implementation from the authors’ GitHub repository [17]. We run NGT500

on the hard instance in Figure 2, using all default parameters as stated in GitHub’s readme, except that501

we use the command “-i g” to generate only the graph index, because of our focus on graph-based502

nearest neighbor search algorithms. We use command “-p 1” to set the number of threads to 1. We503

run this experiment 10 times and report the average recall.504

SSG [13] We use SSG implementation from the authors GitHub repository [12]. We run SSG on505

the hard instance in Figure 4, using parameters K “ 200, L “ 200, iter “ 12, S “ 10, R “ 100 (for506

building KNN graph) L “ 100, R “ 50, Angle “ 60 (constructing SSG). The parameters chosen507

here are copied from the author’s selected parameters for data set SIFT1M [21], whose data size is508

close to ours. We run this experiment 10 times using different random seeds and report the average509

recall.510

KGraph We use KGraph implementation due to [35], from the GitHub repository [36]. We run511

KGraph on the hard instance in Figure 4 using parameter K “ 100, L “ 130, iter “ 12, S “512

20, R “ 50. Parameters here are copied from the authors’ selected parameters used for their synthetic513

data set named “n_1000000”, whose size is close to ours. We run this experiment 5 times using514

different random seeds and report the average recall.515

DPG [25] We use DPG implementation due to [35], from the GitHub repository [36]. We run DPG516

on the hard instance in Figure 4 using parameter K “ 100, L “ 100, iter “ 12, S “ 20, R “ 300.517

Parameters here are copied from the authors’ selected parameters for their synthetic dataset named518

“n_1000000”, whose size is close to ours. We run this experiment 10 times using different random519

seeds and report the average recall.520

NSW [28] We use NSW’s implementation due to [35], from the GitHub repository [36]. We521

run NSW on the hard instance in Figure 4 (with a different vertex permutation) using parameter522

max_m0 “ 100, ef_construction “ 400. Parameters here are copied from the author’s selected523

parameters for their synthetic dataset named “n_1000000”, whose data size is close to ours. We run524

this experiment 5 times using different random seeds and report the average recall.525

SPTATG-KDT [7] We use SPTATG-KDT implementation due to [35], from the GitHub repository526

[36]. We run SPTATG-KDT on the hard instance in Figure 7 using parameters KDT_number “527

15

Figure 8: Results for running NGT algorithm on the family of instances in Figure 2. The horizontal
axis represents the data size n, in multiples of 105 points. The vertical axis represents the size of the
search queue length L in terms of the percentage of the data size. each pixel represents a query result,
with its Recall@5 P r0, 1s mapping to the spectrum on the right. We run NGT algorithm 10 times
and report the average recall rate.

1, TPT_number “ 16, TPT_leaf_size “ 1500, scale “ 2, CEF “ 1500. Parameters here are528

copied from the authors’ selected parameters for their synthetic dataset named “n_1000000”, whose529

size is close to ours. We run this experiment 5 times and report the average recall.530

EFANNA [11] We use EFANNA’s implementation due to [35], from the GitHub repository [36].531

We run EFANNA on the hard instance in Figure 7 using parameter nTrees “ 4,mLevel “ 8,K “532

80, L “ 140, iter “ 7, S “ 25, R “ 150. Parameters here are copied from the authors’ selected533

parameters for their synthetic dataset named “n_1000000”, whose size is close to ours. We run this534

experiment 10 times and report the average recall.535

Experimental results for these 7 algorithms are plotted in Figure 8, Figure 9, and Figure 10. We can536

see that all algorithms achieve suboptimal Recall@5 rates until the queue length L is greater than537

10% of the data size.538

16

Figure 9: Results for running SSG, KGraph, DPG, NSW algorithms on the family of instances in
Figure 4. The horizontal axis represents the data size n, in multiples of 105 points. The vertical axis
represents the size of the search queue length L in terms of the percentage of the data size. Each pixel
represents a query result, with its Recall@5 P r0, 1s mapping to the spectrum on the right. We run
each algorithm 10 (or 5) times and report the average recall rate.

Figure 10: Results for running SPTAG-KDT and EFANNA algorithms on the family of instances
in Figure 7. The horizontal axis represents the data size n, in multiples of 105 points. The vertical
axis represents the size of the search queue length L in terms of the percentage of the data size. Each
pixel represents a query result, with its Recall@5 P r0, 1s mapping to the spectrum on the right. We
run each algorithm 10 (or 5) times and report the average recall rate.

17

	Introduction
	Preliminaries
	Analysis of DiskANN
	Analysis: preprocessing
	Analysis: query procedure
	A tight convergence rate lower bound for DiskANN
	A tight approximation lower bound for DiskANN

	Experiments
	Hard instance for DiskANN
	Hard instance for NSG and HNSW
	Evaluating approximation ratio of the algorithms
	Experiments on other popular approximate nearest neighbor search algorithms

	Conclusions
	DiskANN Algorithm
	Dependence on aspect ratio
	More experimental results
	Hard instance for KD-Tree based nearest neighbor search algorithm
	More experiments on other popular nearest neighbor search algorithms

