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Abstract

Given a training set, a loss function, and a neural network architecture, it is often1

taken for granted that optimal network parameters exist, and a common practice2

is to apply available optimization algorithms to search for them. In this work, we3

show that the existence of an optimal solution is not always guaranteed, especially4

in the context of sparse ReLU neural networks. In particular, we first show that5

optimization problems involving deep networks with certain sparsity patterns do6

not always have optimal parameters, and that optimization algorithms may then7

diverge. Via a new topological relation between sparse ReLU neural networks8

and their linear counterparts, we derive –using existing tools from real algebraic9

geometry– an algorithm to verify that a given sparsity pattern suffers from this10

issue. Then, the existence of a global optimum is proved for every concrete11

optimization problem involving a one-hidden-layer sparse ReLU neural network of12

output dimension one. Overall, the analysis is based on the investigation of two13

topological properties of the space of functions implementable as sparse ReLU14

neural networks: a best approximation property, and a closedness property, both15

in the uniform norm. This is studied both for (finite) domains corresponding to16

practical training on finite training sets, and for more general domains such as the17

unit cube. This allows us to provide conditions for the guaranteed existence of an18

optimum given a sparsity pattern. The results apply not only to several sparsity19

patterns proposed in recent works on network pruning/sparsification, but also to20

classical dense neural networks, including architectures not covered by existing21

results.22

1 Introduction23

The optimization phase in deep learning consists in minimizing an objective function w.r.t. the set of24

parameters θ of a neural network (NN). While it is arguably sufficient for optimization algorithms to25

find local minima in practice, training is also expected to achieve the infimum in many situations (for26

example, in overparameterized regimes networks are trained to zero learning error).27

In this work, we take a step back and study a rather fundamental question: Given a deep learning28

architecture possibly with sparsity constraints, does its corresponding optimization problem actually29

admit an optimal θ∗? The question is important for at least two reasons:30

1. Practical viewpoint: If the problem does not admit an optimal solution, optimized parameters31

necessarily diverge to infinity to approximate the infimum (which always exists). This phenomenon32

has been studied thoroughly in previous works in other contexts such as tensor decomposition [7],33

robust principal component analysis [30], sparse matrix factorization [18] and also deep learning34

itself [26, 23, 12] . It causes inherent numerical instability for optimization algorithms. Moreover,35
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the answer to this question depends on the architecture of the neural networks (specified by the36

number of layers, layers width, activation function, and so forth). A response to this question37

might suggest a guideline for model and architecture selection.38

2. Theoretical viewpoint: the existence of optimal solutions is crucial for the analysis of algo-39

rithms and their properties (for example, the properties of convergence, or the characterization of40

properties of the optimum, related to the notion of implicit bias).41

One usual practical (and also theoretical) trick to bypass the question of the existence of optimal42

solutions is to add a regularization term, which is usually coercive, e.g., the L2 norm of the parameters.43

The existence of optimal solutions then follows by a classical argument on the extrema of a continuous44

function in a compact domain. Nevertheless, there are many settings where minimizing the regularized45

version might result in a high value of the loss since the algorithm has to make a trade-off between46

the loss and the regularizer. Such a scenario is discussed in Example 3.1. Therefore, studying the47

existence of optimal solutions without (explicit) regularization is also a question of interest.48

Given a training set {(xi, yi)}Pi=1, the problem of the existence of optimal solutions can be studied49

from the point of view of the set of functions implementable by the considered network architecture50

on the finite input domain Ω = {xi}Pi=1. This is the case since the loss is usually of the form51

`(fθ(xi), yi) where fθ is the realization of the neural network with parameters θ. Therefore, the52

loss involves directly the image of {xi}Pi=1 under the function fθ. For theoretical purposes, we53

also study the function space on the domain Ω = [−B,B]d, B > 0. In particular, we investigate54

two topological properties of these function spaces, both w.r.t. the infinity norm ‖ · ‖∞: the best55

approximation property (BAP), i.e., the guaranteed existence of an optimal solution θ∗, and the56

closedness, a necessary property for the BAP. These properties are studied in Section 3 and Section 4,57

respectively. Most of our analysis is dedicated to the case of regression problems. We do make some58

links to the case of classification problems in Section 3.59

We particularly focus on analyzing the function space associated with (structured) sparse ReLU60

neural networks, which is motivated by recent advances in machine learning witnessing a compelling61

empirical success of sparsity based methods in NNs and deep learning techniques, such as pruning62

[32, 14], sparse designed NN [4, 5], or the lottery ticket hypothesis [10] to name a few. Our approach63

exploits the notion of networks either with fixed sparsity level or with fixed sparsity pattern (or64

support). This allows us to establish results covering both classical NNs (whose weights are not65

contrained to be sparse) and sparse NNs architectures. Our main contributions are:66

1. To study the BAP (i.e., the existence of optimal solutions) in practical problems (finite Ω):67

we provide a necessary condition and a sufficient one on the architecture (embodied by a sparsity68

pattern) to guarantee such existence. As a particular consequence of our results, we show that:69

a) for one-hidden-layer NNs with a fixed sparsity level, the training problem on a finite data set70

always admits an optimal solution (cf. Theorem 3.4 and Corollary 3.1); b) however, practitioners71

should be cautious since there also exist fixed sparsity patterns that do not guarantee the existence72

of optimal solutions (cf. Theorem 3.1 and Example 3.1). In the context of an emerging emphasis73

on structured sparsity (e.g. for GPU-friendliness), this highlights the importance of choosing74

adequate sparsity patterns.75

2. To study the closedness of the function space on Ω = [−B,B]d. As in the finite case, we76

provide a necessary condition and a sufficient one for the closedness of the function space of77

ReLU NNs with a fixed sparsity pattern. In particular, our sufficient condition on one-hidden-layer78

networks generalizes the closedness results of [26, Theorem 3.8] on “dense’ one-hidden-layer79

ReLU NNs to the case of sparse ones, either with fixed sparsity pattern (cf. Theorem 4.2,80

Corollary 4.1 and Corollary 4.2) or fixed sparsity level (Corollary 4.3). Moreover, our necessary81

condition (Theorem 4.1), which is also applicable to deep architectures, exhibits sparsity structures82

failing the closedness property.83

Table 1 and Table 2 summarize our results and their positioning with respect to existing ones.84

Somewhat surprisingly, the necessary conditions in both domains (Ω finite and Ω = [−B,B]d) are85

identical. Our necessary/sufficient conditions also suggest a relation between sparse ReLU neural86

networks and their linear counterparts.87

The rest of this paper is organized as follows: Section 2 discusses related works and introduces88

notations; the two technical sections, Section 3 and Section 4, presents the results for the case Ω finite89

set and Ω = [−B,B]d respectively.90
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Works Architecture Activation
functions Ω Function space BAP

Theorem 3.4
Corollary 3.1

Sparse feed-forward
network ReLU finite set (RP×do , ‖ · ‖), arbitrary ‖ · ‖ X

[16][15] Feed-forward network Heavyside [0, 1]d (Lp(Ω), ‖ · ‖Lp ), ∀p ∈ [1,∞) X

[9][8]�
Feed-forward network,
Residual feed-forward

network
ReLU Rd

(Lpµ(Ω), ‖ · ‖Lp ), p = 2, µ is a
measure with compact support and is
continuous w.r.t Lebesgue measure

X(if the
target function
is continuous)

[26] Feedforward network ReLU, pReLU [−B,B]d (C0(Ω), ‖ · ‖∞) 5

Corollary 4.1† Feed-forward network ReLU [−B,B]d (C0(Ω), ‖ · ‖∞) 5

Corollary 4.2
Corollary 4.3

Sparse feed-forward
network ReLU [−B,B]d (C0(Ω), ‖ · ‖∞) 5

Table 1: Closedness results. All results are established for one-hidden-layer architectures with
scalar-valued output, except † (which is valid for one-hidden-layer architectures with vector-valued
output). In �, if the architecture is simply a feed-forward network, then the result is valid for any
p > 1.

Works Architecture Activation
functions Function space Assumptions are valid for any . . .

L NL−1 NL

[12] Feedforward
network Sigmoid (C0(Ω), ‖ · ‖∞) 5

(L = 2)
5

(NL−1 ≥ 2)
5

(NL = 1)

[20]� Feedforward
network ReLU (RNL×P , ‖ · ‖),

P = 6
5

(L = 2)
5

(NL−1 = 2)
5

(NL = 2)

[26] Feedforward
network

sigmoid, tanh, arctan,
ISRLU, ISRU (C0(Ω), ‖ · ‖∞)

X
5

(NL−1 ≥ 2)
5

(NL = 1)

sigmoid, tanh, arctan,
ISRLU, ISRU, ReLU,

pReLU
(Lp(Ω), ‖ · ‖Lp )

[23] Feedforward
network

ELU, softsign (W 1,p(Ω), ‖ · ‖Lp )
∀p ∈ [1,∞]

ISRLU (W 2,p(Ω), ‖ · ‖Lp )
∀p ∈ [1,∞]

ISRU, sigmoid, tanh,
arctan

(Wk,p(Ω), ‖ · ‖Lp )
∀k, ∀p ∈ [1,∞]

Theorem 4.1‡
Sparse

feedforward
network

ReLU (C0(Ω), ‖ · ‖∞) X X X

Theorem 3.1�
Sparse

feedforward
network

ReLU (RNL×P , ‖ · ‖) X X X

Table 2: Non-closedness results (notations in Section 2). Previous results consider Ω = [−B,B]d;
ours cover: � a finite Ω with P points; ‡ a bounded Ω with non-empty interior (this includes
Ω = [−B,B]d).

2 Related works91

The fact that optimal solutions may not exist in tensor decomposition problems is well-documented92

[7]. The cause of this phenomenon (also referred to as ill-posedness [7]) is the non-closedness of93

the set of tensors of order at least three and of rank at least two. Similar phenomena were shown to94

happen in various settings such as matrix completion [11, Example 2], robust principal component95

analysis [30] and sparse matrix factorization [18, Remark A.1]. Our work indeed establishes bridges96

between the phenomenon on sparse matrix factorization [18] and on sparse ReLU NNs.97

There is also an active line of research on the best approximation property and closedness of function98

spaces of neural networks. Existing results can be classified into two categories: negative results,99

which demonstrate the non-closedness and positive results for those showing the closedness or100

best approximation property of function spaces of NNs. Negative results can notably be found in101
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[12, 26, 23], showing that the set of functions implemented as conventional multilayer perceptrons102

with various activation functions such as Inverse Square Root Linear Unit (ISRLU), Inverse Square103

Root Unit (ISRU), parametric ReLU (pReLU), Exponential Linear Unit (ELU) [26, Table 1] is not104

a closed subset of classical function spaces (e.g., the Lebesgue spaces Lp, the set of continuous105

functions C0 equipped with the sup-norm, or Sobolev spaces W k,p). In a more practical setting, [20]106

hand-crafts a dataset of six points which makes the training problem of a dense one-hidden-layer107

neural network not admit any solution. Positive results are proved in [26, 16, 15], which establish108

both the closedness and/or the BAP. The BAP implies closedness [12, Proposition 3.1][26, Section109

3] (but the converse is not true, see Appendix D) hence the BAP can be more difficult to prove110

than closedness. So far, the only architecture proved to admit the best approximation property (and111

thus, also closedness) is one-hidden-layer neural networks with heavyside activation function and112

scalar-valued output (i.e., output dimension equal to one) [15] in Lp(Ω),∀p ∈ [1,∞]. If one allows113

additional assumptions such as the target function f being continuous, then BAP is also established114

for one-hidden layer and residual one-hidden-layer NNs with ReLU activation function [9, 8]. In all115

other settings, to the best of our knowledge, the only property proved in the literature is closedness,116

but the BAP remains elusive. We compare our results with existing works in Tables 1 and 2.117

In machine learning, there is an ongoing endeavour to explore sparse deep neural networks, as a118

prominent approach to reduce memory and computation overheads inherent in deep learning. One119

of its most well-known methods is Iterative Magnitude Pruning (IMP), which iteratively trains and120

prunes connections/neurons to achieve a certain level of sparsity. This method is employed in various121

works [14, 32], and is related to the so-called Lottery Ticket Hypothesis (LTH) [10]. The main issue122

of IMP is its running time: one typically needs to perform many steps of pruning and retraining123

to achieve a good trade-off between sparsity and performance. To address this issue, many works124

attempt to identify the sparsity patterns of the network before training. Once they are found, it is125

sufficient to train the sparse neural networks once. These pre-trained sparsity patterns can be found126

through algorithms [29, 31, 19] or leveraging the sparse structure of well-known fast linear operators127

such as the Discrete Fourier Transform [5, 4, 21, 6, 3]. Regardless of the approaches, these methods128

are bound to train a neural network with fixed sparsity pattern at some points. This is a particular129

motivation for our work and our study on the best approximation property of sparse ReLU neural130

networks with fixed sparsity pattern.131

Notations In this work, JnK := {1, . . . , n}. For a matrix A ∈ Rm×n, A[i, j] denotes the coefficient132

at the index (i, j); for subsets Sr ⊆ JmK, Sc ⊆ JnK, A[Sr, :] (resp. A[:, Sc]) is a matrix of the same133

size as A and agrees with A on rows in Sr (resp. columns in Sc) of A while its remaining coefficients134

are zero. The operator supp(A) := {(`, k) | A[`, k] 6= 0} returns the support of the matrix A. We135

denote 1m×n (resp. 0m×n) an all-one (resp. all-zero) matrix of size m× n.136

An architecture with fixed sparsity pattern is specified via I = (IL, . . . , I1), a collection of binary137

masks Ii ∈ {0, 1}Ni×Ni−1 , 1 ≤ i ≤ L, where the tuple (NL, . . . , N0) denotes the dimensions of138

the input layer N0 = d, hidden layers (NL−1, . . . , N1) and output layer (NL), respectively. The139

binary mask Ii encodes the support constraints on the ith weight matrix Wi, i.e., Ii[`, k] = 0 implies140

Wi[`, k] = 0. It is also convenient to think of Ii as the set {(`, k) | Ii[`, k] = 1}, a subset of141

JNiK× JNi−1K. We will use these two interpretations (binary mask and subset) interchangeably and142

the meaning should be clear from context. We will even abuse notations by denoting Il ⊆ 1Nl×Nl−1
.143

Because the support constraint I can be thought as a binary matrix, the notation I[Sr, :] (resp. I[:, Sc])144

represents the support constraint of I ∩ Sr × JnK (resp. I ∩ JnK× Sc).145

The space of parameters on the sparse architecture I is denoted NI, and for each θ ∈ NI, Rθ :146

RN0 7→ RNL is the function implemented by the ReLU network with parameter θ:147

Rθ : x ∈ RN0 7→ Rθ(x) := WLσ(. . . σ(W1x+ b1) . . .+ bL−1) + bL ∈ RNL (1)

where σ(x) = max(0, x) is the ReLU activation.148

Finally, for a given architecture I, we define149

LI = {XL . . .X1 | supp(Xi) ⊆ Ii, i ∈ JLK} ⊆ RNL×N0 (2)

the set of matrices factorized into L factors respecting the support constraints Ii, i ∈ JLK. In fact, LI150

is the set of linear operators implementable as linear neural networks (i.e., with σ = id instead of151

the ReLU in (1), and no biases) with parameters θ ∈ NI.152
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3 Analysis of fixed support ReLU neural networks for finite Ω153

The setting of a finite set Ω = {xi}Pi=1 is common in many practical machine learning tasks:154

models such as (sparse) neural networks are trained on often large (but finite) annotated dataset155

D = {(xi, yi)}Pi=1. The optimization/training problem usually takes the form:156

Minimize
θ

L(θ) =

P∑
i=1

`(Rθ(xi), yi), under sparsity constraints on θ (3)

where ` is a loss function measuring the similarity betweenRθ(xi) and yi. A natural question that157

we would like to address for this task is:158

Question 3.1. Under which conditions on I, the prescribed sparsity pattern for θ, does the training159

problem of sparse neural networks admit an optimal solution for any finite data set D?160

We investigate this question both for parameters θ constrained to satisfy a fixed sparsity pattern I, and161

in the case of a fixed sparsity level, see e.g. Corollary 4.3.162

After showing in Section 3.1 that the answer to Question 3.1 is intimately connected with the163

closedness of the function space of neural networks with architecture I, we establish in Section 3.2164

that this closedness implies the closedness of the matrix set LI (a property that can be checked165

using algorithms from real algebraic geometry, see Section 3.3). We also provide concrete examples166

of support patterns I where closedness provably fails, and neural network training can diverge.167

Section 3.4 presents sufficient conditions for closedness that enable us to show that an optimal168

solution always exists on scalar-valued one-hidden-layer networks under a constraint on the sparsity169

level of each layer.170

3.1 Equivalence between closedness and best approximation property171

To answer Question 3.1, it is convenient to view Ω as the matrix [x1, . . . , xP ] ∈ Rd×P and to consider172

the function space implemented by neural networks with the given architecture I on the input domain173

Ω in dimension d = N0, with output dimension NL, defined as the set174

FI(Ω) := {Rθ(Ω) | θ ∈ NI} ⊆ RNL×P (4)

where the matrixRθ(Ω) :=
[
Rθ(x1), . . . ,Rθ(xP )

]
∈ RNL×P is the image underRθ of Ω.175

We study the closedness of FI(Ω) under the usual topology induced by any norm ‖ · ‖ of RNL×P .176

This property is interesting because if FI(Ω) is closed for any Ω = {xi}Pi=1, then an optimal solution177

is guaranteed to exist for any D under classical assumptions of `(·, ·). The following result is not178

difficult to prove, we nevertheless provide a proof in Appendix B.1 for completeness.179

Proposition 3.1. Assume that, for any fixed y ∈ RNL , `(·, y) : RNL 7→ R is continuous, coercive and180

that y = arg miny′ `(y
′, y). For any sparsity pattern I with input dimension N0 = d the following181

properties are equivalent:182

1. irrespective of the training set, problem (3) under the constraint θ ∈ NI has an optimal solution;183

2. for every P and every Ω ∈ Rd×P , the function space FI(Ω) is a closed subspace of RNL×P .184

The assumption on ` is natural and realistic in regression problems: any loss function based on any185

norm on Rd (e.g. `(y′, y) = ‖y′ − y‖), such as the quadratic loss, satisfies this assumption. In the186

classification case, using the soft-max after the last layer together with the cross-entropy loss function187

indeed leads to an optimization problem with no optimum (regardless of the architecture) when given188

a single training pair. This is due to the fact that changing either the bias or the scales of the last189

layer can lead the output of the soft-max arbitrarily close to an ideal Dirac mass. It is an interesting190

challenge to identify whether sufficiently many and diverse training samples (as in concrete learning191

scenarios) make the problem better posed, and amenable to a relevant closedness analysis.192

In light of Proposition 3.1 we investigate next the closedness of FI(Ω) for finite Ω.193

3.2 A necessary closedness condition for fixed support ReLU networks194

Our next result reveals connections between the closedness of FI(Ω) for finite Ω and the closedness195

of LI, the space of sparse matrix products with sparsity pattern I.196
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Theorem 3.1. If FI(Ω) is closed for every finite Ω then LI is closed.197

Theorem 3.1 is a direct consequence of (and in fact logically equivalent to) the following lemma:198

Lemma 3.2. If LI is not closed then there exists a set Ω ⊂ Rd, d = N0, of cardinality at most199

P := (3N04
∑L−1
i=1 Ni + 1)N0 such that FI(Ω) is not closed.200

Sketch of the proof. Since LI is not closed, there exists A ∈ LI \ LI (L is the closure of the set201

L). Considering f(x) := Ax, we construct a set Ω = {xi}Pi=1 such that [f(x1), . . . , f(xP )] ∈202

FI(Ω) \ FI(Ω). Therefore, FI(Ω) is not closed.203

The proof is in Appendix B.2. Besides showing a topological connection between FI (NNs with204

ReLU activation) and LI (linear NNs), Theorem 3.1 leads to a simple example where FI is not closed.205

Example 3.1 (LU architecture). Consider I = (I2, I1) ∈ {0, 1}d×d×{0, 1}d×d where I1 = {(i, j) |206

1 ≤ i ≤ j ≤ d} and I2 = {(i, j) | 1 ≤ j ≤ i ≤ d}. Any pair of matrices X2,X1 ∈ Rd×d such that207

supp(Xi) ⊆ Ii, i = 1, 2 are respectively lower and upper triangular matrices. Therefore, LI is the208

set of matrices that admit an exact lower - upper (LU) factorization/decomposition. That explains its209

name: LU architecture. This set is well known to a) contain an open and dense subset of Rd×d; b) be210

strictly contained in Rd×d [13, Theorem 3.2.1] [25, Theorem 1]. Therefore, LI is not closed and by211

the contraposition of Theorem 3.1 we conclude that there exists a finite set Ω such that FI(Ω) is not212

closed.213

Figure 1: Training a one-hidden-layer fixed support (LU architecture) neural network with different
regularization hyperparameters λ (we use weight decay, i.e., an L2 regularizer). Subfigures a)-b)
show the relative loss (the lower, the better) for training (empirical loss) and testing (validation loss)
respectively. Subfigure c) shows the norm of two weight matrices. The experiments are conducted 10
times to produce the error bars in all figures (almost invisible due to a small variability).

Let us illustrate the impact of the non-closedness in Example 3.1 via the behavior during the training214

of a fixed support one-hidden-layer neural network with the LU support constraint I. This network is215

trained to learn the linear function f(x) := Ax where A ∈ Rd×d is an anti-diagonal identity matrix.216

Using the necessary and sufficient condition of LU decomposition existence [25, Theorem 1], we217

have that A ∈ LI\LI as in the sketch proof of Lemma 3.2. Given network parameters θ and a training218

set, approximation quality can be measured by the relative loss: 1
P (
∑P
i=1 ‖Rθ(xi)− yi‖22/‖yi‖22).219

Figure 1 illustrates the behavior of the relative errors of the training set, validation set and the sum of220

weight matrices norm along epochs, using Stochastic Gradient Descent (SGD) with batch size 3000,221

learning rate 0.1, momentum 0.9 and four different weight decays (the hyperparameter controlling the222

L2 regularizer) λ ∈ ×{0, 10−4, 5× 10−4, 10−3}. The case λ = 0 corresponds to the unregularized223

case. Our training and testing sets contain each P = 105 samples generated independently as224

xi ∼ U([−1, 1]d) (d = 100) and yi := Axi.225

Example 3.1 and Figure 1 also lead to two interesting remarks: while the L2 regularizer (weight226

decay) does prevent the parameter divergence phenomenon, the empirical loss is improved when227

using the non-regularized version. This is the situation where adding a regularization term might be228

detrimental, as stated earlier. More interestingly, the size of the dataset is 105, which is much smaller229

than the theoretical P in Lemma 3.2. It is thus interesting to see if we can reduce the theoretical value230

of P , which is currently exponential w.r.t. to the input dimension.231
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3.3 The closedness of LI is algorithmically decidable232

Theorem 3.1 leads to a natural question: given I, how to check the closedness of LI, a subset of233

RNL×N0 . To the best of our knowledge, there is not any study on the closedness of LI in the literature.234

It is, thus, not known whether deciding on the closedness of LI for a given I is polynomially tractable.235

In this work, we show it is at least decidable with a doubly-exponential algorithm. This algorithm is236

an application of quantifier elimination, an algorithm from real algebraic geometry [2].237

Lemma 3.3. Given I = (IL, . . . , I1), the closedness of LI is decidable with an algorithm of238

complexity O((4L)C
k−1

) where k = NLN0 + 1 + 2
∑L
i=1 |Li| and C is a universal constant.239

We prove Lemma 3.3 in Appendix B.4. Since the knowledge of I is usually available (either fixed240

before training [19, 31, 4, 21, 3] or discovered by a procedure before re-training [10, 14, 32]), the241

algorithm in Lemma 3.3 is able to verify whether the training problem might not admit an optimum.242

While such a doubly exponential algorithm in Lemma 3.3 is seemingly impractical in practice, small243

toy examples (for example, Example 3.1 with d = 2) can be verified using Z3Prover1, a software244

implementing exactly the algorithm in Lemma 3.3. However, Z3Prover is already unable to terminate245

when run on the LU architecture of Example 3.1 with d = 3. This calls for more efficient algorithms246

to determine the closedness of LI given I. The same algorithmic question can be also asked for FI.247

We leave these problems (in this general form) as open questions.248

In fact, if such a polynomial algorithm (to decide the closedness of LI) exists, it can be used to answer249

the following interesting question:250

Question 3.2. If the supports of the weight matrices are randomly sampled from a distribution, what251

is the probability that the corresponding training problem potentially admits no optimal solutions?252

While simple, this setting does happen in practice since random supports/binary masks are considered253

a strong and common baseline for sparse DNNs training [22]. Thanks to Theorem 3.1, if LI is not254

closed then the support is “bad”. Thus, to have an estimation of a lower bound on the probability255

of “bad” supports, we could sample the supports from the given distribution and use the polynomial256

algorithm in question to decide if LI is closed. Unfortunately, the algorithm in Lemma 3.3 has doubly257

exponential complexity, thus hindering its practical use. However, for one-hidden-layer NNs, there258

is a polynomial algorithm to detect non-closedness: intuitively, if the support constraint is “locally259

similar” to the LU structure, then LI is not closed. This result is elaborated in Appendix B.5 and260

Lemma B.8. The resulting detection algorithm can have false negatives (i.e., it can fail to detect more261

complex configurations where LI is not closed) but no false positive.262

Figure 2: Probability of detectable “bad” support constraints sampled from uniform distribution over
100 samples.

1The package is developed by Microsoft research and it can be found at https://github.com/Z3Prover/z3
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We test this algorithm on a one-hidden layer ReLU network with two 100 × 100 weight matrices.263

We randomly choose their supports whose cardinality are p1 · 1002 and p2 · 1002 respectively, with264

(p1, p2) ∈ {0.1, 0.2, . . . , 1.0}2. For each pair (p1, p2), we sample 100 instances. Using the detection265

algorithm, we obtain Figure 2. The numbers in Figure 2 indicate the probability that a random support266

constraint (I, J) has EI,J non-closed (as detected by the algorithm). This figure shows two things:267

1) “Bad” architectures such as LU are not rare and one can (randomly) generate plenty of them. 2)268

At a sparse regime (a1, a2 ≤ 0.2), most of the random supports might lead to training problems269

without optimal solutions. We remind that the detection algorithm may give some false negatives.270

Thus, for less sparse regimes, it is possible that our heuristic fails to detect the non-closedness. The271

algorithm indeed gives a lower bound on the probability of finding non-closed instances. The code272

for Example 3.1, Question 3.2 and the algorithm in Lemma 3.3 is provided in [17].273

3.4 Best approximation property of scalar-valued one-hidden-layer sparse networks274

So far, we introduced a necessary condition for the closedness (and thus, by Proposition 3.1, the best275

approximation property) of sparse ReLU networks, and we provided an example of an architecture276

I whose training problem might not admit any optimal solution. One might wonder if there are277

architectures I that avoid the issue caused by the non-closedness of FI. Indeed, we show that for278

one-hidden-layer sparse ReLU neural networks with scalar output dimension (i.e., L = 2, N2 = 1),279

the existence of optimal solutions is guaranteed, regardless of the sparsity pattern.280

Theorem 3.4. Consider scalar-valued, one-hidden-layer ReLU neural networks (i.e., L = 2, N2 =281

1). For any support pairs I = (I2, I1) and any finite set Ω := {x1, . . . , xP }, FI(Ω) is closed.282

The proof of Theorem 3.4 is deferred to Appendix B.3. As a sanity check, observe that when L =283

2, N2 = 1, the necessary condition in Theorem 3.1 is satisfied. Indeed, since N2 = 1, LI ⊆ R1×N0284

can be thought as a subset of RN0 . Any X ∈ LI can be written as a sum: X =
∑
i∈I2 W2[i]W1[i, :],285

a decomposition of the product W2W1, where W2[i] ∈ R,W1[i, :] ∈ RN0 , supp(W1[i, :]) ⊆286

I1[i, :]. DefineH := ∪i∈I2I1[i, :] ⊆ JN0K the union of row supports of the first weight matrix. It is287

easy to verify that LI is isomorphic to R|H|, which is closed. In fact, this argument only works for288

scalar-valued output, N2 = 1. Thus, there is no conflict between Theorem 3.1 and Theorem 3.4.289

In practice, many approaches search for the best support I among a collection of possible supports,290

for example, the approach of pruning and training [14, 32] or the lottery ticket hypothesis [10]. Our291

result for fixed support in Theorem 3.4 can be also applied in this case and is stated in Corollary 3.1.292

In particular, we consider a set of supports such that the support sizes (or sparsity ratios) of the layers293

are kept below a certain threshold Ki, i = 1, . . . , L. This constraint on the sparsity level of each294

layer is widely used in many works on sparse neural networks [14, 32, 10].295

Corollary 3.1. Consider scalar-valued, one-hidden-layer ReLU neural networks. For any finite data296

set2 D = (xi, yi)
P
i=1, problem (3) under the constraints ‖Wi‖0 ≤ Ki, i = 1, 2 has a minimizer.297

Proof. Denote I the collection of sparsity patterns satisfying ‖Ii‖0 ≤ Ki, i = 1, 2, so that a set of298

parameters satisfies the sparsity constraints ‖Wi‖0 ≤ Ki, i = 1, 2 if and only if the supports of the299

weight matrices belong to I. Therefore, to solve the optimization problem under sparsity constraints300

‖Wi‖0 ≤ Ki, i = 1, 2, it is sufficient to solve the same problem for every sparsity pattern in I.301

For each I ∈ I , we solve a training problem with architecture I on a given finite dataset D. Thanks to302

Theorem 3.4 and Proposition 3.1, the infimum is attained. We take the optimal solution corresponding303

to I that yields the smallest value of the loss function L. This is possible because the set I has a finite304

number of elements (the total number of possible sparsity patterns is finite).305

4 Analysis of fixed support ReLU networks on continuous domains306

We now investigate closedness properties when the domain Ω ⊆ Rd is no longer finite. Denoting307

FI = {Rθ : RN0 7→ RNL | θ ∈ NI} (with N0 = d) the functions that can be implemented on a308

given ReLU network architecture I, we are interested in FI(Ω) = {f|Ω : f ∈ FI}, the restriction of309

elements of FI to Ω. This is a natural extension of the set FI(Ω) studied in the case of finite Ω.310

2Notice that D contains both input vectors xi and targets yi, unlike Ω which only contains the inputs.
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Specifically, we investigate the closedness of FI(Ω) in (C0(Ω), ‖ · ‖∞) (the set of continuous311

functions on Ω equipped with the supremum norm ‖f‖∞ := supx∈Ω ‖f(x)‖2). Contrary to the312

previous section, we can no longer exploit Proposition 3.1 to deduce that the closedness property313

and the BAP are equivalent. The results in this section can be seen as a continuation (and also314

generalization) of the line of research on the topological property of function space of neural315

networks [26, 12, 16, 15, 23]. In Section 4.1 and Section 4.2, we provide a necessary and a sufficient316

condition on I for the closedness of FI(Ω) in (C0(Ω, ‖ · ‖∞) respectively. The condition of the317

former is valid for any depth, while that of the latter is applicable for one-hidden-layer networks318

(L = 2). These results are established under various assumptions on Ω (such as Ω = [−B,B]d, or Ω319

being bounded with non-empty interior) that will be specified in each result.320

4.1 A necessary condition for closedness of fixed support ReLU network321

Theorem 4.1 states our result on the necessary condition for the closedness. Interestingly, observe that322

this result (which is proved in Appendix C.1) naturally generalizes Theorem 3.1. Again, closedness323

of LI in RNL×N0 is with respect to the usual topology defined by any norm.324

Theorem 4.1. Consider Ω ⊂ Rd a bounded set with non-empty interior, and I a sparse architecture325

with input dimension N0 = d. If FI(Ω) is closed in (C0(Ω), ‖ · ‖∞) then LI is closed in RNL×N0 .326

Theorem 4.1 applies for any Ω which is bounded and has non-empty interior. Thus, it encompasses327

not only the hypercubes [−B,B]d, B > 0 but also many other domains such as closed or open Rd328

balls. Similar to Theorem 3.1, Theorem 4.1 is interesting in the sense that it allows us to check329

the non-closedness of the function space FI (a subset of the infinite-dimensional space C0(Ω)) by330

checking that of LI ⊆ RNL×N0 (a finite-dimensional space). The latter can be checked using the331

algorithm presented in Lemma 3.3. Moreover, the LU architecture presented in Example 3.1 is also332

an example of I whose function space is not closed in (C0(Ω), ‖ · ‖∞).333

4.2 A sufficient condition for closedness of fixed support ReLU network334

The following theorem is the main result of this section. It provides a sufficient condition to verify the335

closedness of FI(Ω) for Ω = [−B,B]d, B > 0 with one-hidden-layer sparse ReLU neural networks.336

Theorem 4.2. Consider Ω = [−B,B]d, N0 = d and a sparsity pattern I = (I2, I1) such that:337

1. There is no support constraint for the weight matrix of the second layer, W2: I2 = 1N2×N1 ;338

2. For each non-empty set of hidden neurons, S ⊆ JN1K, LIS is closed in RN2×N1 , where IS :=339

(I2[:, S], I1[S, :]) is the support constraint restricted to the sub-network with hidden neurons in S.340

Then the set FI(Ω) is closed in (C0(Ω), ‖ · ‖∞).341

Both conditions in Theorem 4.2 can be verified algorithmically: while the first one is trivial to check,342

the second one requires us to check the closedness of at most 2N1 sets LIS (because there are at most343

2N1 subsets of JN1K), which is still algorithmically possible (although perhaps practically intractable)344

with the algorithm of Lemma 3.3. Apart from its algorithmic aspect, we present two interesting345

corollaries of Theorem 4.2. The first one, Corollary 4.1, is about the closedness of the function space346

of fully connected (i.e., with no sparsity constraint) one-hidden-layer neural networks.347

Corollary 4.1 (Closedness of fully connected one-hidden-layer ReLU networks of any output di-348

mension). Given I = (1N2×N1
,1N1×N0

), the set FI is closed in (C0([−B,B]d), ‖ · ‖∞) where349

d = N0.350

Proof. The result follows from Theorem 4.2 once we check if its assumptions hold. The first one is351

trivial. To check the second, observe that for every non-empty set of hidden neurons S ⊆ JN1K, the352

set LIS ⊆ RN2×N0 is simply the set of matrices of rank at most |S|, which is closed for any S.353

Corollary 4.2 states the closedness of scalar-valued, one-hidden-layer sparse ReLU NNs. In a way, it354

can be seen as the analog of Theorem 3.4 for Ω = [−B,B]d.355

Corollary 4.2 (Closedness of fixed support one-hidden-layer ReLU networks with scalar output).356

Given any input dimension d = N0 ≥ 1, any number of hidden neurons N1 ≥ 1, scalar output dimen-357

sionN2 = 1, and any prescribed supports I = (I2, I1), the setFI is closed in (C0([−B,B]d), ‖·‖∞).358
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Sketch of the proof. If there exists a hidden neuron i ∈ JN1K such that I2[i] = 0 (i.e., i /∈ I2: i is not359

connected to the only output of the network), we have: FI = FI′ where I′ = IS , S = JN1K \ {i}.360

By repeating this process, we can assume without loss of generality that I2[i] = 11×N1 . That is the361

first condition of Theorem 4.2.362

Therefore, it is sufficient to verify the second condition of Theorem 4.2. Consider any non-empty363

set of hidden neurons S ⊆ JN1K, and defineH := ∪i∈SI[i, :] ⊆ JN0K the union of row supports of364

I1[S, :]. It is easy to verify that LIS is isomorphic to R|H|, which is closed. The result follows by365

Theorem 4.2. For a more formal proof, readers can find an inductive one in Appendix C.3.366

In fact, both Corollary 4.1 and Corollary 4.2 generalize [26, Theorem 3.8], which proves the367

closedness of FI([−B,B]d) when I2 = 11×N1 , I1 = 1N1×N0 (classical fully connected one-hidden-368

layer ReLU networks with output dimension equal to one).369

To conclude, let us consider the analog to Corollary 3.1: we study the function space implementable370

as a sparse one-hidden-layer network with constraints on the sparsity level of each layer (i.e.,371

‖Wi‖0 ≤ Ki, i = 1, 2.372

Corollary 4.3. Consider scalar-valued, one-hidden-layer ReLU networks (L = 2, N2 = 1, N1, N0)373

with `0 constraints ‖W1‖0 ≤ K1, ‖W2‖0 ≤ K2 for some constants K1,K2 ∈ N. The function374

space F([−B,B]d) associated with this architecture is closed in (C0([−B,B]N0), ‖ · ‖∞).375

Proof. Denote I := {(I2, I1) | I2 ⊆ J1K× JN1K, I1 ⊆ JN1K× JN0K, |I1| ≤ K1, |I2| ≤ K2} the set376

of sparsity patterns respecting the `0 constraints, so that F([−B,B]d) =
⋃

I∈I FI([−B,B]d). Since377

I is finite and ∀I ∈ I,FI([−B,B]d) is closed (Corollary 4.2), the result is proved.378

5 Conclusion379

In this paper, we study the somewhat overlooked question of the existence of an optimal solution380

to sparse neural network training problems. The study is accomplished by adopting the point of381

view of topological properties of the function spaces of such networks on two types of domains: a382

finite domain Ω, or (typically) a hypercube. On the one hand, our investigation of the BAP and the383

closedness of these function spaces reveals the existence of pathological sparsity patterns that fail to384

have optimal solutions on some instances (cf Theorem 3.1 and Theorem 4.1) and thus possibly cause385

instabilities in optimization algorithms (see Example 3.1 and Figure 1). On the other hand, we also386

prove several positive results on the BAP and closedness, notably for sparse one-hidden-layer ReLU387

neural networks (cf. Theorem 3.4 and Theorem 4.2). These results provide new instances of network388

architectures where the BAP is proved (cf Theorem 3.4) and substantially generalize existing ones389

(cf. Theorem 4.2).390

In the future, a particular theoretical challenge is to propose necessary and sufficient conditions for391

the BAP and closedness of FI(Ω), if possible covering in a single framework both types of domains392

Ω considered here. The fact that the conditions established on these two types of domains are very393

similar (cf. the similarity between Theorem 3.1 and Theorem 4.1, as well as between Theorem 3.4394

and Corollary 4.2) is encouraging. Another interesting algorithmic challenge is to substantially395

reduce the complexity of the algorithm to decide the closedness of LI in Lemma 3.3, which is396

currently doubly exponential. It calls for a more efficient algorithm to make this check more practical.397

Achieving a practically tractable algorithm would for instance allow to check if a support selected398

e.g. by IMP is pathological or not. This would certainly consolidate the algorithmic robustness399

and theoretical foundations of pruning techniques to sparsity deep neural networks. From a more400

theoretical perspective, the existence of an optimum solution in the context of classical linear inverse401

problems has been widely used to analyze the desirable properties of certain cost functions, e.g. `1402

minimization for sparse recovery. Knowing that an optimal solution exists for a given sparse neural403

network training problem is thus likely to open the door to further fruitful insights.404
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A Additional notations502

In this work, matrices are written in bold uppercase letters. Vectors are written in bold lowercase503

letters only if they indicate network parameters (such as bias). For a matrix A ∈ Rm×n, we use504

A[i, :] ∈ R1×n (resp. A[:, i] ∈ Rm×1) to denote the row (resp. column) vector corresponding the505

ith row (resp. column) of A. To ease the notation, we write A[i, :]v to denote the scalar product506

between A[i, :] and the vector v ∈ Rn. This notation will be used regularly when we decompose the507

functions of one-hidden-neural networks into sum of functions corresponding to hidden neurons.508

For a vector v ∈ Rd, v[I] ∈ R|I| is the vector v restricted to coefficients in I ⊆ JdK. If I = {i} a509

singleton, v[i] ∈ R is the ith coefficient of v. We also use 1m and 0m to denote an all-one (resp.510

all-zero) vector of size m.511

For a dense (fully connected) feedforward architecture, we denote N = (NL, . . . , N0) the dimensions512

of the input layer N0 = d, hidden layers (NL−1, . . . , N1) and output layer (NL), respectively. The513

parameters space of the dense architecture N is denoted by NN: it is the set of all coefficients of the514

weight matrices Wi ∈ RNi×Ni−1 and bias vectors bi ∈ RNi , i = 1, . . . , L. It is easy to verify that515

NN is isomorphic to RN where N =
∑L
i=1Ni−1Ni +

∑L
i=1Ni is the total number of parameters516

of the architecture.517

Clearly, NI ⊆ NN since:518

NI := {θ = ((Wi,bi))i=1,...,L : supp(Wi) ⊆ Ii,∀i = 1, . . . , L.}. (5)

A special subset of NI is the set of network parameters with zero biases,519

N 0
I := {θ = ((Wi,0Ni))i=1,...,L : supp(Wi) ⊆ Ii,∀i = 1, . . . , L.}. (6)

Given an activation function ν, the realizationRνθ of a neural network θ ∈ NN is the function520

Rνθ : x ∈ RN0 7→ Rνθ (x) := WLν(. . . ν(W1x+ b1) . . .+ bL−1) + bL ∈ RNL (7)

We denote Rν : θ 7→ Rνθ the functional mapping from a set of parameters θ to its realization. The521

function space associated to a sparse architecture I and activation function ν is the image ofNI under522

Rν :523

FνI := Rν(NI). (8)

When ν = σ the ReLU activation function, we recover the definition of realization in Equation (1).524

We use the shorthands525

Rθ := Rσθ
FI := FσI ,

(9)

as in the main text. This allows us to define LI (cf. Equation (2)) as LI := RId(N 0
I ) where ν = Id is526

the identity map, which is a subset of linear maps RN0 7→ RNL .527

B Proofs for results in Section 3528

B.1 Proof of Proposition 3.1529

Proof. First, we remind the problem of the training of a sparse neural network on a finite data set530

D = {(xi, yi)}Pi=1:531

Minimize
θ∈NI

L(θ) :=

P∑
i=1

`(Rθ(xi), yi), (10)

which shares the same optimal value as the following optimization problem:532

Minimize
D∈FI(Ω)

L(D) :=

P∑
i=1

`(D[:, i], yi) (11)

where Ω = {xi}Pi=1. This is simply a change of variables: from Rθ(xi) to the ith column of533

D = Rθ(Ω). We prove two implications as follows:534
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1. Assume the closedness of FI(Ω) for every finite Ω. Then an optimal solution of the optimization535

problem (10) exists for every finite data set {(xi, yi)}Pi=1. Consider a training set {(xi, yi)}Pi=1536

and Ω := {xi}Pi=1. Since D := 0P×NL ∈ FI(Ω) (by setting all parameters in θ equal to zero),537

the set FI(Ω) is non-empty. The optimal value of (11) is thus upper bounded by L(0). Since the538

function `(·, yi) is coercive for every yi in the training set, there exists a constant C (dependent539

on the training set and the loss) such that minimizing (11) on FI(Ω) or on FI(Ω) ∩ B(0, C)540

(with B(0, C) the L2 ball of radius C centered at zero) yields the same infimum. The function541

L is continuous, since each `(·, yi) is continuous by assumption, and the set FI(Ω) ∩ B(0, C) is542

compact, since it is closed (as an intersection of two closed sets) and bounded (since B(0, C) is543

bounded). As a result there exists a matrix D ∈ FI(Ω) ∩ B(0, C) yielding the optimal value for544

(11). Thus, the parameters θ such thatRθ(Ω) = D is an optimal solution of (10).545

2. Assume that an optimal solution of problem 10 exists for every finite data set {(xi, yi)}Pi=1. Then
FI(Ω) is closed for every Ω finite. We prove the contraposition of this claim. Assume there exists
a finite set Ω = {xi}Pi=1 such that FI(Ω) is not closed. Then, there exists a matrix D ∈ RNL×P
such that D ∈ FI(Ω) \ FI(Ω). Consider the dataset {(xi, yi)}Pi=1 where yi ∈ RNL is the ith
column of D. We prove that the infimum value of (10) is V :=

∑P
i=1 `(yi, yi). Indeed, since

D ∈ FI(Ω), there exists a sequence {θk}k∈N such that limk→∞Rθk(Ω) = D. Therefore, by
continuity of `(·, yi), we have:

lim
k→∞

L(θk) =

P∑
i=1

lim
k→∞

`(Rθk(xi), yi) =

P∑
i=1

`(yi, yi) = V.

Moreover, the infimum cannot be smaller than V because the ith summand is at least `(yi, yi)546

(due to the assumption on ` in Proposition 3.1). Therefore, the infimum value is indeed V . Since547

we assume that y is the only minimizer of y′ 7→ `(y′, y), this value can be achieved only if there548

exists a parameter θ ∈ I such thatRθ(Ω) = D. This is impossible due to our choice of D which549

does not belong to FI(Ω). We conclude that with our constructed data set D, an optimal solution550

does not exist for (10).551

B.2 Proof of Lemma 3.2552

The proof of Lemma 3.2 (and thus, as discussed in the main text, of Theorem 3.1) use four technical553

lemmas. Lemma B.1 is proved in Appendix C.1 since it involves Theorem 4.1. The other lemmas are554

proved right after the proof of Lemma 3.2.555

Lemma B.1. If A ∈ LI\LI ⊆ RNL×N0 then the function f : x 7→ f(x) := Ax satisfies f ∈556

FI(Ω) \ FI(Ω) for every subset Ω of RN0 that is bounded with non-empty interior.557

Lemma B.2. Consider Ω = {xi}Pi=1 a finite subset of Rdand Ω′ = [−B,B]d such that Ω ⊆ Ω′. If558

f ∈ FI(Ω′) (under the topology induced by ‖ · ‖∞), then D :=
[
f(x1) . . . f(xP )

]
∈ FI(Ω).559

Lemma B.3. Consider Rθ, the realization of a ReLU neural network with parameter θ ∈ I. This560

function is continuous and piecewise linear. On the interior of each piece, its Jacobian matrix is561

constant and satisfies J ∈ LI.562

Lemma B.4. For p,N ∈ N, consider the following set of points (a discretized grid for [0, 1]N ):

Ω = ΩNp =

{(
i1
p
, . . . ,

iN
p

)
| 0 ≤ ij ≤ p, ij ∈ N,∀1 ≤ j ≤ N

}
.

If H ∈ N satisfies p ≥ 3NH , then for any collection of H hyperplanes, there exists x ∈ ΩNp such
that the elementary hypercube whose vertices are of the form{

x+

(
i1
p
, . . . ,

iN
p

)
| ij ∈ {0, 1} ∀1 ≤ j ≤ N

}
⊆ ΩNp

lies entirely inside a polytope delimited by these hyperplanes.563

We are now ready to prove Lemma 3.2.564
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Proof of Lemma 3.2. Since LI is not closed, there exists a matrix A ∈ LI \ LI, and we consider
f(x) := Ax. Setting p := 3N04

∑L−1
i=1 Ni we construct Ω as the grid:

Ω =

{(
i1
p
, . . . ,

iN0

p

)
| 0 ≤ ij ≤ p, ij ∈ N, ∀1 ≤ j ≤ N0

}
,

so that the cardinality of Ω = {xi}Pi=1 is P := (p + 1)N0 . Similar to the sketch proof, consider565

D :=
[
f(x1), f(x2), . . . , f(xP )

]
. Our goal is to prove that D ∈ FI(Ω) \ FI(Ω).566

First, notice that D ∈ FI(Ω) as an immediate consequence of Lemma B.2 and Lemma B.1.567

It remains to show that D /∈ FI(Ω). We proceed by contradiction, assuming that there exists θ ∈ NI568

such thatRθ(Ω) = D.569

To show the contradiction, we start by showing that, as a consequence of Lemma B.4 there exists570

x ∈ Ω such that the hypercube whose vertices are the 2N0 points571 {
x+

(
i1
p
, . . . ,

iN0

p

)
| ij ∈ {0, 1},∀1 ≤ j ≤ N0

}
⊆ Ω, (12)

lies entirely inside a linear region P of the continuous piecewise linear function Rθ [1]. Denote572

K = 2
∑L
i=1Ni a bound on the number of such linear regions, see e.g. [24]. Each frontier between a573

pair of linear regions can be completed into a hyperplane, leading to at most H = K2 hyperplanes.574

Since p = 3N0K
2 ≥ 3N0H , by Lemma B.4 there exists x ∈ Ω such that the claimed hypercube lies575

entirely inside a polytope delimited by these hyperplanes. As this polytope is itself included in some576

linear region P ofRθ, this establishes our intermediate claim.577

Now, define v0 := x and vi := x+ (1/p)ei, i ∈ JN0K where ei is the ith canonical vector. Denote
P ∈ RNL×N0 the matrix such that the restriction ofRθ to the piece P is fP(x) = Px+ b. Since P
is the Jacobian matrix ofRθ in the linear region P , we deduce from Lemma B.3 that P ∈ LI. Since
the points vi belong to the hypercube which is both included in P and in Ω we have for each i:

P(v0 − vi) = fP(v0)− fP(vi)

= Rθ(v0)−Rθ(vi)
= f(v0)− f(vi)

= A(v0 − vi).

where the third equality follows from the definition of D and the fact that we assumeRθ(Ω) = D.578

Since v0 − vi = ei/p, i = 1, . . . , n are linearly independent, we conclude that P = A. This implies579

A ∈ LI, hence the contradiction. This concludes the proof.580

We now prove the intermediate technical lemmas.581

Proof of Lemma B.2. Since f ∈ FI(Ω′), there exists a sequence {θk}k∈N such that:

lim
k→∞

sup
x∈Ω′

‖f(x)−Rθk(x)‖ = 0

Denoting Dk :=
[
Rθk(x1) . . .Rθk(xr)

]
, since xi ∈ Ω ⊆ Ω′, i = 1, . . . , P , it follows that Dk582

converges to D. Since Dk ∈ FI(Ω) by construction, we get that D ∈ FI(Ω).583

Proof of Lemma B.3. For any θ ∈ I, Rθ is a continuous piecewise linear function since it is the
realization of a ReLU neural network [1]. Consider P a linear region ofRθ with non-empty interior.
The Jacobian matrix of P has the following form [28, Lemma 9]:

J = WLDL−1WL−1DL−2 . . .D1W1

where Di is a binary diagonal matrix (diagonal matrix whose coefficients are either one or zero).584

Since supp(DiWi) ⊆ supp(Wi) ⊆ Ii, we have: J = WL

∏L−1
i=1 (DiWi) ∈ LI .585
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Proof of Lemma B.4. Every edge of an elementary hypercube can be written as:(
x, x+

1

p
ei

)
, x ∈ ΩNp

where ei is the ith canonical vector, 1 ≤ i ≤ N . The points x and x+ (1/p)ei are two endpoints.586

Note that in this proof we use the notation (a, b) to denote the line segment whose endpoints are587

a and b. By construction, ΩNp contains pN such elementary hypercubes. Given a collection of H588

hyperplanes, we say that an elementary hypercube is an intersecting hypercube if it does not lie589

entirely inside a polytope generated by the hyperplanes, meaning that there exists a hyperplane that590

intersects at least one of its edges. More specifically, an edge and a hyperplane intersect if they have591

exactly one common point. We exclude the case where there are more than two common points since592

that implies that the edge lies completely in the hyperplane. The edges that are intersected by at least593

one hyperplane are called intersecting edges. Note that a hypercube can have intersecting edges, but594

it may not be an intersecting one. A visual illustration of this idea is presented in Figure 3.595

intersecting edge

hyperplane

non-intersecting edge
a) b) c)

Figure 3: Illustration of definitions in R2: a) an intersecting hypercube with two intersecting edges;
b) not an intersecting hypercube, but it has two intersecting edges; c) not an intersecting hypercube
and it only has two intersecting edges (not three according to our definitions: the bottom edge is not
intersecting).

Formally, a hyperplane {w>x+ b = 0} for w ∈ RN and b ∈ R intersects an edge (x, x+ 1
pei) if:596 

(w>x+ b)
[
w>(x+ 1

pei) + b
]
≤ 0

and
w>x+ b 6= 0 or w>(x+ 1

pei) + b 6= 0

(13)

We further illustrate these notions in Figure 4. We emphasize that according to Equation (13), `3 in597

Figure 4 does not intersect any edge along its direction.

`1

`2

`3

intersecting hypercube

non-intersecting hypercube

hyperplane

intersecting edge

Figure 4: Illustration of intersecting hypercubes and hyperplanes in R2.
598

Clearly, the number of intersecting hypercubes is upper bounded by the number of intersecting edges.599

The rest of the proof is devoted to showing that this number is strictly smaller than pN if p ≥ 3NH ,600

as this will imply the existence of at least one non-intersecting hypercube.601
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To estimate the maximum number of intersecting edges, we analyze the maximum number of edges
that a given hyperplane can intersect. For a fixed index 1 ≤ i ≤ N , we count the number of edges of
the form (x, x + 1

pei) intersected by a single hyperplane. The key observation is: if we fix all the
coordinates of x except the ith one, then the edges (x, x + 1

pei) form a line in the ambient space.
Among those edges, there are at most two intersecting edges with respect to the given hyperplane.
This happens only when the hyperplane intersects an edge at one of its endpoints (e.g., the hyperplane
`2 and the second vertical line in Figure 4). In total, for each 1 ≤ i ≤ N and each given hyperplane,
there are at most 2(p+ 1)N−1 intersecting edges of the form (x, x+ 1

pei). For a given hyperplane,
there are thus at most 2N(p+ 1)N−1 intersecting edges in total (since i ∈ JNK). Since the number
of hyperplanes is at most H , there are at most 2NH(p+ 1)N−1 intersecting edges, and this quantity
also bounds the number of intersecting cubes as we have seen. With the assumption p ≥ 3NH , we
conclude by proving that pN > 2NH(p+ 1)N−1. Indeed, we have:

2NH(p+ 1)N−1

pN
=

2NH

p

(
p+ 1

p

)N−1

=
2NH

p

(
1 +

1

p

)N−1

<
2NH

p

(
1 +

1

p

)NH
≤ 2NH

3NH

(
1 +

1

3NH

)NH
≤ 2e1/3

3
≈ 0.93 < 1

where we used that (1 + 1/n)n ≤ e ≈ 2.71828, the Euler number.602

B.3 Proof of Theorem 3.4603

Proof. We denote X =
[
x1, . . . , xP

]
∈ RN0×P , the matrix representation of Ω. Our proof has three604

main steps:605

Step 1: We show that we can reduce the study of the closedness of FI(Ω) to that of the closedness606

of a union of subsets of RP , associated to the vectors W2. To do this, we prove that for any element607

f ∈ FI(Ω), there exists a set of parameters θ ∈ NI such that the matrix of the second layer W2608

belongs to {−1, 0, 1}1×N1 (since we assume N2 = 1). This idea is reused from the proof of [1,609

Theorem 4.1].610

For θ := {(Wi,bi)
2
i=1} ∈ NI, the functionR(θ) has the form:

Rθ(x) = W2σ(W1x+ b1) + b2 =

N1∑
i=1

w2,iσ(w1,ix+ b1,i) + b2

where w1,i = W1[i, :] ∈ R1×N0 ,w2,i = W2[i] ∈ R,b1,i = b[i] ∈ R. Moreover, if w2,i is different
from zero, we have:

w2,iσ(w1,ix+ b1) =
w2,i

|w2,i|
σ(|w2,i|w1,ix+ |w2,i|b1,i).

In that case, one can assume that w2,i can be equal to either −1 or 1. Thus, we can assume611

w2,i ∈ {±1, 0}. For a vector v ∈ {−1, 0, 1}1×N1 , we define:612

Fv = {[Rθ(x1), . . . ,Rθ(xP )] | θ ∈ NI,v} (14)

where NI,v ⊆ NI is the set of θ = {(Wi,bi)
2
i=1} with W2 = v ∈ {0, 1}1×N1 , i.e., in words, Fv is613

the image of Ω through the functionRθ, θ ∈ NI,v.614

Define V := {v | supp(v) ⊆ I2} ∩ {0,±1}1×N1 . Clearly, for v ∈ V, Fv ⊆ FI(Ω). Therefore,⋃
v∈V

Fv ⊆ FI(Ω).

Moreover, by our previous argument, we also have:

FI(Ω) ⊆
⋃
v∈V

Fv.

Therefore,
FI(Ω) =

⋃
v∈V

Fv.
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Step 2: Using the first step, to prove that FI(Ω) is closed, it is sufficient to prove that Fv is closed,615

∀v ∈ V. This can be accomplished by further decomposing Fv into smaller closed sets. We denote616

θ′ the set of parameters W1,b1 and b2. In the following, only the parameters of θ′ are varied since617

W2 is now fixed to v.618

Due to the activation function σ, for a given data point xj ∈ Ω, we have:619

σ(Wxj + b1) = Dj(Wxj + b1) (15)

where Dj ∈ D, the set of binary diagonal matrices, and its diagonal coefficients Dj [i, i] are620

determined by:621

Dj [i, i] =

{
0 if W[i, :]xj + b1[i] ≤ 0

1 if W[i, :]xj + b1[i] ≥ 0
. (16)

Note that Dj [i, i] can take both values 0 or 1 if W[i, :]xj + b1[i] = 0. We call the matrix Dj the
activation matrix of xj . Therefore, for (15) to hold, the N1 constraints of the form (16) must hold
simultaneously. It is important to notice that all these constraints are linear w.r.t. θ′. We denote z a
vectorized version of θ′ (i.e., we concatenate all coefficients whose indices are in I1 of W and b1,b2

into a long vector), and we write all the constraints in (15) in a compact form:

A(Dj , xj)z ≤ 0N1

where A(Dj , xj) is a constant matrix that depend on Dj and xj .622

Set θ = (v, z). Given that (15) holds, we deduce that:

Rθ(xj) = vσ(Wxj + b1) + b2 = vDj(Wxj + b1) + b2 = V(Dj , xj ,v)z

where V(Dj , xj ,v) is a constant matrix that depends on Dj ,v, xj . In particular, Rθ(xj) is also
a linear function w.r.t the parameters z . Assume that the activation matrices of (x1, . . . , xP ) are
(D1, . . . ,DP ), then we have:

Rθ(Ω) = (V(D1, x1,v)z, . . . ,V(DP , xP ,v)z) ∈ R1×P .

To emphasize thatRθ(Ω) depends linearly on z, for the rest of the proof, we will writeRθ(Ω) as a
vector of size P (instead of a row matrix 1× P ) as follows:

Rθ(Ω) = V(D1, . . . ,DP )z where V(D1, . . . ,DP ) =

 V(D1, x1,v)
...

V(DP , xP ,v)

 .

Moreover, to have (D1, . . . ,DP ) activation matrices, the parameters z need to satisfy:

A(D1, . . . ,DP )z ≤ 0Q

where Q = PN1 and

A(D1, . . . ,DP ) =

A(D1, x1)
...

A(DP , xP )

 .

Thus, the set ofRθ(Ω) given the activation matrices (D1, . . . ,DP ) has the following compact form:

F (D1,...,DP )
v := {V(D1, . . . ,DP )z | A(D1, . . . ,DP )z ≤ 0}.

Clearly, F (D1,...,DP )
v ⊆ Fv since each element is equal toRθ(Ω) with θ = (v, z) for some z. On the

other hand, each element of Fv is an element of F (D1,...,DP )
v for some (D1, . . . ,DP ) ∈ DP since

the set of activation matrices corresponding to any θ is in DP . Therefore,

Fv =
⋃

(D1,...,DP )∈DP
F (D1,...,DP )
v .

19



Step 3: Using the previous step, it is sufficient to prove that F (D1,...,DP )
v is closed, for any623

v, (D1, . . . ,DP ) ∈ DP . To do so, we write F (D1,...,DP )
v in a more general form:624

{Az | Cz ≤ y}. (17)

Therefore, it is sufficient to prove that a set as in Equation (17) is closed. These sets are linear625

transformations of an intersection of a finite number of half-spaces. Since the intersection of a626

finite number of halfspaces is stable under linear transformations (cf. Lemma B.5 below), and the627

intersection of a finite number of half-spaces is a closed set itself, the proof can be concluded.628

Lemma B.5 (Closure of intersection of half-spaces under linear transformations). For any A ∈
Rm×n,C ∈ R`×n,y ∈ R`, there exists C′ ∈ Rk×m,b′ ∈ Rk such that:

{Ax | Cx ≤ y} = {C′z ≤ b′}.

Proof. The proof uses Fourier–Motzkin elimination 4. This method is a quantifier elimination
algorithm for linear functions 5. In fact, the LHS can be written as: {t | t = Ax,Cx ≤ y}, or more
generally, {

t | ∃x ∈ Rn s.t. B
(
x
t

)
≤ v

}
⊆ Rm

where
(
x
t

)
is the concatenation of two vectors (x, t) and the linear constraints imposed by B

(
x
t

)
≤ v629

replace the two linear constraints Cx ≤ y and t = Ax. The idea is to show that:630 {
t | ∃x ∈ Rn s.t. B

(
x
t

)
≤ v

}
=

{
t | ∃x′ ∈ Rn−1 s.t. B′

(
x′

t

)
≤ v′

}
(18)

for some matrix B′ and vector v′. By doing so, we reduce the dimension of the quantified parameter631

x by one. By repeating this procedure until there is no more quantifier, we prove the lemma. The632

rest of this proof is thus devoted to show that B′,v′ as in (18) do exist.633

We will show how to eliminate the first coordinate of x[1]. First, we partition the set of linear634

constraints of LHS of (18) into three groups:635

1. S0 := {j | B[j, 1] = 0}: In this case, x[1] does not appear in this constraint, there is nothing636

to do.637

2. S+ := {j | B[j, 1] > 0}, for j ∈ S+, we can rewrite the constraints B[j, :]
(
x
t

)
≤ v[j] as:

x[1] ≤ γ[j] +

n∑
i=2

α[i]x[i] +

m∑
i=1

β[i]t[i] := B+
j (x′, t)

for some suitable γ[j], α[i], β[i] where x′ is the last (n− 1) coordinate of the vector x.638

3. S− := {j | B[j, 1] < 0}: for j ∈ S−, we can rewrite the constraints B[j, :]
(
x
t

)
≤ vj as:

x[1] ≥ γ[j] +

n∑
i=2

α[i]x[i] +

m∑
i=1

β[i]t[i] := B−j (x′, t).

For the existence of such x[1], it is necessary and sufficient that:639

B+
k (x′, t) ≥ B−j (x′, t), ∀k ∈ S+, j ∈ S−. (19)

Thus, we form the matrix B′ and the vector v′ such that the linear constraints written in the following
form:

B′
(
x′

t

)
≤ v′

represent all the linear constraints in the set S0 and those in the form of (19). Using this procedure640

recursively, one can eliminate all quantifiers and prove the lemma.641

4More detail about this method can be found in this link
5In fact, the algorithm determining the closedness of LI is also a quantifier elimination one, but it can be

used in a more general setting: polynomials
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B.4 Proofs for Lemma 3.3642

Since we use tools of real algebraic geometry, this section provides basic notions of real algebraic643

geometry for readers who are not familiar with this domain. It is organized and presented as in the644

textbook [2] (with slight modifications to better suit our needs). For a more complete presentation,645

we refer readers to [2, Chapter 2].646

Definition B.1 (Semi-algebraic sets). A semi-algebraic set of Rn has the form:
k⋃
i=1

{x ∈ Rn | Pi(x) = 0 ∧
`i∧
j=1

Qi,j(x) > 0}

where Pi, Qi,j : Rn 7→ R are polynomials and ∧ is the “and” logic.647

The following theorem is known as the projection theorem of semi-algebraic sets. In words, the648

theorem states that: The projection of a semi-algebraic set to a lower dimension is still a semi-algebraic649

set (of lower dimension).650

Theorem B.6 (Projection theorem of semi-algebraic sets [2, Theorem 2.92]). Let A be a semi-
algebraic set of Rn and define:

B = {(x1, . . . , xn−1) | ∃xn, (x1, . . . , xn−1, xn) ∈ A}
then B is a semi-algebraic set of Rn−1.651

Theorem B.6 is a powerful result. Its proof [2, Section 2.4] (which is constructive) shows a way to652

express B (in Theorem B.6) by using only the first n− 1 variables (x1, . . . , xn−1).653

Next, we introduce the language of an ordered field and sentence. Readers which are not familiar654

to the notion of ordered field can simply think of it as R and its subring as Q. Example for fields655

that is not ordered is C (we cannot compare two arbitrary complex number). Therefore, the notion656

of semi-algebraic set in Definition B.1 (which contains Qi,j(x) > 0) does not make sense when the657

underlying field is not ordered.658

The central definition of the language of R is formula, an abstraction of semi-algebraic sets. In659

particular, the definition of formula is recursive: formula is built from atoms - equalities and660

inequalities of polynomials whose coefficients are in a subring Q of R. It can be also formed by661

combining with logical connectives “and”, “or”, and “negation” (∧,∨,¬) and existential/universal662

quantifiers (∃,∀). Formula has variables, which are those of atoms in the formula itself. Free variables663

of a formula are those which are not preceded by a quantifier (∃,∀). The definitions of a formula and664

its free variables are given recursively as follow:665

Definition B.2 (Language of the ordered field with coefficients in a ring). Consider R an ordered666

field and Q ⊆ R a subring, a formula Φ and its set of free variables Free(X) are defined recursively667

as:668

1. An atom: if P ∈ Q[X] (where Q[X] is the set of polynomials with coefficients in Q)669

then Φ := (P = 0) (resp. Φ := (P > 0)) is a formula and its set of free variables is670

Free(Φ) := {X1, . . . , Xn} where n is the number of variables.671

2. If Φ1 and Φ2 are formulas, then so are Φ1 ∨Φ2,Φ1 ∧Φ2 and ¬Φ1. The set of free variables672

is defined as:673

(a) Free(Φ1 ∨ Φ2) := Free(Φ1) ∪ Free(Φ2).674

(b) Free(Φ1 ∧ Φ2) := Free(Φ1) ∪ Free(Φ2).675

(c) Free(¬Φ1) = Free(Φ1).676

3. If Φ is a formula andX ∈ Free(Φ), then Φ′ = (∃X)Φ and Φ′′ = (∀X)Φ are also formulas677

and Free(Φ′) := Free(Φ) \ {X}, and Free(Φ′′) := Free(Φ) \ {X}.678

Definition B.3 (Sentence). A sentence is a formula of an ordered field with no free variable.679

Example B.1. Consider two formulas:

Φ1 = {∃X1, X
2
1 +X2

2 = 0}
Φ2 = {∃X1,∃X2, X

2
1 +X2

2 = 0}
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While Φ1 is a normal formula, Φ2 is a sentence and given an underlying field (R, for instance), Φ2 is680

either correct or not. Here, Φ2 is correct (since X2
1 +X2

2 = 0 has a root (0, 0)). Nevertheless, if one681

consider Φ′2 = {∃X1,∃X2, X
2
1 +X2

2 = −1}, then Φ′2 is not correct.682

An algorithm deciding whether a sentence is correct or not is very tempting since formula and683

sentence can be used to express many theorems in the language of an ordered field. The proof or684

disproof will be then given by an algorithm. Such an algorithm does exist, as follow:685

Theorem B.7 (Decision problem [2, Algorithm 11.36]). There exists an algorithm to decide whether686

a given sentence is correct is not with complexity O(sd)O(1)k−1

where s is the bound on the number687

of polynomials in Φ, d is the bound on the degrees of the polynomials in Φ and k is the number of688

variables.689

A full description of [2, Algorithm 11.36] (quantifier elimination algorithm) is totally out of the690

scope of this paper. Nevertheless, we will try to explain it in a concise way. The key observation is691

Theorem B.6, the central result of real algebraic geometry. As discussed right after Theorem B.6, its692

proof implies that one can replace a sentence by another whose number of quantifiers is reduced by693

one such that both sentences agree (both are true or false). Applying this procedure iteratively will694

result into a sentence without any variable (and the remain are only coefficients in the subring). We695

check the correctness of this final sentence by trivially verifying all the equalities/inequalities and696

obtain the answer for the original one.697

Proof of Lemma 3.3. To decide whether LI is closed or not, it is equivalent to decide if the following
sentence (see Definition B.3) is true or false:

∃A,(∀XL, . . . ,X1, P (A,XL, . . . ,X1) > 0)∧
(∀ε > 0,∃X′L, . . . ,X′1, P (A,X′L, . . . ,X

′
1)− ε < 0)

where P (A,X1, . . . ,XL) :=
∑

(i,j)(A[i, j]− P I
i,j(XL, . . . ,X1))2.698

This sentence basically asks whether there exists a matrix A ∈ FI \ FI or not. It can be proved that699

this sentence can be decided to be true or false using real algebraic geometry tools (see Theorem B.7),700

with a complexity O
(

(sd)C
k−1
)

where C is a universal constant and s, d, k are the number of701

polynomials, the maximum degree of the polynomials and the number of variables in the sentence,702

respectively. Applying this to our case, we have s = 2, d = 2L, k = NLN0 + 1 + 2
∑L
`=1 |I`|703

(remind that |I`| is the total number of unmasked coefficients of X`).704

B.5 Polynomial algorithm to detect support constraints I = (I, J) with non-closed LI.705

The following sufficient condition for non-closedness is based on the existence in the support706

constraint of 2× 2 blocks sharing the essential properties of a 2× 2 LU support constraint.707

Lemma B.8. Consider a pair I = (I, J) ∈ {0, 1}m×r × {0, 1}r×n of support constraints for the708

weight matrices of one-hidden-layer neural network. If there exists four indices 1 ≤ i1, i2 ≤ m, 1 ≤709

j1, j2 ≤ n and two indices k 6= l, 1 ≤ k, l ≤ r such that:710

1. For each pair (i, j) ∈ {(i1, j1), (i1, j2), (i2, j1)} we have:

(i, j) ∈ supp(I[:, k]J [k, :]) and (i, j) /∈ supp(I[:, `]J [`, :]),∀` 6= k.

2. The pair (i2, j2) belongs to supp(I[:, k]J [k, :]) and to supp(I[:, l]J [l, :]).711

then LI is non-closed.712

Proof. First, it is easy to see that the assumptions of this lemma are equivalent to those of [18,
Theorem 4.20] since supp(I[:, k]J [k, :]) is precisely the kth rank-one support of the pair (I, J)
[18, Definition 3.1]. Without loss of generality, one can assume that i1, j1 = 1, i2, j2 = 2 and
k = 1, l = 2. We will prove that A ∈ LI \ LI where

A :=

(
A′ 0
0 0

)
∈ Rm×n, with A′ :=

(
0 1
1 0

)
∈ R2×2.

This can be shown in two steps:713
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1. Proof that A ∈ LI: For any ε > 0, consider two factors:

Xε =

(
X′ε 0
0 0

)
,Yε =

(
Y′ε 0
0 0

)
where X′ε,Y

′
ε ∈ R2×2 respect the support constraints corresponding to the LU architecture. It is

not hard to see that such a construction of (Xε,Yε) satisfies the support constraints (I, J) (due to
the assumption of the lemma and the value of indices). Moreover, we also have:

‖A−XεYε‖F = ‖A′ −X′εY
′
ε‖F

Thus, to have ‖A−XεYε‖F ≤ ε, it is sufficient to choose a pair of factors (X′ε,Y
′
ε) respecting714

the LU architecture of size 2× 2 such that ‖A′ −X′εY
′
ε‖F ≤ ε. Such a pair exists, since the set715

of matrices admitting the exact LU decomposition is dense in R2×2. This holds for any ε > 0.716

Therefore, A ∈ LI.717

2. Proof that A /∈ LI: Assume there exist a pair of factors (X,Y) whose product XY = A and
supports are included in (I, J). Due to the assumptions on the pairs (i1, j1), (i1, j2), (i2, j1), we
must have: 

X[1, 1]Y[1, 1] = A[1, 1] = 0

X[2, 1]Y[1, 1] = A[2, 1] = 1

X[1, 1]Y[1, 2] = A[1, 2] = 1.

It is easy to see that it is impossible. Therefore, A /∈ LI.718

Given a pair of support constraints I, it is possible to check in time polynomial in m, r, n whether the719

conditions of Lemma B.8 hold. A brute force algorithm has complexity O(m2n2r). A more clever720

implementation with careful book-marking can reduce this complexity to O(min(m,n)mnr).721

C Proofs for results in Section 4722

C.1 Proof of Theorem 4.1723

In fact, Theorem 4.1 is a corollary of Lemma B.1. Thus, we will give a proof for Lemma B.1 in the724

following.725

Proof of Lemma B.1. Since A ∈ LI\LI ⊆ RNL×N0 , we have:726

1. A /∈ LI.727

2. There exists a sequence {(Xk
i )Li=1}k∈N such that limk→∞ ‖Xk

L . . .X
k
1 −A‖ = 0 for any728

norm defined on RN0 .729

We will prove that the linear function: f(x) := Ax satisfies f ∈ FI \ FI (where FI is the closure of730

FI in (C0(Ω), ‖ · ‖∞), that is to say f is not the realization of any neural network but it is the uniform731

limit of the realizations of a sequence of neural networks). Firstly, we prove that f /∈ FI. For the732

sake of contradiction, assume there exists θ = (Wi,bi)
L
i=1 ∈ NI such thatRθ = f . SinceRθ is the733

realization of a ReLU neural network, it is a continuous piecewise linear function. Therefore, since Ω734

has non-empty interior, there exist a non-empty open subset Ω′ of Rd such that Ω′ ⊆ Ω and Rθ is735

linear on Ω′, i.e., there are A′ ∈ RNL×N0 , b ∈ RNL such thatRθ(x) = A′x+ b′,∀x ∈ Ω′. Since736

f = Rθ, we have: A′ = A and also equal to the Jacobian matrix of Rθ on Ω′. Using Lemma B.3737

and the fact that A /∈ LI, we conclude that f /∈ FI.738

There remains to construct a sequence {θk}k∈N, θk = (Wk
i ,b

k
i )Li=1 ∈ NI such that limk→∞ ‖Rθk−

f‖∞ = 0. We will rely on the sequence {(Xk
i )Li=1}k∈N for our construction. Given k ∈ N we simply

define the weight matrices as Wk
i = Xk

i , 1 ≤ i ≤ L. The biases are built recursively. Starting from
ck1 := supx∈Ω ‖Wk

1x‖∞ and bk1 := ck11N1
, we iteratively define for 2 ≤ i ≤ L− 1:

γki−1(x) := Wk
i−1x+ bi−1

cki := sup
x∈Ω
‖γki−1 ◦ . . . ◦ γk1 (x)‖∞

bki := cki 1Ni .

23



The boundedness of Ω ensures that cki is well-defined with a finite supremum. For i = L we define:

bkL = −
L−1∑
i=1

(

L∏
j=i+1

Wj)b
k
i .

We will prove thatRθk(x) =
(
Xk
L . . .X

k
1

)
x, ∀x ∈ Ω. As a consequence, it is immediate that:

lim
k→∞

‖Rθk − f‖∞ = lim
k→∞

sup
x∈Ω
‖Rθk(x)− f(x)‖2

≤ lim
k→∞

‖Xk
L . . .X

k
1 −A‖2→2 sup

x∈Ω
‖x‖2 = 0

where we used that all matrix norms are equivalent and denoted ‖ · ‖2→2 the operator norm associated
to Euclidean vector norms. Back to the proof that Rθk(x) =

(
Xk
L . . .X

k
1

)
x, ∀x ∈ Ω, due to our

choice of cki , we have for 2 ≤ i ≤ L− 1:

γki−1 ◦ . . . ◦ γk1 (x) ≥ 0,∀x ∈ Ω

where ≥ is taken in coordinate-wise manner. Therefore, an easy induction yields:

Rθk(x) = γkL ◦ σ ◦ γkL−1 ◦ . . . ◦ σ ◦ γk1 (x)

= γkL ◦ γkL−1 . . . ◦ γk1 (x)

= Wk
L(. . . (Wk

2(Wk
1x+ bk1) + bk2) . . .) + bkL

= (Xk
L . . .X

k
1)x+

L−1∑
i=1

(

L∏
j=i+1

Wj)b
k
i −

L−1∑
i=1

(

L∏
j=i+1

Wj)b
k
i

= (Xk
L . . .X

k
1)x.

739

C.2 Proof of Theorem 4.2740

Given the involvement of Theorem 4.2, we decompose its proof and present it in two subsections: the741

first one establishes general results that do not use the assumption of Theorem 4.2. The second one742

combines the established results with the assumption of Theorem 4.2 to provide a full proof.743

C.2.1 Properties of the limit function of fixed support one-hidden-layer NNs744

The main results of this parts are summarized in Lemma C.2 and Lemma C.3. It is important to745

emphasize that all results in this section do not make any assumption on I.746

We first introduce the following technical results.747

Lemma C.1 (Normalization of the rows of the first layer [26]). Consider Ω a bounded subset of RN0 .748

Given any θ = {(Wi,bi)
2
i=1} ∈ NI and any norm ‖ · ‖ on RN0 , there exists θ̃ := {(W̃i, b̃i)

2
i=1} ∈749

NI such that the matrix W̃1 has unit norm rows, ‖b̃1‖∞ ≤ C := supx∈Ω sup‖u‖≤1〈u, x〉 and750

Rθ(x) = Rθ̃(x),∀x ∈ Ω.751

Proof. We report this proof for self-completeness of this work. It is not a contribution, as it merely752

combines ideas from the proof of [26, Lemma D.2] and [26, Theorem 3.8, Steps 1-2].753

We first show that for each set of weights θ ∈ NI we can find another set of weights θ′ =754

{(W′
i,b
′
i)

2
i=1} ∈ NI such that Rθ = Rθ′ on RN0 and W′

1 has unit norm rows. Note that755

‖b′1‖∞ can be larger than C. Indeed, given θ ∈ NI, the function Rθ can be written as:756

Rθ : x ∈ RN0 7→
∑N1

j=1 hj(x) + b2 where hj(x) = W2[:, j]σ(W1[j, :]x + b1[j]) denotes the757

contribution of the jth hidden neuron. For hidden neurons corresponding to nonzero rows of Wk
1 ,758

we can rescale the rows of Wk
1 , the columns of Wk

2 and bk1 such that the realization of hj is invari-759

ant. This is due to the fact that w2σ(w>1 x+ b) = ‖w1‖w2σ((w1/‖w1‖)>x+ (b/‖w1‖)) for any760

w1 6= 0 ∈ RN0 ,w2 ∈ RN2 , b ∈ R. Neurons corresponding to null rows of Wk
1 are handled similarly,761
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in an iterative manner, by setting them to an arbitrary normalized row, setting the corresponding762

column of Wk
2 to zero, and changing the bias bk2 to keep the functionRθ unchanged on RN0 , using763

that w2σ(0>x + b) + b2 = 0σ(v>x + b) + (b2 + w2σ(b)) for any normalized vector v ∈ RN0 .764

Thus, we obtain θ′ whose matrix of the first layer, W′
1, has normalized rows andRθ = Rθ′ on RN0 .765

To construct θ̃ with ‖b̃1‖∞ ≤ C we see that, by definition of C, if ‖w1‖ = 1 and b ≥ C then766

w>1 x+ b ≥ −C + b ≥ 0, ∀x ∈ Ω. (20)

Thus, the function w2σ(w>1 x+ b) = w2(w>1 x+ b) is linear on Ω and

w2σ(w>1 x+ b) + b2 = w2(w>1 x+ C) + ((b− C)w2 + b2)

= w2σ(w>1 x+ C) + ((b− C)w2 + b2)

Thus, for any hidden neuron with a bias exceeding C, the bias can be saturated to C by changing767

accordingly the output bias b2, keeping the functionRθ unchanged on the bounded domain Ω (but768

not on the whole space RN0). Hidden neurons with a bias b ≤ −C can be similarly modified.769

Sequentially saturating each hidden neuron yields θ̃ which satisfies all conditions of Lemma C.1.770

Lemma C.2. Consider Ω a bounded subset of RN0 , for any I = (I2, I1), given a continuous function771

f ∈ FI(Ω), there exists a sequence {θk}k∈N, θk = (Wk
i ,b

k
i )2
i=1 ∈ NI such that:772

1. The sequenceRθk admits f as its uniform limit, i.e., limk→∞ ‖Rθk − f‖∞ = 0.773

2. The sequence {(Wk
1 ,b

k
1)}k∈N has a finite limit (W?

1,b
?
1) where W?

1 has unit norm rows and774

supp(W?
1) ⊆ I1.775

Proof. Given a function f ∈ FI(Ω), by definition, there exists a sequence {θk}k∈N, θk ∈ NI776

∀k ∈ N such that limk→∞ ‖Rθk − f‖∞ = 0. We can assume that Wk
1 has normalized rows and bk1777

is bounded using Lemma C.1. We can also assume WLOG that the parameters of the first layer (i.e778

Wk
1 ,b

k
1) have finite limits W?

1 and b?1. Indeed, since both Wk
1 and bk1 are bounded (by construction779

from Lemma C.1), there exists a subsequence {ϕk}k∈N such that Wϕk
1 and bϕk1 have finite limits and780

Rθϕk → f asRθk → f . Replacing the sequence {θk}k∈N by {θϕk}k∈N yields the desired sequence.781

Finally, since W?
1 = limk→∞Wk

1 , W?
1 obviously has normalized rows and supp(W?

1) ⊆ I1.782

Definition C.1. Consider Ω bounded subset of Rd, a function f ∈ FI(Ω) and a sequence {θk}k∈N783

as given by Lemma C.2. We define (ai, bi) = (W?
1[i, :],b?1[i]) the limit parameters of the first layer784

corresponding to the ith neuron. We partition the set of neurons into two subsets (one of them may be785

empty):786

1. Set of active neurons: J := {i | (∃x ∈ Ω, aix+ bi > 0) ∧ (∃x ∈ Ω, aix+ bi < 0)}.787

2. Set of non-active neurons: J̄ = JN1K \ J .788

For i, j ∈ J , we write i ' j if (W?
1[j, :],b?1[j]) = ±(W?

1[i, :],b?1[i]). The relation ' is an789

equivalence relation.790

We define (J`)`=1,...,r the equivalence classes induced by ' and we use (α`, β`) := (ai, bi) for some791

i ∈ J` as the representative limit of the `th equivalence class. For i ∈ J`, we have: (ai, bi) =792

εi(α`, β`), εi ∈ {±1}. We define J+
` = {i ∈ J` | εi = 1} 6= ∅ and J−` = J` \ J+

` .793

For each equivalence class J`, define H` := {x ∈ Ω | α`x + β` = 0} the boundary generated794

by neurons in J` and the positive (resp. negative) half-space partitioned by H`, H+
` := {x ∈ Ω |795

α`x + β` > 0} (resp. H−` := {x ∈ Ω | α`x + β` < 0}). For any ε > 0 we also define the open796

half-spaces H(ε,+)
` := {x ∈ Rd | α>` x+ β` > ε} and H(ε,−)

` := {x ∈ Rd | α>` x+ β` < −ε}.797

Definition C.1 groups neurons sharing the same “linear boundary” (or “singular hyperplane” as in798

[26]). This concept is related to “twin neurons” [28], which also groups neurons with the same active799

zone. This partition somehow allows us to treat classes independently. Observe also that800

supp(α`) ⊆
⋂
i∈J`

I1[i, :],∀1 ≤ ` ≤ r. (21)
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Definition C.2 (Contribution of an equivalence class). In the setting of Definition C.1, we define the
contribution of the ith neuron 1 ≤ i ≤ N1 (resp. of the `th (1 ≤ ` ≤ r) equivalence class) of θk as:

hki :RN0 7→ RN2 : x 7→Wk
2 [:, i]σ(Wk

1 [i, :]x+ bk1 [i]) ,

gk` :RN0 7→ RN2 : x 7→
∑
i∈J`

hki (x) .

Lemma C.3. Consider Ω = [−B,B]d, f ∈ FI(Ω) and a sequence {θk}k∈N as given by Lemma C.2,
and α`, β`, 1 ≤ ` ≤ r, εi, i ∈ J as given by Definition C.1. There exist some γ`,b ∈ RN2 ,A ∈
RN2×N0 such that:

f(x) =

r∑
i=1

γ`σ(α`x+ β`) + Ax+ b ∀x ∈ Ω (22)

lim
k→∞

∑
i∈J`

εiW
k
2 [:, i]Wk

1 [i, :] = γ`α`, ∀1 ≤ ` ≤ r (23)

lim
k→∞

∑
i∈J`

εib
k
1 [i]Wk

2 [:, i] = γ`β`, ∀1 ≤ ` ≤ r (24)

supp(γ`) ⊆
⋃
i∈J`

I2[:, i], ∀1 ≤ ` ≤ r (25)

Proof. The proof is divided into three parts: We first show that there exist γ`,b ∈ RN2 and801

A ∈ RN2×N0 such that Equation (22) holds. The last two parts will be devoted to prove that802

equations (23) - (25) hold.803

1. Proof of Equation (22): Our proof is based on a result of [26], which deals with the case of a804

scalar output (i.e, N2 = 1). It is proved in [26, Theorem 3.8, Steps 3, 6, 7] and states the following:805

Lemma C.4 (Analytical form of a limit function with scalar output [26]). In caseN2 = 1 (i.e., output806

dimension equal to one), consider Ω = [−B,B]d, a scalar-valued function f : Ω 7→ R, f ∈ FI(Ω)807

and a sequence as given by Lemma C.2, there exist µ ∈ RN0 , γ`, ν ∈ R such that:808

f(x) =

r∑
`=1

γ`σ(α`x+ β`) + µ>x+ ν, ∀x ∈ Ω (26)

Back to our proof, one can write f = (f1, . . . , fN2
) where fj : Ω ⊆ RN0 7→ R is the function f

restricted to the jth coordinate. Clearly, fj is also a uniform limit on Ω of {Rθ̃k}k∈N for a sequence
{θ̃k}k∈N which shares the same Wk

1 with {θk}k∈N but W̃k
2 is the jth row of Wk

2 . Therefore,
{θ̃k}k∈N also satisfies the assumptions of Lemma C.4, which gives us:

fj(x) =

r∑
`=1

γ`,jσ(α`x+ β`) + µ>j x+ νj , ∀x ∈ Ω

for some µj ∈ RN0 , γi,j , νj ∈ R. Note that α`, β` and r are not dependent on the index j since
they are defined directly from the considered sequence. Therefore, the function f (which is the
concatenation of fj coordinate by coordinate) is:

f(x) =

r∑
`=1

γ`σ(α`x+ β`) + Ax+ b, ∀x ∈ Ω

with γ` =

( γi,1

...
γi,N2

)
,A =

 µ>1
...

µ>N2

 ,b =

( ν1
...

νN2

)
.809

2. Proof for Equations (23)-(24): With the construction of γ, we will prove Equation (23) and810

Equation (24). We consider an arbitrary 1 ≤ ` ≤ r. Denoting Ω◦ the interior of Ω and H` :=811

{x ∈ Ω | α`x + β` = 0} the hyperplane defined by the input weights and bias of the `-th class of812
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neurons, we take a point x′ ∈ (Ω◦ ∩H`) \
⋃
p 6=`Hp and a fixed scalar r > 0 such that the open ball813

B(x′, r) ⊆ Ω◦ \
⋃
p 6=`Hp. Notice that x′ is well-defined due to the definition of J (Definition C.1).814

In addition, r also exists because Ω◦ \
⋃
p 6=`Hp is an open set. Thus, there exists two constants815

0 < δ < B and ε > 0 such that:816

(a) B(x′, r) ⊆ [−(B − δ), B − δ]d.817

(b) For each p 6= `, the ball B(x′, r) is either included in the half-space H(ε,+)
p := {x ∈ Rd |818

α>p x+ βp > ε} or in the half-space H(ε,−)
p := {x ∈ Rd | α>p x+ βp < −ε}.819

(c) The intersection of B(x′, r) with H(ε,+)
` and H(ε,−)

` are not empty.820

For the remaining of the proof, we will use Lemma C.5, another result taken from [26]. We only state821

the lemma. Its formal proof can be found in the proof of [26, Theorem 3.8, Steps 4-5].822

Lemma C.5 (Affine linear area [26]). Given a sequence {θk}k∈N satisfying the second condition of823

Lemma C.2, we have:824

(a) For any 0 < δ < B, there exists a constant κδ such that ∀i ∈ J̄ , hki are affine linear on825

[−(B − δ), B − δ]N0 for all k ≥ κδ .826

(b) For any ε > 0, there exists a constant κε such that for each 1 ≤ ` ≤ r and each i ∈ J` the827

function hki is affine linear on H(ε,+)
` ∪H(ε,−)

` for all k ≥ κε.828

The lemma implies the existence of K = max(κδ, κε) such that for all k ≥ K, we have:∑
p 6=`

gkp(x) = Bkx+ νk, ∀x ∈ B(x′, r),

for some Bk ∈ RN2×N0 , νk ∈ RN2 . Therefore, for k ≥ K, we have:

Rθk(x) = Bkx+ νk +
∑
i∈J+

`

Wk
2 [:, i](Wk

1 [i, :]x+ bk1 [i]),∀x ∈ B(x′, r) ∩H(ε,+)
`

Rθk(x) = Bkx+ νk +
∑
i∈J−`

Wk
2 [:, i](Wk

1 [i, :]x+ bk1 [i]),∀x ∈ B(x′, r) ∩H(ε,−)
` .

Since we proved that f has the form Equation (22), there exist C ∈ RN2×N0 , µ ∈ RN2 such that

f(x) = (C + γ`α`)x+ (µ+ γ`β`), ∀x ∈ B(x′, r) ∩H(ε,+)
`

f(x) = Cx+ µ, ∀x ∈ B(x′, r) ∩H(ε,−)
`

As both B(x′, r) ∩H(ε,+)
` and B(x′, r) ∩H(ε,−)

` are open sets, and given our hypothesis of uniform829

convergence ofRθk → f , we obtain,830

lim
k→∞

Bk +
∑
i∈J+

`

Wk
2 [:, i]Wk

1 [i, :] = C + γ`α`

lim
k→∞

Bk +
∑
i∈J−`

Wk
2 [:, i]Wk

1 [i, :] = C

lim
k→∞

νk +
∑
i∈J+

`

bk1 [i]Wk
2 [:, i] = µ+ γ`β`

lim
k→∞

νk +
∑
i∈J−`

bk1 [i]Wk
2 [:, i] = µ.

(27)

Proof for Equation (27) can be found in Appendix C.4. Equations (23) and (24) follow directly from831

Equation (27).832

3. Proof of Equation (25): Since α` 6= 0 (remember that ‖α`‖ = 1), this is an immediate conse-833

quence of Equation (23) as each vector Wk
2 [:, j], j ∈ J` is supported in I2[:, j] ⊆ ∪i∈J`I2[:, i].834
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We state an immediate corollary of Lemma C.3, which characterizes the limit of the sequence of835

contributions {gk` }k∈N of the `th equivalence class with |J`| = 1.836

Corollary C.1. Consider f ∈ FI([−B,B]d) that admits the analytical form in Equation (22), a837

sequence {θk}k∈N as given by Lemma C.2, and Definition C.1. For all singleton equivalence classes838

J` = {i}, 1 ≤ ` ≤ r, we have limk→∞Wk
2 [:, i] = γ` and limk→∞ ‖hk` − γ`σ(α>` x+ β`)‖∞ = 0.839

Proof. We first prove that Wk
2 [:, i] has a finite limit. In fact, applying the second point of Lemma C.3

for J` = {i}, we have:
lim
k→∞

Wk
2 [:, i]Wk

1 [i, :] = γ`α`

where γ`, α` are defined in Lemma C.3. Because limk→∞Wk
1 [i, :] = α` and ‖α`‖2 = 1, it follows840

that γ` = limk→∞Wk
2 [:, i]. To conclude, since we also have β` = limk→∞ bk1 [i], we obtain841

hk` (·) = Wk
2 [`, :]σ(Wk

1 [`, :] ·+bk1 [`])→ γ`σ(α`x+ β`) as claimed.842

The nice thing about Corollary C.1 is that the contribution gk` = hk` admits a (uniform) limit843

if J` = {i}. Moreover, this limit is even implementable by using only the ith neuron because844

supp(α`) ⊆ I1[i, :] and supp(γ`) ⊆ I2[:, i].845

It would be tempting to believe that, for each P ∈ {J̄} ∪ {J` | ` = 1, . . . , r} the sequence of846

functions
∑
i∈P g

k
i (x) must admit a limit (when k tends to∞) and that this limit is implementable847

using only neurons in P . This would obviously imply that FI(Ω) is closed. This intuition is however848

wrong. For non-singleton equivalence class (i.e., for cases not covered by Corollary C.1), the limit849

function does not necessarily exist as we show in the following example.850

Example C.1. Consider the case where N = (1, 3, 1) and no support constraint, Ω = [−1, 1], take
the sequence {θk}k∈N which satisfies:

Wk
1 =

(
1
−1
1

)
,bk1 =

(
0
0
1

)
,Wk

2 = (k −k −k) ,bk2 = k

Then for x ∈ Ω, it is easy to verify thatRθk = 0. Indeed,

Rθk(x) =

3∑
i=1

Wk
2 [:, i]σ(Wk

1 [i, :] + bk1 [i]) + bk2

= kσ(x)− kσ(−x)− kσ(x+ 1) + k

= k(σ(x)− σ(−x))− k(x+ 1) + k (since x+ 1 ≥ 0,∀x ∈ Ω)

= kx− k(x+ 1) + k = 0

Thus, this sequence converges (uniformly) to f = 0. Moreover, this sequence also satisfies the851

assumptions of Lemma C.2. Using the classification in Definition C.1, we have one class equivalence852

J1 = {1, 2} and J̄ = {3}. The function gk1 (x) = kσ(x)− kσ(−x) = kx, however, does not have853

any limit.854

C.2.2 Actual proof of Theorem 4.2855

Therefore, our analysis cannot treat each equivalence class entirely separately. The last result in856

this section is about a property of the matrix A in Equation (22). This is one of our key technical857

contributions in this work.858

Lemma C.6. Consider Ω = [−B,B]d, f ∈ FI(Ω) that admits the analytical form in Equa-859

tion (22), a sequence {θk}k∈N as given by Lemma C.2, then the matrix A ∈ LI′ where860

I′ = (I2[:, S], I1[S, :]), S = J̄ ∪ (∪1≤`≤rJ
−
` ), J̄ , J±` are defined as in Definition C.1).861

Combining Lemma C.6 and the assumptions of Theorem 4.2, we can prove Theorem 4.2 immediately862

as follow:863

Proof of Theorem 4.2. Consider f ∈ FI(Ω), we deduce that there exists a sequence of {θk}k∈N
that satisfies the properties of Lemma C.2. This allows us to define J̄ and equivalence classes
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J`, 1 ≤ ` ≤ r as well as (α`, β`) as in Definition C.1. Using Lemma C.3, we can also deduce an
analytical formula for f as in Equation (22):

f(x) =

r∑
i=1

γ`σ(α`x+ β`) + Ax+ b, ∀x ∈ Ω.

Finally, Lemma C.6 states that matrix A in Equation (22) satisfies: A ∈ LI′ with I′ =864

(I2[:, S], I1[S, :]]), where S = J̄ ∪ (∪r`=1J
−
` ). To prove that f ∈ FI, we construct the parame-865

ters θ = {(Wi,bi)
2
i=1} of the limit network as follows:866

1. For each 1 ≤ ` ≤ r, choose one index j ∈ J+
` (which is possible since J+

` is non-empty). We set:867

868

(W1[i, :],W2[:, i],b1[i]) =

{
(α`, γ`, β`) if i = j

(α`,0, β`) otherwise
(28)

This satisfies the support constraint because supp(α`) ⊆ I1[j, :] (by (21)) α` = limk→∞Wk
1 [j, :])869

and I2 = 1N2×N1
. This is where we use the first assumption of Theorem 4.2. Without it, supp(γ`)870

might not be a subset of I2[:, j].871

2. For i ∈ S: Since A ∈ LI′ (cf Lemma C.6) and LI′ is closed (second assumptions of Theorem 4.2),872

there exist two matrices Ŵ1,Ŵ2 such that: supp(Ŵ1) ⊆ I1[:, S], supp(Ŵ2) ⊆ I2[S, :], and873

A = Ŵ2Ŵ1. We set:874

(W1[i, :],W2[:, i],b1[i]) = (Ŵ1[i, :],Ŵ2[:, i], C) (29)

where C = supx∈Ω ‖Ŵ1x‖∞. This satisfies the support constraints I due to our choice of Ŵ1,Ŵ2.875

The choice of C ensures that the function hi(x) := W2[i, :]σ(W1[i, :]x+ b1[i]) is linear on Ω.876

3. For b2: Let b2 = b− C
(∑

i∈S Ŵ2[:, i]
)

(b is the bias in Equation (22)).877

VerifyingRθ = f on Ω is thus trivial since:

Rθ(x) =

N1∑
i=1

W2[:, i]σ(W1[i, :]x+ b1[i]) + b2

=
∑
i/∈S

W2[:, i]σ(W1[i, :]x+ b1[i]) +
∑
i∈S

W2[:, i]σ(W1[i, :]x+ b1[i]) + b2

=

r∑
`=1

γ`σ(α`x+ β`) +
∑
j∈S

Ŵ2[:, i](Ŵ1[i, :]x+ C) + b− C

(∑
i∈S

Ŵ2[:, i]

)

=

r∑
`=1

γ`σ(α`x+ β`) + Ŵ2Ŵ1x+ b =

r∑
`=1

γ`σ(α`x+ β`) + Ax+ b = f.

Proof of Lemma C.6. In this proof, we define Ω◦δ = (−B + δ,B − δ)N0 , 0 < δ < B. The choice of878

δ is not important in this proof (any 0 < δ < B will do).879

The proof of this lemma revolves around the following idea: We will construct a sequence of functions880

{fk}k∈N such that, for k large enough, fk has the following analytical form:881

fk(x) =

r∑
`=1

γ`σ(α`x+ β`) + Akx+ bk,∀x ∈ Ω◦δ (30)

and limk→∞ fk(x) = f(x) ∀x ∈ Ω \ (∪r`=1H`) (or equivalently fk converges pointwise to f on882

Ω \ (∪r`=1H`)) and Ak admits a factorization into two factors Ak = XkYk satisfying supp(Xk) ⊆883

I2[:, S], supp(Yk) ⊆ I1[S, :], so that Ak ∈ LI′ . Comparing Equation (22) and Equation (30), we884

deduce that the sequence of affine functions Akx+ bk converges pointwise to the affine function885

Ax + b on the open set Ω◦δ \ (∪r`=1H`). Therefore, limk→∞Ak = A by Lemma C.7, hence the886

conclusion.887
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The rest of this proof is devoted to the construction of fk = Rθ̃k where θ̃k ∈ NN are parameters888

of a neural network of the same dimension as those in NI but only partially satisfying the support889

constraint I. To guarantee that fk converges pointwise to f , we construct θ̃k based on θk and harness890

their relation.891

Choice of parameters. We set θ̃k = {(W̃k
i , b̃

k
i )2
i=1} ∈ NN where W̃k

2 ∈ RN2×N1 ,W̃k
1 ∈892

RN1×N0 are defined as follows, where we use Ck := supx∈Ω ‖Wk
1x‖∞:893

• For inactive neurons i ∈ J̄ , we simply set (W̃k
1 [:, i],W̃k

2 [i, :], b̃k1 [i]) = (Wk
1 [:, i],Wk

2 [i, :],bk1 [i]).894

• For each equivalence class of active neurons 1 ≤ ` ≤ r, we choose some j` ∈ J+
` (note that J+

` is
non-empty due to Definition C.1) and set the parameters (W̃k

2 [:, i],W̃k
1 [i, :],b1[i]), i ∈ J` as:

(W̃k
1 [i, :],W̃k

2 [:, i], b̃k1 [i]) =


(Wk

1 [i, :],Wk
2 [:, i], Ck), ∀j ∈ J−`

(Wk
1 [i, :],0, Ck), ∀i ∈ J+

` \ {j`}
(α`, γ`, β`), i = j`

(31)

For i ∈ J` \ {j`}, we clearly have: supp(W̃k
1 [i, :]) ⊆ I1[i, :] and supp(W̃k

2 [:, i]) ⊆ I2[:, i]. The895

j`-th column of W̃k
2 is the only one that does not necessarily satisfy the support constraint, as896

supp(γ`) * I2[:, j`] in general.897

• Finally, the output bias bk2 is set as:

b̃k2 := bk2 +

r∑
`=1

∑
i∈J−`

(bk1 [i]− Ck)Wk
2 [:, i]

︸ ︷︷ ︸
=:ξk`

(32)

Proof that fk := Rθ̃k converges pointwise to f on Ω \ (∪r`=1H`). We introduce notations analog
to Definition C.2: for every x ∈ RN0 we define:

h̃ki (x) = W̃k
2 [:, i]σ(W̃k

1 [i, :]x+ b̃k1 [i]), i = 1, . . . , N1; g̃k` (x) =
∑
i∈J`

h̃ki (x), ` = 1, . . . , r

By construction898

h̃ki = hki , ∀i ∈ J̄ , ∀k, (33)

and we further explicit the form of h̃ki , i ∈ J` for x ∈ Ω (but not on RN0 ) as:899

h̃ki (x) =


Wk

2 [:, i](Wk
1 [i, :]x+ Ck), ∀i ∈ J−`

0, ∀i ∈ J+
` \ {j`}

γ`σ(α`x+ β`), i = j`

, (34)

We justify our formula in Equation (34) as follow:900

1. For i ∈ J−` : since Ck = supx∈Ω ‖Wk
1x‖∞ by construction, W̃k

1 [i, :]x + bk1 [i] = Wk
1 [i, :]x +901

bk1 [i] ≥ 0. The activation σ acts simply as an identity function.902

2. For i ∈ J+
` : Because we choose W̃k

2 [:, i] = 0.903

3. For i = j`: Obvious due to the construction in Equation (31).904

Given x ∈ Ω \ (∪r`=1H`), we now prove that this construction ensures that for each ` ∈ {1, . . . , r}905

lim
k→∞

(g̃k` (x)− gk` (x) + ξk` ) = 0. (35)
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This will imply the claimed poinwise convergence since

lim
k→∞

fk(x) = lim
k→∞

Rθ̃k(x) = lim
k→∞

∑
i∈J̄

h̃ki (x) +

r∑
`=1

g̃k` (x) + b̃k2


(33)&(35)

= lim
k→∞

∑
i∈J̄

hki (x) +

r∑
`=1

gk` (x)−
r∑
`=1

ξk` + b̃k2


(32)
= lim

k→∞

∑
i∈J̄

hki (x) +

r∑
`=1

gk` (x) + bk2

 = lim
k→∞

Rθk(x) = f(x).

To establish (35), observe that as x ∈ Ω \ (∪r`=1H`) we have x /∈ H`. We thus distinguish two cases:906

Case x ∈ H−` .907

Using (31) we show below that for k large enough and x ∈ H−` , we have908

h̃ki (x)− hki (x) =

{
(Ck − bk1 [i])Wk

2 [:, i], i ∈ J−`
0, i ∈ J+

`

(36)

and thus

g̃k` (x)− gk` (x) + ξk` =
∑
i∈J`

(
h̃ki (x)− hki (x)

)
+ ξk` =

∑
i∈J−`

(Ck − bk1 [i])Wk
2 [:, i] + ξk` = 0.

We indeed obtain (36) as follows. Since x ∈ H−` , α`x + β` < 0, i.e., −α`x − β` > 0. Therefore,909

given the definitions of J±` (cf Definition C.1) we have:910

• For i ∈ J−` : limk→∞(Wk
1 [i, :],bk1 [i]) = −(α`, β`), hence for k large enough, we have Wk

1 [i, :]x+

bk1 [i] > 0 so that σ(Wk
1 [i, :]x+ bk1 [i]) = Wk

1 [i, :]x+ bk1 [i] and, as expressed in (36):

h̃ki (x)− hki (x)
(34)
= Wk

2 [:, i](Wk
1 [i, :]x+ Ck)−Wk

2 [:, i](Wk
1 [i, :]x+ bk1 [i]) = (Ck − bk1 [i])Wk

2 [:, i].

• For i ∈ J+
` : similarly, we have Wk

1 [i, :]x+ bk1 [i] < 0 for k large enough. Therefore, hki (x) = 0911

for k large enough. The fact that we also have h̃ki (x) = 0 is immediate from Equation (34) if i 6= j`,912

and for i = j` we also get from Equation (34) that h̃ki (x) = γ`σ(α`x+ β`) = 0 since α`x+ β` < 0.913

Case x ∈ H+
` . An analog to Equation (36) for x ∈ H+

` is914

h̃ki (x)− hki (x) =


Wk

2 [:, i](Wk
1 [i, :]x+ Ck), i ∈ J−`

−Wk
2 [:, i](Wk

1 [i, :]x+ bk1 [i]), i ∈ J+
` \ {j}

γ`(α`x+ β`)−Wk
2 [:, i](Wk

1 [i, :]x+ bk1 [i]), i = j

. (37)

We establish it before concluding for this case.915

• For i ∈ J−` : by a reasoning analog to the case x ∈ H−` , we deduce that for k large enough

h̃ki (x)− hki (x)
(34)
= Wk

2 [:, i](Wk
1 [i, :]x+ Ck).

• For i ∈ J+
` : a similar reasoning yields hki (x) = Wk

2 [:, i](Wk
1 [i, :]x+ bk1 [i]) for k large enough,916

while Equation (34) yields h̃kj`(x) = γ`σ(α`x+β`) = γ`(α`x+β`) (since α`x+β` > 0 as x ∈ H+
` )917

and h̃ki (x) = 0 if i 6= j`.918
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Using (37) we obtain for k large enough

g̃k` (x)− gk` (x) + ξk` =
∑
i∈J`

(
h̃ki (x)− hki (x)

)
+ ξk`

=
∑
i∈J−`

Wk
2 [:, i](Wk

1 [i, :]x+ Ck)−
∑
i∈J+

`

Wk
2 [:, i](Wk

1 [i, :]x+ bk1 [i]) + γ`(α`x+ β`) + ξk`

(32)
=
( ∑
i∈J−`

Wk
2 [:, i]Wk

1 [i, :]−
∑
j∈J+

`

Wk
2 [:, i]Wk

1 [i, :] + γ`α`

)
x

+
(
ξk` +

∑
i∈J−`

Wk
2 [:, i]Ck

︸ ︷︷ ︸∑
i∈J−

`
Wk

2 [:,i]bk1 [i]

−
∑
i∈J+

`

Wk
2 [:, i]bk1 [i] + γ`β`

)

where in the last line we used the expression of ξk` from (32). Due to Equations (23) and (24) it919

follows that limk→∞ g̃k` (x)− gk` (x) + ξk` = 0, ∀x ∈ H+
` .920

Thus combining both cases, we conclude that limk→∞ g̃k` (x)− gk` (x) + ξk` = 0,∀x /∈ H`, as desired.921

Proof of the expression (30) with Ak ∈ LI′ for large enough k. From (34), we first deduce that

fk(x) =

N1∑
i=1

h̃ki (x) + b̃k2 =

r∑
`=1

γ`σ(α`x+ β`) +
∑
i∈S

h̃ki (x) + b̃k2 , ∀x ∈ RN0 .

where we recall that S := J̄ ∪ (∪1≤`≤rJ
−
` ). There only remains to show that, for k large enough,

we have
∑
i∈S h̃

k
i (x) = Akx + bk for every x in the restricted domain Ω◦δ , where Ak ∈ LI′ and

bk ∈ RN2 . Note that for i ∈ J`, our construction assures that h̃ki is affine on Ω. Moreover, in
the restricted domain Ω◦δ , for k ≥ κδ large enough, h̃ki , i ∈ J̄ also behave like affine functions (cf
Lemma C.5). Therefore,∑

i∈S
h̃ki (x) =

(∑
i∈S

δki W̃
k
2 [:, i]W̃k

1 [i, :]
)
x+ ck, ∀x ∈ Ω◦δ , k ≥ κδ

for some vector ck and binary scalars δki . In fact, δki = 0 if i ∈ J̄− := {j ∈ J̄ |W?
1[j, :]x+b?1[j] ≤

0,∀x ∈ Ω} and δik = 1 otherwise. Thus, one chooses Ak =
∑
i∈S δ

k
i W̃

k
2 [:, i]W̃k

1 [i, :],bk = ck and
the construction is complete. This construction allows us to write Ak = Ŵk

2Ŵ
k
1 with:

Ŵk
1 = W̃k

1 [S, :]

Ŵk
2 = W̃k

2 [:, S]diag({νki | i = 1, . . . , N1})

where diag({νki | i = 1, . . . , N1}) ∈ RN1×N1 is a diagonal matrix, νki = δki for i ∈ S and 0922

otherwise. It is also evident that supp(Ŵk
2 [:, S]) ⊆ I2[:, S], supp(Ŵk

1 [S, :]) ⊆ I1[S, :]. (since the923

multiplication with a diagonal matrix does not increase the support of a matrix). This concludes the924

proof.925

C.3 Proof for Corollary 4.2926

Proof. The proof is inductive on the number of hidden neurons N1:927

1. Basic case N1 = 1: Consider θ := {(Wi,bi)
2
i=1} ∈ NI, the functionRθ has the form:

Rθ(x) = w2σ(w>1 x+ b1) + b2

where w1 = W1[1, :] ∈ RN0 ,w2 = W2[1, 1] ∈ R. There are two possibilities:928

(a) I2 = ∅: then w2 = 0, FI is simply a set of constant functions on Ω, which is closed.929
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(b) I2 = {(1, 1)}: We have I2 = 11×N1 , which makes the first assumption of Theorem 4.2 satisfied.930

To check that the second assumption of Theorem 4.2 also holds, we consider all the possible931

non-empty subsets S of J1K: there is only one non-empty subset of I2, which is S = J1K. In932

that case, LIS = {W∈ R1×N0 | supp(W) ⊆ I1}, which is closed (since LIS is isomorphic to933

R|I1|). The result thus follows using Theorem 4.2.934

2. Assume the conclusion of the theorem holds for all 1 ≤ N1 ≤ k (and any N0 ≥ 1). We need to935

prove the result for N1 = k + 1. Define H = {i | I2[1, i] = 1} the set of hidden neurons that are936

allowed to be connected to the output via a nonzero weight. Consider two cases:937

(a) If |H| ≤ k, we have FI = FIH , which is closed due to the induction hypothesis.938

(b) If H = Jk + 1K, we can apply Theorem 4.2. Indeed, since I2 = 11×N1 , the first condition of939

Theorem 4.2 is satisfied. In addition, for any non-empty S ⊆ JN1K, defineH := ∪i∈SI[i, :] ⊆940

JN0K the union of row supports of I1[S, :]. It is easy to verify that LIS is isomorphic to R|H|,941

which is closed. As such, Theorem 4.2 can be applied.942

C.4 Other technical lemmas943

Lemma C.7 (Convergence of affine function). Let Ω be a non-empty interior subset Rn. If the944

sequence {fk}k∈N, fk : Rn 7→ Rm : x 7→ Akx + bk where Ak ∈ Rm×n,bk ∈ Rm converges945

pointwise to a function f on Ω, then f is affine (i.e., f = Ax+ b for some A ∈ Rm×n,b ∈ Rm).946

Moreover, limk→∞Ak = A and limk→∞ bk = b.947

Proof. Consider x0 ∈ Ω′, an open subset of Ω (Ω′ exists since Ω is a non-empty interior subset of
Rn). Define gk(x) = fk(x)− fk(x0) and g(x) = f(x)− g(x0). The function gk is linear and gk
converges pointwise to g on Ω (and thus, on Ω′). We first prove that g is linear. Indeed, for any
x, y ∈ Ω, α, β ∈ R such that αx+ βy ∈ Ω, we have:

g(αx+ βy) = lim
k→∞

gk(αx+ βy)

= lim
k→∞

αgk(x) + βgk(y)

= α lim
k→∞

gk(x) + β lim
k→∞

gk(y)

= αg(x) + βg(y)

Therefore, there must exist A ∈ Rm×n such that g(x) = Ax. Choosing b := g(x0), we have948

f(x) = g(x) + g(x0) = Ax+ b.949

Moreover, since Ω′ is open, there exists a positive r such that the ball B(x, r) ⊆ Ω′. Choosing
xi = x0 + (r/2)ei with ei the ith canonical vector, we have:

lim
k→∞

gk(xi) = lim
k→∞

(r/2)Akei = (r/2)Aei,

or, equivalently, the ith column of A is the limit of the sequence generated by the ith column of950

Ak. Repeating this argument for all 1 ≤ i ≤ n, we have limk→∞Ak = A. This also implies951

limk→∞ bk = b immediately.952

D Closedness does not imply the best approximation property953

Since we couldn’t find any source discussing the fact that closedness does not imply the BAP, we954

provide an example to show this fact.955

Consider C0([−1, 1]) the set of continuous functions on the interval [−1, 1], equipped with the norm
sup ‖f‖∞ = maxx∈[−1,1] |f(x)|, and define S, the subset of all functions f ∈ C0([−1, 1]) such that:∫ 1

0

f dx−
∫ 0

−1

f dx = 1

It is easy to verify that S is closed. We show that the constant function f = 0 does not have a956

projection in S (i.e., a function g ∈ S such that ‖f − g‖∞ = infh∈S ‖f − h‖∞).957
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First we observe that since f = 0, we have ‖f − h‖∞ = ‖h‖∞ for each h ∈ S, and we show that958

infh∈S ‖f − h‖∞ ≥ 1/2. Indeed, for h ∈ S we have:959

1 =

∫ 1

0

h dx−
∫ 0

−1

h dx ≤
∣∣∣∣∫ 1

0

h dx

∣∣∣∣+

∣∣∣∣∫ 0

−1

h dx

∣∣∣∣ ≤ 2‖h‖∞ = 2‖f − h‖∞. (38)

Secondly, we show a sequence of {hn}k∈N such that hn ∈ S and limn→∞ ‖hn‖∞ = 1/2. Consider
the odd function hn (i.e. hn(x) = −hn(−x)) such that:

hn(x) =

{
cn, x ∈ [1/n, 1]

ncnx x ∈ [0, 1/n)

where cn = n/(2n− 1). It is evident that hn ∈ S because:∫ 1

0

hn dx−
∫ 0

−1

hn dx = 2

∫ 1

0

hn dx = 2

(∫ 1/n

0

hn dx+

∫ 1

1/n

hn dx

)

= 2

(
cn
2n

+
cn(n− 1)

n

)
=
cn(2n− 1)

n
= 1

Moreover, we also have limn→∞ ‖hn‖∞ = limn→∞ cn = 1/2.960

Finally, we show that 1/2 cannot be attained. By contradiction, assume that there exists g ∈ S such961

that ‖f − g‖∞ = 1/2, i.e., as we have seen, ‖g‖∞ = 1/2. Using Equation (38), the equality will962

only hold if g(x) = 1/2 in [0, 1] and g(x) = −1/2 in [−1, 0]. However, g is not continuous, a963

contradiction.964
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