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A Architecture details1

On a high level, EDGI follows Diffuser [1]. In the following, we will describe the key difference: our2

SE(3)× Z× Sn-equivariant architecture for the diffusion model.3

Overall architecture. We illustrate the architecture in Fig. 2 in the main paper. After converting the4

input data in our internal representation (see Sec. 3.2 in the main paper), the data is processed with5

an equivariant U -net with four levels. At each level, we process the hidden state with two residual6

standard blocks, before downsampling (in the downward pass) or upsampling (in the upward pass).7

Residual standard block. The main processing unit of our architecture processes the current hidden8

state with an equivariant block consisting of a temporal layer, an object layer, a normalization layer,9

and a geometric layer. In parallel, the context information (an embedding of diffusion time and a10

conditioning mask) is processed with a context block. The hidden state is added to the output of the11

context block and processes with another equivariant block. Finally, we process the data with a linear12

attention layer over time. This whole pipeline consists of an equivariant block, a context block, and13

another equivariant block is residual (the inputs are added to the outputs).14

Temporal layers. Temporal layers consist of one-dimensional convolutions without bias along the15

time dimension. We use a kernel size of 5.16

Normalization layers. We use a simple equivariant normalization layer that for each batch element17

rescales the entire tensor wtoc to unit variance. This is essentially an equivariant version of LayerNorm.18

The difference is that our normalization layer does not shift the inputs to zero means, as that would19

break equivariance with respect to SO(3).20

Geometric layers. In the geometric layers, the input state is split into scalar and vector components.21

The vector components are linearly transformed to reduce the number of channels to 16. We22

then construct all SO(3) invariants from these 16 vectors by taking pairwise inner products and23

concatenating them with the scalar inputs. This set of scalars is processed with two MLPs, each24

consisting of two hidden layers and ReLU nonlinearities. The MLPs output the scalar outputs and25

coefficients for a linear map between the vector inputs and the vector outputs, respectively. Finally,26

there is a residual connection that adds the scalar and vector inputs to the outputs.27

Linear attention over time. To match the architecture used by Janner et al. [1] as closely as possible,28

we follow their choice of adding another residual linear attention over time at the end of each level in29

the U-net. We make the linear attention mechanism equivariant by computing the attention weights as30

Context blocks. The embeddings of diffusion time and conditioning information are processed with31

a Mish nonlinearity and a linear layer, like in Janner et al. [1]. Finally, we embed them in our internal32

representation by zero-padding the resulting tensor.33
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Upsampling and downsampling. During the downsampling path, there is a final temporal layer34

that implements temporal downsampling and increases the number of channels by a factor of two.35

Conversely, during the upsampling path, we use a temporal layer for temporal upsampling and a36

reduction of the number of channels.37

B Navigation experiments38

We introduce a new navigation environment. The scene consists of a spherical agent navigating a39

plane populated with a goal state and n = 10 spherical obstacles. At the beginning of every episode,40

the agent position, agent velocity, obstacle positions, and goal position are initialized randomly (in a41

rotation-invariant way). We simulate the environment dynamics with PyBullet [2].42

Offline dataset. To obtain expert trajectories, we train a TD3 [3] agent in the implementation by43

Raffin et al. [4] for 107 steps with default hyperparameters on this environment. We generate 10544

trajectories for our offline dataset.45

State. The state contains the agent position, agent velocity, goal position, and obstacle positions.46

Actions. The action space is two-dimensional and specifies a force acting on the agent.47

Rewards. At each time step, the agent receives a reward equal to the negative Euclidean distance48

to the goal state. In addition, a penalty of −0.1 is added to the reward if the agent touches any of49

the obstacles. Finally, there is an additional control cost equal to −103 times the force acting on the50

agent. We affinely normalize the rewards such that a normalized reward of 0 corresponds to that51

achieved by a random policy and a normalized reward of 100 corresponds to the expert policy.52

C Kuka experiments53

We use the object manipulation environments and tasks from Janner et al. [1], please see that work54

for details on the environment. In our experiments, we consider three tasks: unconditional stacking,55

conditional stacking, and block rearrangement. For a fair comparison, we re-implement the Diffuser56

algorithm while making bug fixes in the codebase of Janner et al. [1], which mainly included properly57

resetting the environment.58

State. We experiment with two parameterizations of the Kuka environment state. For the Diffuser59

baseline, we use the original 39-dimensional parameterization from Janner et al. [1].60

For our EDGI, we need to parameterize the system in terms of SE(3)× Z× Sn representations. We,61

therefore, describe the robot and block orientations with SO(3) vectors as follows. Originally, the62

robot state is specified through a collection of joint angles. One of these encodes the rotation of the63

base along the vertical z-axis. We choose to represent this angle as a ρ1 vector in the xy-plane. In64

addition, we add the gravity direction (the z-axis itself) as another ρ1 vector, which is also the normal65

direction of the table on which the objects rest. Combined, these vectors define the pose of the base of66

the robot arm. Rotating gravity direction, and the robot and object pose by SO(3) can be interpreted67

as a passive coordinate transformation, or as an active rotation of the entire scene, including gravity.68

As the laws of physics are invariant to this transformation, this is a valid symmetry of the problem.69

The n objects can be translated and rotated. Their pose is thus given by a translation t ∈ R3 and70

rotation in r ∈ SO(3) relative to a reference pose. The translation transforms by a global rotation71

g ∈ SO(3) as a vector via representation ρ1. The rotational pose transforms by left multiplication72

r 7→ gr. The SO(3) pose is not a Euclidean space, but a non-trivial manifold. Even though diffusion73

on manifolds is possible [5, 6], we simplify the problem by embedding the pose in a Euclidean space.74

This is done by picking the first two columns of the pose rotation matrix r ∈ SO(3). These columns75

each transform again as a vector with representation ρ1. This forms an equivariant embedding76

ι : SO(3) ↪→ R2×3, whose image is two orthogonal 3-vectors of unit norm. Via the Gram-Schmidt77

procedure, we can define an equivariant map π : R2×3 → SO(3) (defined almost everywhere), that is78

a left inverse to the embedding: π◦ ι = idSO(3). Combining with the translation, the roto-translational79

pose of each object is thus embedded as three ρ1 vectors.80

We also tested the performance of the baseline Diffuser method on this reparameterization of the state81

but found worse results.82
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Hyperparameters. We also follow the choices of Janner et al. [1], except that we experiment with83

a linear noise schedule as an alternative to the cosine schedule they use. For each model and each84

dataset, we train the diffusion model with both noise schedules and report the better of the two results.85
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