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Abstract

Existing contrastive learning methods rely on pairwise sample contrast z⊤x zx′ to
learn data representations, but the learned features often lack clear interpretability
from a human perspective. Theoretically, it lacks feature identifiability and different
initialization may lead to totally different features. In this paper, we study a new
method named tri-factor contrastive learning (triCL) that involves a 3-factor contrast
in the form of z⊤x Szx′ , where S = diag(s1, . . . , sk) is a learnable diagonal matrix
that automatically captures the importance of each feature. We show that by this
simple extension, triCL can not only obtain identifiable features that eliminate
randomness but also obtain more interpretable features that are ordered according
to the importance matrix S. We show that features with high importance have
nice interpretability by capturing common classwise features, and obtain superior
performance when evaluated for image retrieval using a few features. The proposed
triCL objective is general and can be applied to different contrastive learning
methods like SimCLR and CLIP. We believe that it is a better alternative to existing
2-factor contrastive learning by improving its identifiability and interpretability
with minimal overhead. Code is available at https://github.com/PKU-ML/
Tri-factor-Contrastive-Learning.

1 Introduction

As a representative self-supervised paradigm, contrastive learning obtains meaningful representations
and achieves state-of-the-art performance in various tasks by maximizing the feature similarity z⊤x z+x
between samples augmented from the same images while minimizing the similarity z⊤x z−x between
independent samples [4, 20, 15, 5, 18]. Besides the empirical success, recent works also discuss the
theoretical properties and the generalization performance of contrastive learning [32, 30, 18].

However, there still exist many properties of contrastive learning that are not guaranteed. In this paper,
we focus on a significant one: the feature identifiability. Feature identifiability in the representation
learning refers to the property there exists a single, global optimal solution to the learning objective.
Consequently, the learned representations can be reproducible regardless of the initialization and
the optimizing procedure is useful. As a well-studied topic, identifiability is a desirable property
for various tasks, including but not limited to, transfer learning [10], fair classification [26] and
causal inference [24]. The previous works propose that contrastive learning obtains the linear feature
identifiability while lacking exact feature identifiability, i.e., the optimal solutions obtain a freedom
of linear transformations [29]. As a result, the different features are coupled, which hurts the
interpretability and performance of learned representations.
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(a) 10 most important dimensions (b) 10 least important dimensions

Figure 1: The visualization of samples on ImageNet-100 that have the largest values in 10 selected
dimensions of representations learned by tri-factor contrastive learning (each row represents a
dimension).

In this paper, we propose a new contrastive learning model: tri-factor contrastive learning (triCL),
which introduces a 3-factor contrastive loss, i.e., we replace z⊤x zx′ with z⊤x Szx′ when calculating the
similarity between two features, where S is a learnable diagonal matrix called importance matrix. We
theoretically prove that triCL absorbs the freedom of linear transformations and enables exact feature
identifiability. Besides, we observe that triCL shows other satisfying properties. For example, the
generalization performance of triCL is theoretically guaranteed. What is more, we find that the
diagonal values of the importance matrix S in triCL indicate the degrees of feature importance.
In Figure 1, we visualize the samples that have the largest values in the most and least important
dimensions ordered by the importance matrix. We find the samples activated in the more important
dimensions are more semantically similar, which verifies the order of feature importance in triCL is
quite close to the ground truth. Theoretically, we prove that the dimensions related to the larger values
in the importance matrix make more contributions to decreasing the triCL loss. With the automatic
discovery of feature importance in triCL, the downstream task conducted on the representations can
be accelerated by selecting the important features and throwing the meaningless features.

As triCL is a quite simple and general extension, we apply it to different contrastive learning
frameworks, such as SimCLR [4] and CLIP [28]. Empirically, we first verify the identifiability of
triCL and further evaluate the performance of triCL on real-world datasets including CIFAR-10,
CIFAR-100, and ImageNet-100. In particular, with the automatic discovery of important features,
triCL demonstrates significantly better performance on the downstream tasks using a few feature
dimensions. We summarize our contributions as follows:

• We propose tri-factor contrastive learning (triCL), the first contrastive learning algorithm
which enables exact feature identifiability. Additionally, we extend triCL to different
contrastive learning methods, such as spectral contrastive learning, SimCLR and CLIP.

• Besides the feature identifiability, we analyze several theoretical properties of triCL. Specifi-
cally, we construct the generalization guarantee for triCL and provide theoretical evidence
that triCL can automatically discover the feature importance.

• Empirically, we verify that triCL enables the exact feature identifiability and triCL can
discover the feature importance on the synthetic and real-world datasets. Moreover, we
investigate whether triCL obtains superior performance in downstream tasks with selected
representations.
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2 Related Work

Self-supervised Learning. Recently, to get rid of the expensive cost of the labeled data, self-
supervised learning has risen to be a promising paradigm for learning meaningful representations by
designing various pretraining tasks, including context-based tasks [14], contrastive learning [20] and
masked image modeling [21]. Among them, contrastive learning is a popular algorithm that achieves
impressive success and largely closes the gap between self-supervised learning and supervised
learning [27, 4, 20, 33]. The idea of contrastive learning is quite simple, i.e., pulling the semantically
similar samples (positive samples) together while pushing the dissimilar samples (negative samples)
away in the feature space. To better achieve this objective, recent works propose different variants of
contrastive learning, such as introducing different training objectives [36, 18, 35], different structures
[4, 6, 16, 39], different sampling processes [11, 25, 38, 7] and different empirical tricks [20, 3].

Theoretical Understandings of Contrastive Learning. Despite the empirical success of contrastive
learning, the theoretical understanding of it is still limited. [30] establish the first theoretical guarantee
on the downstream classification performance of contrastive learning by connecting the InfoNCE
loss and Cross Entropy loss. As there exists some unpractical assumptions in the theoretical analysis
in [30], recent works improve the theoretical framework and propose new bounds [1, 2, 34]. More-
over, [18] analyzes the downstream performance of contrastive learning from a graph perspective
and constructs the connection between contrastive learning and spectral decomposition. Recently,
researchers have taken the inductive bias in contrastive learning into the theoretical framework and
shown the influence of different network architectures [17, 31]. Except for the downstream classifica-
tion performance of contrastive learning, some works focus on other properties of representations
learned by contrastive learning. [23] discuss the feature diversity by analyzing the dimensional
collapse in contrastive learning. [29] prove that the contrastive models are identifiable up to linear
transformations under certain assumptions.

3 Preliminary

Contrastive Pretraining Process. We begin by introducing the basic notations of contrastive learning.
The set of all natural data is denoted as Du = {x̄i}Nu

i=1 with distribution Pu, and each natural data
x̄ ∈ Du has a ground-truth label y(x̄). An augmented sample x is generated by transforming a natural
sample x̄ with the augmentations distributed with A(·|x̄). The set of all the augmented samples is
denoted as D = {xi}Ni=1. We assume both sets of natural samples and augmented samples to be
finite but exponentially large to avoid non-essential nuances in the theoretical analysis and it can
be easily extended to the case where they are infinite [18]. During the pretraining process, we first
draw a natural sample x̄ ∼ Pu, and independently generate two augmented samples x ∼ A(·|x̄),
x+ ∼ A(·|x̄) to construct a positive pair (x, x+). For the negative samples, we independently draw
another natural sample x̄− ∼ Pu and generate x− ∼ A(·|x̄−). With positive and negative pairs, we
learn the encoder f : Rd → Rk with the contrastive loss. For the ease of our analysis, we take the
spectral contrastive loss [18] as an example:

LSCL(f) = −2Ex,x+f(x)⊤f(x+) + ExEx−(f(x)⊤f(x−))2. (1)

We denote zx = f(x) as the features encoded by the encoder. By optimizing the spectral loss, the
features of positive pairs (z⊤x zx+) are pulled together while the negative pairs (z⊤x zx−) are pushed
apart.

Augmentation Graph. A useful theoretical framework to describe the properties of contrastive
learning is to model the learning process from the augmentation graph perspective [18]. The
augmentation graph is defined over the set of augmented samples D, with its adjacent matrix denoted
by A. In the augmentation graph, each node corresponds to an augmented sample, and the weight
of the edge connecting two nodes x and x+ is equal to the probability that they are selected as a
positive pair, i.e.,Axx+ = Ex̄∼Pu

[A(x|x̄)A(x+|x̄)] . And we denote Ā as the normalized adjacent
matrix of the augmentation graph, i.e., Ā = D−1/2AD−1/2, where D is a diagonal matrix and
Dxx =

∑
x′∈D Axx′ . To analyze the properties of Ā, we denote Ā = UΣV ⊤ is the singular value

decomposition (SVD) of the normalized adjacent matrix Ā, where U ∈ RN×N , V ∈ RN×N are
unitary matrices, and Σ = diag(σ1, . . . , σN ) contains descending singular values σ1 ≥ . . . σN ≥ 0.
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4 Exact Feature Identifiability with Tri-factor Contrastive Learning

In this section, we propose a new representation learning paradigm called tri-factor contrastive
learning (triCL) that enables exact feature identifiability in contrastive learning. In Section 4.1, we
prove that contrastive learning obtains linear identifiability, i.e., the freedom in the optimal solutions
are linear transformations. In Section 4.2, we introduce the learning process of triCL and theoretically
verify it enables the exact feature identifiability.

4.1 Feature Identifiability of Contrastive Learning

When using a pretrained encoder for downstream tasks, it is useful if the learned features are
reproducible, in the sense that when the neural network learns the representation function on the
same data distribution multiple times, the resulting features should be approximately the same. For
example, reproducibility can enhance the interpretability and the robustness of learned representations
[22]. One rigorous way to ensure reproducibility is to select a model whose representation function is
identifiable in function space [29]. To explore the feature identifiability of contrastive learning, we
first characterize its general solution.
Lemma 4.1 ([18]). Let Ā = UΣV ⊤ be the SVD decomposition of the normalized adjacent matrix Ā.
Assume the neural networks are expressive enough for any features. The spectral contrastive loss
(Eq. 1) attains its optimum when ∀ x ∈ D,

f∗(x) =
1√
Dxx

(
Uk
x diag(σ1, . . . , σk)R

)⊤
, (2)

where Ux takes the x-th row of U , Uk denotes the submatrices containing the first k columns of U ,
and R ∈ Rk×k is an arbitrary unitary matrix.

From Lemma 4.1, we know that the optimal representations are not unique, due to the freedom of
affine transformations. This is also regarded as a relaxed notion of feature identifiability, named
linear feature identifiability L∼ defined below [29].

Definition 4.2 (Linear feature identifiability). Let L∼ be a pairwise relation in the encoder function
space F = {f : X → Rk} defined as:

f ′ L∼ f∗ ⇐⇒ f ′(x) = Af⋆(x),∀ x ∈ X , (3)

where A is an invertible k × k matrix.

It is apparent that the optimal encoder f (Eq. 2) obtained from the spectral contrastive loss (Eq. 1) is
linearly identifiable. Nevertheless, there are still some ambiguities w.r.t. linear transformations in
the model. Although the freedom of linear transformations can be absorbed on the linear probing
task [18], these representations may show varied results in many downstream tasks e.g., in the k-NN
evaluation process. So we wonder whether we could achieve the exact feature identifiability. We first
further define two kinds of more accurate feature identifiabilities below.

Definition 4.3 (Sign feature identifiability). Let S∼ be a pairwise relation in the encoder function
space F = {f : X → Rk} defined as:

f ′ S∼ f∗ ⇐⇒ f ′
j(x) = ±f⋆

j (x),∀ x ∈ X , j ∈ [k]. (4)

where fj(x) is the j-th dimension of f(x).
Definition 4.4 (exact feature identifiability). Let ∼ be a pairwise relation in the encoder function
space F = {f : X → Rk} defined as:

f ′ ∼ f∗ ⇐⇒ f ′(x) = f⋆(x),∀ x ∈ X . (5)

4.2 Tri-factor Contrastive Learning with Exact Feature Identifiability

Motivated by the trifactorization technique in matrix decomposition problems [9] and the equivalence
between the spectral contrastive loss and the matrix decomposition objective [18], we consider adding
a learnable diagonal matrix when calculating the feature similarity in the contrastive loss to absorb
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the freedom of linear transformations. To be specific, we introduce a contrastive learning model that
enables exact feature identifiability, named tri-factor contrastive learning (triCL), which adopts a
tri-term contrastive loss:

Ltri(f, S) = −2Ex,x+f(x)⊤Sf(x+) + ExEx−
(
f(x)⊤Sf(x−)

)2
, (6)

where we name S = diag(s1, . . . , sk) as the importance matrix and it is a diagonal matrix with k
non-negative learnable parameters satisfying s1 ≥ · · · ≥ sk ≥ 0 3. Additionally, the encoder f is
constrained to be decorrelated, i.e.,

Exfi(x)
⊤fj(x) =

{
1, if i = j

0, if i ̸= j
, i, j ∈ [k], (7)

for an encoder f : Rd → Rk. One way to ensure feature decorrelation is the following penalty loss,

Ldec(f) =
∥∥Exf(x)f(x)

⊤ − I
∥∥2 , (8)

leading to a combined triCL objective,

LtriCL(f, S) = Ltri(f, S) + Ldec(f). (9)

Similar feature decorrelation objectives have been proposed in non-contrastive visual learning
methods with slightly different forms, e.g., Barlow Twins [36].

Since triCL automatically learns feature importance S during training, it admits a straightforward
feature selection approach. Specifically, if we need to select m out of k feature dimensions for
downstream tasks (e.g., in-time image retrieval), we can sort the feature dimensions according to
their importance si’s (after training), and simply use the top m features as the most important ones.
Without loss of generality, we assume s1 ≥ · · · ≥ sk, and the top m features are denoted as f (m).

Identifiability of TriCL. In the following theorem, we show that by incorporating the diagonal
importance matrix S that regularizes features along each dimension, triCL can resolve the linear
ambiguity of contrastive learning and become sign-identifiable.
Theorem 4.5. Assume the normalized adjacent matrix Ā has distinct largest k singular values
(∀ i, j ∈ [k], σi ̸= σj when i ̸= j) and the neural networks are expressive enough, the tri-factor
contrastive learning (triCL, Eq. 9) attains its optimum when ∀ x ∈ D, j ∈ [k]

f⋆
j (x) = ± 1√

Dxx

(
Uk
x

)
j
, S∗ = diag(σ1, . . . , σk), (10)

which states that the tri-factor contrastive learning enables the sign feature identifiability.

As shown in Theorem 4.5, the only difference remaining in the solutions (Eq. 10) is the sign. To
remove this ambiguity, for dimension j, we randomly select a natural sample x̄ ∼ Pu, encode it with
the optimal solution f⋆ of triCL, and observe the sign of its j-th dimension f⋆

j (x̄). If f⋆
j (x̄) = 0, we

draw another sample and repeat the process until we obtain a non-zero feature f⋆
j (x̄). We then store

the sample as an original point x0j and adjust the sign of different learned representations as follows:

f̄⋆
j (x) = (−1)1(f

⋆
j (x0j)>0) · f⋆

j (x),∀x ∈ D, j ∈ [k] (11)

By removing the freedom of sign, the solution becomes unique and triCL enables the exact feature
identifiability:
Corollary 4.6. Set f̄⋆ as the final learned encoder of tri-factor contrastive learning, and then triCL
obtains the exact feature identifiability.

5 Theoretical Properties of Tri-factor Contrastive Learning

Besides the feature identifiability, we analyze other theoretical properties of triCL in this section.
Specifically, in Section 5.1, we provide the generalization guarantee of triCL and we present another
advantage of triCL: triCL can automatically discover the importance of different features. In Section
5.2, we extend triCL to other contrastive learning frameworks.

3In practice, we enforce the non-negative conditions by applying the softplus activation functions on the
diagonal values of S. We only enforce the monotonicity at the end of training by simply sorting different rows
of S and different dimensions of f(x) by the descending order of corresponding diagonal values in S.
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5.1 Downstream Generalization of Tri-factor Contrastive Learning

In the last section, we propose a new contrastive model (triCL) that enables exact feature iden-
tifiability. In the next step, we aim to theoretically discuss the downstream performance of the
identifiable representations learned by triCL. For the ease of our theoretical analysis, we first fo-
cus on a common downstream task: Linear Probing. Specifically, we denote the linear probing
error as the classification error of the optimal linear classifier on the pretrained representations, i.e.,
E(f) = ming Ex̄∼Pu

1[g(f(x̄)) ̸= y(x̄)]. By analyzing the optimal solutions of triCL when using the
full or partial features, we obtain the following theorem characterizing their downstream performance.

Theorem 5.1. We denote α as the probability that the natural samples and augmented views have
different labels, i.e., α = Ex̄∼Pu

Ex∼A(·|x̄)1[y(x̄) ̸= y(x)]. Let f⋆
SCL and (f⋆

triCL, S
⋆) be the

optimal solutions of SCL and triCL, respectively. Then, SCL and triCL have the same downstream
classification error when using all features

E(f⋆
SCL) = E((f⋆

triCL)) ≤ c1

N∑
i=k+1

σ2
i + c2 · α, (12)

where σi is the i-th largest eigenvalue of Ā, and c1, c2 are constants. When using only m ≤ k
features of the optimal features, triCL with the top m features admits the following error bound

E(f⋆(m)
triCL) ≤ c1

N∑
i=m+1

σ2
i + c2 · α := U(f

⋆(m)
triCL). (13)

Instead, without importance information, we can only randomly select m SCL features (denoted as
f
(m)
SCL), which has the following error bound (taking expectation over all random choices)

E(f⋆(m)
SCL ) ≤ c1

(
(1− m

k
)

k∑
i=1

σ2
i +

N∑
i=k+1

σ2
i

)
+ c2 · α := U(f

⋆(m)
SCL ). (14)

Comparing the two upper bounds, we can easily conclude that

U(f
⋆(m)
SCL )− U(f

⋆(m)
triCL) ≥

m(k −m)

k
(
1

m

m∑
i=1

σ2
i −

1

k −m

k∑
i=m+1

σ2
i ) ≥ 0. (15)

Thus, triCL admits a smaller error when using a subset of features for downstream classification.

Theorem 5.1 shows that triCL is particularly helpful for downstream tasks when we select a subset
of features according to the learned feature importance. When using all features, the two methods
converge to the same downstream error bound, which also aligns with our observations in practice.

5.2 Extensions to Other Contrastive Learning Frameworks

In the above sections, we propose tri-factor contrastive learning (triCL) which enables the exact feature
identifiability and obtains an ordered representation while achieving the guaranteed downstream
performance. In the next step, we extend the triCL to a unified contrastive learning paradigm that can
be applied in different contrastive learning frameworks.

Extension to Other SSL Methods. As replacing the 2-factor contrast f(x)⊤f(x′) with the 3-factor
contrast f(x)⊤Sf(x′) is a simple operation and not constrained to the special form of spectral
contrastive loss, we extend triCL to other contrastive frameworks. We first take another representative
contrastive learning method SimCLR [4] as an example. Comparing the InfoNCE loss in SimCLR
and the spectral contrastive loss, we find they are quite similar and the only difference is that they push
away the negative pairs with different loss functions (l2 loss v.s. logsumexp loss). So we propose
the tri-InfoNCE loss by changing the terms of negative samples in triCL (Eq. 9) to a tri-logsumexp
term, i.e.,

LtriNCE(f) =− Ex,x+ log
exp

(
f(x)⊤Sf(x+)

)
Ex− exp(f(x)⊤Sf(x−))

+
∥∥Exf(x)f(x)

⊤ − I
∥∥2 . (16)
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Besides the InfoNCE loss used in SimCLR, we present more types of tri-factor contrastive loss in
Appendix C. In summary, triCL can be applied in most of the contrastive frameworks by replacing the
f(x)⊤f(x′) term with a tri-term f(x)⊤Sf(x′) when calculating the similarity, where the importance
matrix S is a diagonal matrix capturing the feature importance.

Extension to the Multi-modal Domain. Different from the symmetric contrastive learning frame-
works like SCL [18] and SimCLR [4], the multi-modal contrastive frameworks like CLIP [28] have
asymmetric networks to encode asymmetric image-text pairs. So we extend the tri-factor contrastive
loss to a unified asymmetric form:

LtriCLIP(fA, fB , S) =− 2Exa,xb
fA(xa)

⊤SfB(xb) + Ex−
a ,x−

b

(
fA(x

−
a )

⊤SfB(x
−
b )
)2

+
∥∥Exa

fA(xa)fA(xa)
⊤ − I

∥∥2 + ∥∥Exb
fB(xb)fB(xb)

⊤ − I
∥∥2 . (17)

where fA, fB are two different encoders with the same output dimension k. Uniformly, we denote
that the positive pairs (xa, xb) ∼ PO and the negative samples x−

a , x
−
b are independently drawn

from PA,PB . With different concrete definitions of PO,PA,PB , different representation learning
paradigms can be analyzed together. For single-modal contrastive learning, the symmetric process
in Section 3 is a special case of the asymmetric objective. For multi-modal learning, we denote
PA,PB as the distributions of different domain data and PO as the joint distribution of semantically
related pairs (e.g., semantically similar image-text pairs in CLIP). We theoretically prove that the
asymmetric tri-factor contrastive learning still obtains the exact feature identifiability and guaranteed
generalization performance in Appendix A.

6 Experiments

In this section, we provide empirical evidence to support the effectiveness of tri-factor contrastive
learning. In section 6.1, we empirically verify that the tri-factor contrastive learning can enable
the exact feature identifiability on the synthetic dataset. In section 6.2, we empirically analyze the
properties of the importance matrix and demonstrate the advantages of automatic feature importance
discovery on various tasks. Furthermore, in section 6.3, we empirically compare the generalization
performance of tri-factor contrastive learning with different baselines including SimCLR [4] and
spectral contrastive learning (SCL) [18] on CIFAR-10, CIFAR-100 and ImageNet-100.

6.1 The Verification of the Identifiability on the Synthetic Dataset

Due to the randomness of optimization algorithms like SGD, we usually can not obtain the optimal
encoder of the contrastive loss. So we consider verifying the feature identifiability on the synthetic
dataset. To be specific, we first construct a random matrix Ā with size 5000× 3000 to simulate the
augmentation graph. Then we compare two different objectives: ∥Ā − FG⊤∥2F , ∥Ā − FSG⊤∥2F ,
where F is a matrix with size 5000× 256, G is a matrix with size 3000× 256 and S is a diagonal
with size 256× 256. With the analysis on [18], these two objectives are respectively equivalent to the
spectral contrastive loss and tri-factor contrastive loss. According to the Eckart-Young Theorem [12],
we obtain the optimal solutions of them with the SVD algorithms. For two objectives, we respectively
obtain 10 optimal solutions and we calculate the average Euclidean distance between 10 solutions.
We investigate that the optimal solutions of the trifactorization objective are equal (average distance
is 0) while there exist significant differences between optimal solutions of bifactorization (average
distance is 101.7891 and the variance of distance is 17.2798), which empirically verifies the optimal
solutions of contrastive learning obtain the freedom while triCL can remove it. More details can be
found in Appendix B.

6.2 The Automatic Discovery of Feature Importance

Except for the visualization example in Figure 1, we further quantitatively explore the properties of
ordered representations learned by triCL.

The Distribution of the Importance Matrix. We first observe the distribution of the diagonal
values in the learned importance matrix S. Specifically, we pretrain the ResNet-18 on CIFAR-10,
CIFAR-100 and ImageNet-100 [8] by triCL. Then we normalize the importance matrices and ensure
the sum of the diagonal values is 1. In Figure 2(a), we present the diagonal values of the importance
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Figure 2: The distributions of the discovered feature importance and the verifications on whether the
order of feature importance indicated by the importance matrix is accurate.

matrices trained on different datasets and we find they are highly related to the properties of the
datasets. For instance, CIFAR-100 and ImageNet-100, which possess a greater diversity of features,
exhibit more active diagonal values in the top 50 dimensions compared to CIFAR-10. While for the
smallest diagonal values, the different importance matrices are quite similar as most of them represent
meaningless noise.

The K-NN Accuracy on Selected Dimensions. With the ResNet-18 and the projector pretrained on
CIFAR-10, CIFAR-100 and ImageNet-100, we first sort the dimensions according to the importance
matrix S. Then we conduct the k-NN evaluation for every 10 dimensions. As shown in Figure 2(b),
the k-NN accuracy decreases slowly at first as these dimensions are related to the ground-truth labels
and they share a similar significance. Then the k-NN accuracy drops sharply and the least important
dimensions almost make no contributions to clustering the semantically similar samples. Note that
the k-NN accuracy drops more quickly on CIFAR-10, which is consistent with the fact it has fewer
types of objects.

Linear Evaluation on Selected Dimensions. We first train the ResNet-18 with triCL and spectral
contrastive learning (SCL) on CIFAR-10. Then we select 20 dimensions from the learned repre-
sentations (containing both the backbone and the projector). For triCL, we sort the dimensions
according to the descending order of the importance matrix and select the largest 20 dimensions (1-20
dimensions), middle 20 dimensions (119-138 dimensions), and smallest 20 dimensions (237-256
dimensions). And for SCL, we randomly choose 20 dimensions. Then we train a linear classifier
following the frozen representations with the default settings of linear probing. As shown in Figure
3(a), the linear accuracy decreases in the descending order of dimensions in triCL and the linear
accuracy of the largest 20 dimensions of triCL is significantly higher than random 20 dimensions
of SCL, which verifies that triCL can discover the most important semantic features related to the
ground-truth labels.

Image Retrieval. We conduct the image retrieval on ImageNet-100. For each sample, we first encode
it with the pretrained networks and then select dimensions from the features. For the methods learned
by triCL, we sort the dimensions according to the values in the importance matrix S and select the
largest dimensions. For SCL, we randomly choose the dimensions. Then we find 100 images that
have the largest cosine similarity with the query image and calculate the mean average precision
(mAP) that returned images belong to the same class as the query ones. As shown in Figure 3(b), we
observe the 50 dimensions of triCL show the comparable performance as the complete representation
while the performance of SCL continues increasing with more dimensions, which further verifies that
triCL can find the most important features that are useful in downstream tasks.

Out-of-Distribution Generalization. Besides the in-domain downstream tasks, we also examine
whether the importance matrix can sort the feature importance accurately with out-of-domain shifts.
To be specific, we prertain the ResNet-18 with SCL and triCL on ImageNet-100 and then conduct
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(c) Transfer accuracy of selected
dimensions of triCL and SCL on
stylized ImageNet-100.

Figure 3: With the automatic discovery of feature importance, Tri-factor contrastive learning (triCL)
obtains superior performance than spectral contrastive learning (SCL) on downstream tasks that use
selected representations.

Table 1: The linear probing acuuracy and finetune accuracy of ResNet-18 pretrained by tri-factor
contrastive learning and self-supervised baselines on CIFAR-10, CIFAR-100, ImageNet-100. TriCL
averagely obtains a comparable performance as the original contrastive learning. Moreover, triCL
achieves significant improvements on some tasks, such as finetuning on CIFAR-100.

Linear Accuracy Finetune Accuracy
CIFAR10 CIFAR100 ImageNet100 CIFAR10 CIFAR100 ImageNet100

SCL 88.4 60.3 72.3 92.3 66.1 76.4
tri-SCL 88.3 60.8 71.2 92.7 67.8 76.3

SimCLR 87.9 60.2 73.5 92.2 72.5 75.9
tri-SimCLR 87.9 59.8 74.1 92.3 73.3 75.6

linear probing with 40 dimensions of learned representations on the out-of-domain dataset stylized
ImageNet-100 [13]. During the downstream evaluation process, we sort the dimensions according to
the descending order of the importance matrix and select the largest 40 dimensions (1-40 dimensions),
middle 40 dimensions (237-276 dimensions), and smallest 40 dimensions (473-512 dimensions) of
the features learned by triCL. And for SCL, we randomly select 40 dimensions. As shown in Figure
3(c), we observe that the transfer accuracy of the most important features learned by triCL shows
significantly superior performance, which shows the robustness and effectiveness of the importance
matrix.

6.3 Transfer Learning on Benchmark Datasets

Setups. During the pretraining process, we utilize ResNet-18 [19] as the backbone and train the
models on CIFAR-10, CIFAR-100 and ImageNet-100 [8]. We pretrain the model for 200 epochs On
CIFAR-10, CIFAR-100, and for 400 epochs on ImageNet-100. We select two self-supervised methods
as our baselines and apply tri-factor contrastive learning on them, including spectral contrastive
learning (SCL) [18], SimCLR [4]. When implementing the tri-factor contrastive learning, we follow
the default settings of the baseline methods. During the evaluation process, we consider two transfer
learning tasks: linear evaluation and finetuning. During the linear evaluation, we train a classifier
following the frozen backbone pretrained by different methods for 50 epochs. During the finetuning
process, we train the whole network (including the backbone and the classifier) for 30 epochs.

Results. As shown in Table 1, we find that triCL shows comparable performance as the original
contrastive learning methods in transfer learning on different real-world datasets, which is consistent
with our theoretical analysis. Meanwhile, we observe that triCL shows significant improvements on
some tasks, e.g., triCL improves the finetune accuracy of SCL by 1.7% on CIFAR-100. Compared
to the original contrastive learning methods, the representations learned by triCL keep comparable
transferability with stronger identifiability and interpretability.
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7 Conclusion

In this paper, we propose a new self-supervised paradigm: tri-factor contrastive learning (triCL)
which replaces the traditional 2-factor contrast with a 3-factor form z⊤x Sz′x when calculating the
similarity in contrastive learning, where S is a learnable diagonal matrix named importance matrix.
With the importance matrix S, triCL enables the exact feature identifiability. Meanwhile, the
diagonal values in the importance matrix reflect the importance of different features learned by triCL,
which means triCL obtains the ordered representations. Moreover, we theoretically prove that the
generalization performance of triCL is guaranteed. Empirically, we verify that triCL achieves the
feature identifiability, automatically discovers the feature importance and achieves the comparable
transferability as current contrastive learning methods.
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A Proofs

A.1 Proof of Theorem 4.5

Proof. We first rewrite Ltri as a matrix decomposition objective

Ltri(f) = −2Ex,x+f(x)⊤Sf(x+) + ExEx−
(
f(x)⊤Sf(x−)

)2
=
∑
x,x′

(
A2

xx′

DxxDx′x′
+DxxDx′x′

(
f(x)⊤Sf(x′)

)2 − 2Axx′f(x)⊤Sf(x′)

)
+ const

= ∥Ā− FSF⊤∥2.

(18)

According to the Eckart-Young Theorem [12], the optimal solutions F ⋆, S⋆ satisfy

F ⋆S⋆(F ⋆)⊤ = UkΣ(V k)⊤,

where Σ ∈ Rk×k is a diagonal matrix with the k-largest eigenvalues of Ā and U ∈ RN×k contains
the corresponding eigenvectors of the k-largest eigenvalues. When the regularizer LDec is minimized,
F ⋆ satisfy (F ⋆)⊤F ⋆ = I . In the next step, we prove the uniqueness of the optimal solution.

We denote H = F ⋆Σ(F ⋆)⊤. As (F ⋆)⊤F ⋆ = I , we obtain HH⊤ = F ⋆S⋆(S⋆)⊤(F ⋆)⊤. If ζ, σ are
a pair of eigenvector and eigenvalue of HH⊤, we have

HH⊤ζ = F ⋆S⋆(S⋆)⊤(F ⋆)⊤ζ = σζ,

S⋆(S⋆)⊤(F ⋆)⊤ζ = σ(F ⋆)⊤ζ,

S⋆(S⋆)⊤
(
(F ⋆)⊤ζ

)
= σ

(
(F ⋆)⊤ζ

)
.

(19)

So the eigenvalues of HH⊤ are the eigenvalues of S⋆(S⋆)⊤. As the positive eigenvalues of HH⊤

are uniquely determined and S⋆ has a descending order, S⋆ is also determined and S⋆ =
∑

.

We note that HH⊤ = F ⋆S⋆(S⋆)⊤(F ⋆)⊤, i.e., HH⊤F ⋆ = F ⋆S⋆(S⋆)⊤, which means that the k
columns of F ⋆ are the eigenvectors of HH⊤ and the corresponding eigenvalues are σ1 · · ·σk. As
HH⊤ only has k different non-negative eigenvalues σ1, · · · , σk, the eigenspace of each eigenvalue
is one-dimensional. When we consider the real number space, any two eigenvectors ζi, ζ ′i of the
same eigenvalue σi satisfy ζi = cζ ′i. As (F ⋆)⊤F ⋆ = I , we obtain c = ±1. As f(x) = 1√

Dxx
Fx, we

obtain
f⋆
j (x) = ± 1√

Dxx

(
Uk
x

)
j
, S∗ = diag(σ1, . . . , σk), (20)

A.2 Proof of Theorem 5.1

Proof. The following analysis mainly follows the proofs in [37].

We denote dx as the x-th row of D. And we denote Fm as the matrix composed of encoder
features on selected dimenstions, i.e., (Fm)x =

√
dxf

(m)(x). Recall that Ax,x+ = A(x, x+) =

Ex̄∼Pu
[A(x|x̄)A(x+|x̄)] and Ā is the normalized form of A, i.e., Āx,x+ = A(x,x+)√

dx·dx+
. Then we

reformulate the downstream error,

Ex,y∥y −Wff
(m)(x)∥2 =

∑
(x,yx)

dx∥yx −Wff
(m)(x)∥2

= ∥D1/2Y − FmWf∥2

= ∥D1/2Y − ĀC + ĀC − FmWf∥2,

where Cx,j =
√
(di)1yx=j . Then we consider the relationship between the downstream error and

the augmentation graph, we element-wise consider the matrix (D1/2Y − ĀC),

(D1/2Y )x,j =
√

(dx)1yx=j , (ĀC)x,j =
∑
x+

Ax,x+

√
dx ·

√
dx+

√
(dx+)1yx+=j . (21)
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So when j = yx,

(D1/2Y − ĀC)x,j =
√

(dx)1yx=j −
∑
x+

A(x, x+)√
dx

1yx+=j

=
√

dx −
∑
x+

A(x, x+)√
dx

1yx+=j

=
∑
x+

A(x, x+)√
dx

−
∑
x+

A(x, x+)√
dx

1yx+=j

=
∑
x+

A(x, x+)√
dx

1yx+ ̸=j

=
∑
x+

A(x, x+)√
dx

1yx+ ̸=yx
.

(22)

When j ̸= yx,

(D1/2Y − ĀC)x,j =
√
(dx)1yx=j −

∑
x+

A(x, x+)√
dx

1yx+=j

= 0−
∑
x+

A(x, x+)√
dx

1yx+=j

= −
∑
x+

A(x, x+)√
dx

1yx+=j .

(23)

We define βx =
∑
x+

A(x, x+)1yx+ ̸=yx , and we have

∥(D1/2Y − ĀC)x∥2 = (
∑
x+

A(x, x+)√
dx

1yx+ ̸=yx
)2 +

∑
j ̸=yx

(
∑
x+

A(x, x+)√
dx

1yx+=j)
2

≤ (
∑
x+

A(x, x+)√
dx

1yx+ ̸=yx)
2 + (

∑
j ̸=yx

∑
x+

A(x, x+)√
dx

1yx+=j)
2

≤ (
∑
x+

A(x, x+)√
dx

1yx+ ̸=yx
)2 + (

∑
x+

A(x, x+)√
dx

∑
j ̸=yx

1yx+=j)
2

= (
∑
x+

A(x, x+)√
dx

1yx+ ̸=yx)
2 + (

∑
x+

A(x, x+)√
dx

1yx+ ̸=yx)
2

=
2β2

x

dx
.

(24)

With that, we obtain ∥D1/2Y − ĀC∥ =
∑
x

2β2
x

dx
. As we assume that Ex̄∼Pu(A(x|x̄)1yx ̸=ȳ) = α, so

∑
x,x+

A(x, x+)1yx+ ̸=yx
=
∑
x,x+

Ex̄(A(x|x̄)A(xx+ |x̄)1yx+ ̸=yx
)

≤
∑
x,x+

Ex̄(A(x|x̄)A(xx+ |x̄)(1yi ̸=ȳ + 1yx+ ̸=ȳ))

= 2Ex̄∼Pd
(A(x|x̄)1yx ̸=ȳ)

= 2α.

(25)
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Then we have

∥D1/2Y − ĀC∥ =
∑
x

2β2
x

dx

≤
∑
x

2βx (dx =
∑
x+

A(x, x+) ≥
∑
x+

A(x, x+)1yx ̸=yx+ )

= 2
∑
x,x+

A(x, x+)1yx ̸=yx+ (definition of βx)

≤ 4α. (Equation (25))

Then we obtain

Ex,y∥y −Wff
(m)(x)∥2

= ∥D1/2Y − ĀC + ĀC − FmWf∥2

≤ 2∥ĀC − FmWf∥2 + 8α (∥A+B∥2 ≤ 2∥A∥2 + 2∥B2∥)
= 2∥(Ā− FmFT

m + UUT )C − FmWf )∥2 + 8α

= 2∥(Ā− FmFT
m)C + Fm(FT

mC −Wf )∥2 + 8α

≤ 4(∥(Ā− FmFT
m)C∥2 + ∥Fm(FT

mC −Wf )∥)2 + 8α (∥A+B∥2 ≤ 2(∥A∥2 + ∥B∥2))
≤ 4(∥(Ā− FmFT

m)∥2∥C∥2 + ∥Fm∥2∥(FT
mC −Wf )∥2) + 8α (∥AB∥ ≤ ∥A∥∥B∥)

≤ 4(∥(Ā− FmFT
m)∥2 + 8α (∥C∥ = 1).

(26)
In the next step, we analyze the prediction error. We denote ȳ as the ground-truth label of original
data x̄. We first define an ensembled linear predictor p′f . For an original sample, the predictor
ensembles the results of all different views and chooses the label predicted the most. With the
definition, ȳ ̸= p′f (x̄) only happens when more than half of the views predict wrong labels. So

Pr(ȳ ̸= p′f (x̄)) ≤ 2Pr(ȳ ̸= pf (x))

≤ 4Ex̄∼Pd(x),x∼M1(x|x̄)∥ȳ −Wff
(m)(x)∥2

≤ 8(Ex,y∥y −Wff
(m)(x)∥2 + Ex̄∼Pd(x),x∼M1(x|x̄)∥y − ȳ∥2)

≤ 8(Ex,y∥y −Wff(x)∥2 + 2α)

≤ 32∥(Ā− FmFT
m)∥2 + 64α+ 16α.

Then we plug the optimal solutions of SCL (Lemma 4.1) in to Fm, and we obtain

E((f⋆(m)
SCL )) ≤ 32((1− m

k
)

k∑
i=1

σ2
li +

N∑
i=k+1

σ2
i ) + 80α. (27)

When we plug the optimal solutions of triCL (Theorem 4.5) into Fm, we obtain:

E((f⋆(m)
triCL)) ≤ 32

N∑
i=m+1

σ2
i + 80α. (28)

A.3 Feature Identifiability of Asymmetric Tri-Factor Contrastive Learning

We first extend the augmentation graph to an asymmetric form. The asymmetric augmentation graph
is defined over the set of all samples with its adjacent matrix denoted by PO. In the augmentation
graph, each node corresponds to a sample, and the weight of the edge connecting two nodes xA and
xB is equal to the probability that they are selected as a positive pair, i.e.,(PO)xa,xb

= PO(xa, xb).
And we denote P̄O as the normalized adjacent matrix of the augmentation graph, i.e., (P̄O)xa,xb

=
PO(xa,xb)

2

PA(xa)PB(xb)
.
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Similar to the symmetric form, we then rewrite Ltri as a matrix decomposition objective

Ltri(fA, fB , S) = −2Exa,xb
fA(xa)

⊤SfB(xb) + Ex−
a ,x−

b

(
fA(x

−
a )

⊤SfB(x
−
b )
)2

=
∑
xa,xb

(
PO(xa, xb)

2

PA(xa)PB(xb)
+ PA(xa)PB(xb)

(
fA(xa)

⊤SfB(xL)
)2

− 2PO(xa, xb)fA(xa)
⊤SfB(xL)) + const

= ∥P̄O − FASF
⊤
B ∥2.

According to the Eckart-Young Theorem [12], the optimal solutions F ⋆
A, S

⋆, F ⋆
B satisfy

F ⋆
AS

⋆(F ⋆
B)

⊤ = UkΣ(V k)⊤,

where Σ ∈ Rk×k is a diagonal matrix with the k-largest eigenvalues of P̄O and U ∈ RNA×k contains
the corresponding eigenvectors of the k-largest eigenvalues. When the regularizer LDec is minimized,
F ⋆
A and F ⋆

B satisfy (F ⋆
A)

⊤F ⋆
A = I , (F ⋆

B)
⊤F ⋆

B = I . In the next step, we prove the uniqueness of the
optimal solution.

We denote H = F ⋆
AΣF

⋆
B , and we obtain HH⊤ = F ⋆

AS
⋆(S⋆)⊤(F ⋆

A)
⊤. If ζ, σ are a pair of

eigenvector and eigenvalue of HH⊤, we have

HH⊤ζ = F ⋆
AS

⋆(S⋆)⊤(F ⋆
A)

⊤ζ = σζ,

S⋆(S⋆)⊤(F ⋆
A)

⊤ζ = σ(F ⋆
A)

⊤ζ,

S⋆(S⋆)⊤
(
(F ⋆

A)
⊤ζ
)
= σ

(
(F ⋆

A)
⊤ζ
)
.

(29)

So the eigenvalues of HH⊤ are the eigenvalues of S⋆(S⋆)⊤. As the positive eigenvalues of HH⊤

are uniquely determined and S⋆ has an increasing order, S⋆ is also determined and S⋆ =
∑

.

We note that HH⊤ = F ⋆
AS

⋆(S⋆)⊤(F ⋆
A)

⊤, i.e., HH⊤F ⋆
A = F ⋆

AS
⋆(S⋆)⊤, which means that the k

columns of F ⋆
A are the eigenvectors of HH⊤ and the corresponding eigenvalues are σ1 · · ·σk. As

HH⊤ only has k different non-negative eigenvalues σ1, · · · , σk, the eigenspace of each eigenvalue
is one-dimensional. When we consider the real number space, any two eigenvectors ζi, ζ ′i of the
same eigenvalue σi satisfy ζi = cζ ′i. As (F ⋆

A)
⊤F ⋆

A = I , we obtain c = +1. Then we eliminate the
ambiguity of the sign following Eq 11 and F ⋆

A is unique. Similarly, F ⋆
B is also unique. So the optimal

solution of LtriCLIP is unique.

B Experimental Details

B.1 Experiment Details of Section 6.1

We first generate a random matrix A with size 5000× 3000, and make sure that it does not contain
multiple eigenvectors (which is easy to satisfy). For the matrix factorization problem ∥A− FG⊤∥2F ,
we apply off-the-shelf algorithms and repeat this process ten times. We then calculate the mean and
variance of the l2 pairwise distance between the obtained solutions of F . For the trifactorization
objective ∥A− FSG⊤∥2F , we use SVD to obtain an initial solution and apply the sign identification
procedure to determine the sign of each eigenvector. Similarly, we also repeat this process ten times
and calculate the mean and variance of the l2 pairwise distance between different solutions.

B.2 Experiment Details of Section 6.2

Pretraining Setups. For different evaluation tasks (k-NN, linear evaluation, image retrieval), we use
the same pretrained models. We adopt ResNet-18 as the backbone. For CIFAR-10 and CIFAR-100,
the projector is a two-layer MLP with hidden dimension 2048 and output dimension 256. And for
ImageNet-100, the projector is a two-layer MLP with hidden dimension 4096 and output dimension
512. We pretrain the models with batch size 256 and weight decay 0.0001. For CIFAR-10 and
CIFAR-100, we pretrain the models for 200 epochs. While for ImageNet-100, we pretrain the models
for 400 epochs. We use the cosine anneal learning rate scheduler and set the initial learning rate to
0.4 on CIFAR-10, CIFAR-100, and 0.3 on ImageNet-100.
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As the importance matrix is learned on the projection layer, we conduct the downstream tasks on the
features encoded by the complete networks (containing both the backbones and the projectors).

The Distribution of the Importance Matrix. When observing the distribution of feature importance
discovered by the importance matrix S, we first apply the softplus activation functions on the
diagonal values of S and sort different rows of S by the descending order of corresponding diagonal
values in S. We denote the non-negative ordered diagonal values of S as (s1, · · · , sk). When
we present the distribution of them in Figure 2(a), we normalize the diagonal values and obtain

(s1/
k∑

i=1

si, · · · , sk/
k∑

i=1

si).

The K-NN Accuracy on Selected Dimensions. For k-NN evaluation on 10 selected dimensions, we
do not finetune the models. We sort the dimensions of f(x) by the descending order of corresponding
diagonal values in the importance matrix. The k-NN is conducted on the standard split of CIFAR-10,
CIFAR-100 and ImageNet-100 and the predicted label of samples is decided by the 10 nearest
neighbors.

Linear Evaluation on Selected Dimensions. We train the linear classifier on 20 dimensions of the
frozen networks for 30 epochs during the linear evaluation. We set batch size to 256 and weight
decay to 0.0001. For triCL, we sort the dimensions by descending order of the importance matrix.
And for SCL, we randomly choose 20 dimensions.

C More Extensions of Tri-factor Contrastive Learning

In this section, we apply tri-factor contrastive learning to another representative contrastive learning
objective: the non-contrastive loss [15, 5].

Besides contrastive learning, non-contrastive learning is another popular self-supervised framework
that throws the negative samples in contrastive learning and learns the meaningful representations
only by aligning the positive pairs. Taking the state-of-the-art algorithm BYOL [15] as an example,
they use an MSE loss:

LMSE(f, g) = 2− 2 · Ex.x+

g(x)⊤f(x+)

∥g(x)∥2 · ∥f(x+)∥2
, (30)

where g(x) and f(x) are two different networks to avoid the feature collapse. Then we consider
adapting the tri-term loss to the non-contrastive learning, i.e.,

LtriMSE(f, g) = 2− 2 · Ex.x+

g(x)⊤Sf(x+)

∥g(x)∥2 · ∥f(x+)∥2
+
∥∥Exg(x)g(x)

⊤ − I
∥∥2 . (31)

It is noticed that BYOL utilizes the stop-gradient technique on the target network f and it is updated
by exponential moving average. So we only calculate the feature decorrelation loss on the online
network g.
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