
A Proofs of Main Results

A.1 Notation

We follow the setting defined in section 1. Throughout, we work in the so-called proportional
high-dimensional limit, where n, p go to infinity with

n

p
→ α > 0,

while C stays fixed.

Throughout this section, ∥ · ∥ will denote the spectral norm of a matrix, while ∥ · ∥q for q > 0 will
refer to the element-wise q-norms. For a subgaussian random variable Y , its sub-gaussian norm
∥Y ∥ψ2 is defined as

∥Y ∥ψ2
= inf

{
t > 0

∣∣∣∣ E [exp(Y 2

t2

)]
≤ 2

}
.

A.2 State of the art

Proof sketch and remarks — Before providing a complete proofs, we believe it is useful to present
a short intuitive presentation explaining why these results hold.

(i) A crucial first remark is that Theorem 1 and Corollary 2 do not require that the data generated by
GANs are Gaussians mixtures: rather, it is their one-dimensional projections along the directions in
Sp that should behave as such. The first, intuitive, explanation, is that indeed in high dimension, for a
randomly chosen vector θ ∈ Sp, it is natural to expect that θ⊤x) behaves like a Gaussian mixture.
Indeed, if we condition on a given label, then z is Gaussian, the random variable x = Ψnn(z), has a
well defined mean and variance (at least if Ψ is a Lipschitz function), so that the central limit theorem
shows that θ⊤x) converges to a Gaussian variable.
(ii) We require, however, a slightly stronger condition in eq. (11): Indeed, it should be that, con-
ditioned on a label, θ ∈ Sp is Gaussian for all θ ∈ Sp, not a randomly chosen one (since we do
certainly do not chose our weights randomly). This condition might appear strong. However, such
one-dimensional CLTs have been the subject of many recent works which proved them for many
cases [14, 16, 17], including random features and two-layers neural tangent kernels. We extend
the proof of the one-dimensional CLT to mixture models in section 2.4. We also provide further
formal arguments in App. C. In particular, we argue that a large class of distributions, including
deep generative models, do satisfy this condition that can also be checked empirically in simulations
[14, 40].

(iii) The one-dimensional CLT now implies that E
[
R̂n (Θ;X,y(X))

]
≃ E

[
R̂n (Θ;G,y(G))

]
for any fixed choice of Θ, independent from the data. There is another, additional difficulty: when
one performs empirical risk minimization, the minimizer Θ̂(X) strongly depends on the data X ,
and the naive 1d-CLT simply does not apply! Solving the problem of the dependence of the estimator
over the data is the main mathematical difficulty in proving Thm. 2. This is achieved in the Appendix
by using a method due to [17], that leverage on the Guerra interpolation techniques used to prove
the validity of the replica method [47]. The idea is to define a t-dependent model that uses n dataset
points at t = 0, and GMM ones at t = 1, and to show that the free energy (and all observables)
remains constants at all “times” t ∈ [0, 1]). This establishes fully the universality advocated in our
theorem.

We now review the recent result of [17]. Consider the minimization problem (4), with (xµ, yµ) i.i.d
random variables; the goal is to replace the xµ by their Gaussian equivalent model

gi
i.i.d∼ N (µ,Σ) where µ = E [x] , Σ = E

[
xx⊤] . (28)

[17] make the following assumptions:

Assumption A1 (Loss and regularization). The loss function ℓ : Rk+1 → R is nonnegative and
Lipschitz, and the regularization function r : Rp×k → R is locally Lipschitz, with constants
independent from p.
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Assumption A2 (Concentration on the directions of Sp). We have

sup
θ∈Sp,∥θ∥2≤1

∥θ⊤x∥ψ2 ≤M, sup
θ∈Sp,∥θ∥2≤1

∥Σ1/2θ∥2 ≤M, and ∥µ∥2 ≤M (29)

for some constant M > 0.
Assumption A3 (One-dimensional CLT). For any bounded Lipschitz function φ : Rk → R,

lim
p→∞

sup
θ∈Sp

∣∣E [ϕ(θ⊤x)
]
− E

[
ϕ(θ⊤g)

]∣∣ | = 0. (30)

Assumption A4 (Labels). The yµ are generated according to

yi = η(Θ∗xi, εi, ci), (31)

where η : Rk∗+1 → R is a Lipschitz function, Θ∗ ∈ Sk∗p , and the εµ are i.i.d subgaussian random
variables with

∥εi∥ψ2
≤M

for some constant M > 0.

Building on those assumptions, [17] prove the following:
Theorem 7 (Theorem 1. in [17]). Suppose that Assumptions A1-A3 hold. Then, for any bounded
Lipschitz function Φ : R → R, we have

lim
n,p→∞

∣∣∣E [Φ(R̂⋆
n(X,y(X))

)]
− E

[
Φ
(
R̂⋆
n(G,y(G))

)]∣∣∣ = 0

In particular, for any ρ ∈ R,

R̂⋆
n(X,y(X))

P−→ ρ if and only if R̂⋆
n(G,y(G))

P−→ ρ

Free energy approximation A crucial component of the proof in [17] is the approximation of the
minimizer through a free energy function. Define the discretized free energy

fϵ,β(X) = − 1

nβ

∑
Θ∈Nk

ϵ

exp
(
−β R̂n(Θ;X,y(X))

)
, (32)

where Nϵ is a minimal ϵ-net of Sp.
Lemma 8 (Lemma 1 in [17]). For any bounded differentiable function Φ with bounded Lipschitz
derivative, and any ϵ > 0 we have:

lim
n,p→∞

|E [Φ (fϵ,β(X))]− E [Φ (fϵ,β(G))]| = 0.

Subsequently, using classical arguments from both the theory of ϵ-nets and statistical physics, the
authors show that ∣∣∣fϵ,β(X)− R̂n(Θ;X,y(X)

∣∣∣ ≤ C1(ϵ) +
C2(ϵ)

β
, (33)

and the same inequality holds for G. Since C1, C2 do not depend on n, p, it is possible to choose
first ϵ, then β so that the RHS of (33) is as small as desired.

[17] therefore used the universality of the free energy as an intermediate step wards proving the
universality of the training error. We generalize this result to the free energy defined for a general
class of Boltzmann distributions, allowing us to prove universality in applications related to sampling.

A.3 Sketch of proof of Lemma 8, adapted from [17]

Interpolation path For any 0 ≤ t ≤ π/2, define

Ut = cos(t)X + sin(t)G

Then Ut is a smooth interpolation path with independent columns, ranging from U0 = X to
Uπ/2 = G. We can write, for any differentiable function ψ,

|E [ψ(fϵ,β(X))]− E [ψ(fϵ,β(G))]| ≤
∫ π/2

0

∣∣∣∣E [dψ(fϵ,β(Ut)))

dt

]∣∣∣∣ dt,
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and by the dominated convergence theorem it suffices to show that the integrand converges to 0 for
any t. The chain rule gives:

dψ(fϵ,β(Ut)))

dt
= ψ′(fϵ,β(Ut)))

(
n∑
µ=1

(
dut,µ
dt

)⊤

∇ut,µ
fϵ,β(Ut)

)
, (34)

and the dependency in ψ can be easily controlled. Since all columns of Ut are i.i.d, we are left with
showing

lim
n,p→∞

nE(1)

[(
dut,1
dt

)⊤

∇ut,1
fϵ,β(Ut)

]
= 0 a.s., (35)

where E(1) denotes the expectation with respect to (x1, g1, ε1).

Showing (35) Imagine for a moment that x1 is Gaussian; then ut,1 and dut,1/dt are also jointly
Gaussian, and we have

E

[(
dut,1
dt

)⊤

ut,1

]
= E

[
(− sin(t)x1 + cos(t)g1)

⊤(cos(t)x1 + sin(t)g1)
]

= 0,

since x1 and g1 have the same covariance by definition. Therefore, they are independent, and we have

E(1)

[(
dut,1
dt

)⊤

∇ut,1
fϵ,β(Ut)

]
= E(1)

[(
dut,1
dt

)]⊤
E(1)

[
∇ut,1

fϵ,β(Ut)
]
= 0.

On the other hand, it is possible to show that x1 only appears in (35) through scalar products with Θ
or Θ∗. As a result, we can leverage Assumption 4 to replace x1 by a Gaussian vector w independent
from g1 as p→ ∞. Then, the reasoning above can be repeated with w and g1 to conclude the proof.

A.4 Proof of Theorem 2

In order to prove our theorem 2, we now aim to adapt the proof from [17] to the following case where
the distribution of x can be a mixture of several other distributions, each with different mean and
covariance. For a discrete set C, we consider a family of distributions (νc)c∈C on Rp, with means and
covariances

µc = Ez∼νc [z] and Σc = Ez∼νc [zz
⊤]

Given a type assignment σ : [n] → C, each sample xi is then drawn independently from νσ(i). The
equivalent Gaussian model is straightforward: we simply take

gi ∼ N (µσ(i),Σσ(i)),

independently from each other. An important special case of this setting is when σ is itself random,
independently from the xi and gi: the law of gi is then a so-called Gaussian Mixture Model. Note
that in the Gaussian mixture setting, the existence of the labeling function σ implies that we coupled
the labels for X and G.

The main differences between our Assumptions 1-4 and Assumptions A1-A3 are the following:

(i) Assumption 1 is unchanged.
(ii) We relax (31) in Assumption 3 into

yi = ησ(i)(Θ
∗xi, εi, ci),

when η a Lipschitz function in its first two parameters. This allows in particular to incorpo-
rate classification problems in our setting, at no cost in the proof complexity.

(iii) We assume a more general setup where the constraint set Sp is not necessarily a product set.
This slight generalization will be useful while proving a reduction to multiple objectives in
Theorem 4.

(iv) We suppose that Assumptions 2 and 4 hold for any possible distribution νc for c ∈ C and its
associated Gaussian equivalent model.

(v) We allow the reference measures to be any sequence of Borel measures with support on Sp,
instead of only the Dirac measure on the ϵ-net Nϵ.

We now go through the proof of the previous section, highlighting the important changes.
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Free energy approximation This section goes basically unchanged; the approximation between
R̂∗
n(X,y(X)) and fϵ,β(X) relies on Lipschitz arguments and concentration bounds on the xi and

gi, which are satisfied by our modification of Assumption 2.

General Reference Measures Our proof for the universality of free energy in Theorem 2 is a
generalization of the proof of Lemma 1 in [17]. Compactness of the supports ensures that the
corresponding free energy:

fβ,n(Z) =

∫
exp (−βnRn(Θ;Z,y)) dµ(Θ), (36)

is finite for any Z.

The corresponding Boltzmann measures can then be defined by setting the Radon-Nikodym deriva-
tive/density to be:

dµ̃

dµ
= exp

(
−βnR̂n(Θ;X,y)

)
. (37)

The measure µ̃ is then a Borel measure with support lying in Sp. Therefore, through dominated
convergence theorem, we can interchange differentiation and expectations w.r.t µ in the proof of
Lemma 1 in [17]. For instance, equation (34) can be expressed as:

E
[
∂

∂t
ψ(fβ,n(Ut))

]
= E

[
ψ′(fβ,n(Ut))

n

n∑
i=1

∫
ũ⊤
t,id̂t,i(Θ)e−nβRn(Θ;Z,y)dµp∫

e−nβRn(Θ;Z,y)dµp

]
. (38)

Similarly we substitute
∑

Θ by
∫
dµ in the remaining arguments in the proof of Lemma 1 in [17].

Interpolation path Recall that the important property of Ut is that

E

[(
dUt

dt

)⊤

Ut

]
= 0. (39)

To this end, we set

ut,i = µσ(i) + cos(t)(xi − µσ(i)) + sin(t)(gi − µσ(i)),

and it is easy to check that (39) is satisfied. Another problem is that the columns of Ut are not i.i.d
anymore, so we have to control

1

n

n∑
i=1

∣∣∣∣∣E(i)

[(
dut,i
dt

)⊤

∇ut,ifϵ,β(Ut)

]∣∣∣∣∣ , (40)

where this time E(i) is the expectation w.r.t (xi, gi, εi). However, (40) is a weighted average over all
values of σ(µ), and since C is finite is suffices to show (35) for any value of σ(1).

Showing (35) This section again relies on concentration properties of the xi and gi, as well as
Assumption 4. The arguments thus translate directly from [17].

A.5 Proof of Proposition 3

We define the following free energy of the system:

fn,s,ϵ(X,y) = − 1

n
log

∫
e−n

∑M
m=1 βm R̂(m)

n (Θ(m);X(m),y(m))−sn h(Θ(1),...,Θ(M))dµ1:M1
ϵ dµ(M1+1):M ,

(41)
where the µm are the reference measures for the Boltzmann distributions in (16), and µmϵ is the
uniform measure supported on a minimal ϵ-net of S(i)

p :

µmϵ =
1

|Nm
ϵ |

∑
Θ∈Nm

ϵ

δΘ, (42)

where δΘ denotes the Dirac measure at Θ. We establish the following result:
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Lemma 9 (Universality of the joint free energy). Under Assumptions 1-4, for any fixed ϵ > 0 and
any bounded differentiable function ψ with bounded Lipschitz derivative we have.

lim
n→∞

|E [ψ(fn,s,ϵ(X,y))]− E [ψ(fn,s,ϵ(X,y))]| = 0.

Proof. We construct a reduction from the free energy of the form in equation 41 to the universality of
free energy for a single objective in Theorem 1.

We construct an equivalent objective on the pM × kM dimensional space. Consider the following
mapping:

Θ =


Θ(1) 0 0 · · ·
0 Θ(2) 0 · · ·
· · · · · · · · · · · ·
0 0 · · · Θ(M)

 (43)

. Let SpM be the set obtained by applying the mapping in equation 43 to S(1)
p , · · · ,S(M)

p . Let
X = (X(1), · · · ,X(M)) denote the combined input matrix with each row of dimension pM . We
note that SpM is a product of kM compact sets, each satisfying the assumption 2. Similarly, we have
the combined output vector:

y =

 y(1)

...
y(M)

 (44)

We define ℓ : Rk′M × RkM → R by:

ℓ(u,y) =

M∑
m=1

βmℓm(u[(k − 1)m : km],y[(k − 1)m : km]). (45)

Similarly, we define the total regularization as:

r(Θ) =

M∑
m=1

βmrm(Θ[(m− 1)p : mp, (m− 1) : k,mk])

+ sh(Θ[0 : p, 0 : k], · · · ,Θ[(M − 1)p :Mp, (M − 1)k :Mk]).

(46)

Let R̂n(Θ;X,y) denote the following objective on the combined vector Θ:

R̂n(Θ;X,y) =
1

n

n∑
i=1

ℓ(Θ⊤xi,yi) + r(Θ) (47)

Then, using all the definitions above, we have

R̂n(Θ;Z,y) =

M∑
m=1

βm R̂(m)
n (Θ(m);X(m),y(m)) + s h(Θ(1), · · · ,Θ(M)) (48)

Therefore, we obtain that:

fn,s,ϵ(X,y) = − 1

n
log

∫
e−n

∑M
m=1 βm R̂(m)

n (Θ(m);X(m),y(m))−sn h(Θ(1),...,Θ(M))dµ1:M1
ϵ dµ(M1+1):M

= − 1

n
log

∫
e−nR̂n(Θ;X,y)dµ1:M1

ϵ dµ(M1+1):M .

(49)

We further note that the constraint sets on Θ, and the joint means, covariances on X satisfy the
assumptions A2. Therefore, using Theorem 1, we obtain that:

lim
n→∞

|E [ψ(fn,s,ϵ(X,y))]− E [ψ(fn,s,ϵ(X,y))]| = 0

The proof of Proposition 3 then follows using the ϵ-net approximation in (33) for Θ[1 :M1].
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A.6 Proof of Theorem 4

Our proof relies on the following result:
Lemma 10. For any n ∈ N, qn(s) is a concave function of s, that is differentiable at 0, and

q′n(0) = E
[〈
h
(
Θ(1), · · · ,Θ(M)

)〉
G

]
. (50)

Proof. Consider the joint free energy in Equation (18):

fn,s(Θ[1 :M1],X,y) = − 1

n
log

∫
e−sn h(Θ

(1),...,Θ(M))dP (M1+1):M , (51)

Let ⟨·⟩M1+1:M denote the expectation w.r.t the product measure

dµ̃(Θ[1 :M1],X,y) = e−sn h(Θ
(1),...,Θ(M))dP (M1+1):M .

We observe that:
dfn,s
ds

(Θ[1 :M1],X,y) = ⟨h(Θ(1), . . . ,Θ(M))⟩M1+1:M . (52)

Differentiating w.r.t s again, and using the dominated convergence theorem, we obtain:

− 1

n

d2fn,s
ds2

(Θ[1 :M1],X,y) = ⟨h(Θ(1), . . . ,Θ(M))2⟩M1+1:M − ⟨h(Θ(1), . . . ,Θ(M))⟩2M1+1:M .

(53)
Since the R.H.S equals the variance of the variable h(Θ(1), . . . ,Θ(M)) w.r.t µ̃(M1+1):M , we have:

d2fn,s(Θ[1 :M1],Z, s)

ds2
≤ 0. (54)

Therefore, for fixed Θ[1 :M1], we obtain that the function:

R̂n,s(Θ[1 :M1],X,y) =

M1∑
m=1

R̂(m)
n (Θ(m);X(m),y(m)) + fn,s(Θ[1 :M1],X,y). (55)

is concave in s. Next, we recall that pointwise infimum of arbitrary collections of concave functions
is concave [48]. Therefore, we obtain that the function:

qn(s) = E
[

min
Θ[1:M1]

R̂n,s(Θ[1 :M1],G,y)

]
, (56)

is concave in s. Then, by Danskin’s theorem, the subdifferential of qn at zero is the set{
⟨h(Θ(1), . . . ,Θ(M))2⟩M1+1:M ,Θ[1 :M1] ∈ argmin R̂n,0(Θ[1 :M1],X,y)

}
But by Assumption 6, this set only has one element, and hence qn is differentiable at 0.

Next, we relate the convergence of the above functions to the expectation of h(Θ(1), . . . ,Θ(M)),
through the following standard result from Convex Analysis:
Theorem 11. (Theorem 25.7. in [48]): Let C be an open convex set, and let f be a convex function
which is finite and differentiable on C. Let f1, f2, . . ., be a sequence of convex functions finite and
differentiable on C such that limn→∞ fn(x) = f(x) for every x ∈ C. Then

lim
n→∞

∇fn(x) = ∇f(x), ∀x ∈ C.

By Assumption 5,
lim
n→∞

qg,n(s) = q(s). (57)

Applying theorem 11 to the sequence qg,n(s) yields:

lim
n→∞

q′n(0) = q′(0). (58)
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Now, consider the corresponding free energy for the data distribution px:

qx,n(s) = E
[

min
Θ[1:M1]

R̂n,s(Θ[1 :M1],X,y)

]
. (59)

We again have that qx,n(s) is a concave, differentiable function in s, with:

q′x,n(0) = E
[〈
h
(
Θ(1), · · · ,Θ(M)

)〉
X

]
. (60)

Now, Proposition 3 and equation (57) imply that

lim
n→∞

qx,n(s) = lim
n→∞

qn(s) = q(s). (61)

Therefore, Theorem 11 applied to the sequence of functions qx,n(s) implies that:

lim
n→∞

q′x,n(0) = q′(0). (62)

By equations 60 and Lemma 10, we then obtain:

lim
n,p→∞

∣∣∣E [〈h(Θ(1), · · · ,Θ(M)
)〉

X

]
− E

[〈
h
(
Θ(1), · · · ,Θ(M)

)〉
G

]∣∣∣ = 0. (63)

A.7 Proof of Theorem 6: One-dimensional CLT for Random Feature Models

Our proof relies on a reduction to Theorem 2 in [16] and the proof of corollary 2 in [17]. We first
notice that it suffices to show the result when z ∼ N (µz,Σz) is a Gaussian variable; and upon
rescaling of σ we shall assume that tr(Σz) = p.

Let V = Σz1/2F , and define the following events:

A1 =

{
sup
i,j∈[d]

∣∣v⊤
i vj − δij

∣∣ ≤ C1

(
log d

d

)1/2
}

A2 =

∑
i∈[d]

∣∣∥vi∥2 − 1
∣∣ ≤ C2


A3 = {∥F ∥op ≤ C3} A4 = {∥V ∥op ≤ C4}

Since the fi are independent and sub-gaussian, Lemma 22 in [17] implies that there exists constants
C1, C2, C3, C4 such that B = A1 ∩ A2 ∩ A3 ∩ A4 is a high-probability event. Now, for i ∈ [d], we
define

σi(u) = σ(u+ f⊤
i µz). (64)

Now, as in [17], we argue that the proof of Theorem 2 in [16] still applies to our setting. Indeed:

• since z does not have identity covariance, we replace the conditions on F by the exact same
ones on V ,

• the Stein method they use proceeds term by term, so using a different σi in each term does
not matter as long as they satisfy the boundedness assumptions above,

• since we match the means of g and those of x, the requirement that σ be odd is unimportant
in our setting.

In particular, for bounded Lipschitz test functions φ, the proof of Lemma 2 in [16] shows that for any
θ ∈ Rd, ∣∣E [φ(θ⊤x)

]
− E

[
φ(θ⊤g)

]∣∣ ≤ C∥θ∥∞ polylog(p)

ν2
(65)

where ν2 is the variance of θ⊤x:
ν2 = θ⊤Σθ. (66)

We now place ourselves in the setting where θ ∈ Sp where Sp is defined in (26), and we consider
two cases:

(i) if ν2 > p−2η/3, then (65) reduces to∣∣E [φ(θ⊤x)
]
− E

[
φ(θ⊤g)

]∣∣ ≤ C polylog(p)

pη/3
. (67)
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(ii) if instead ν2 > p−2η/3, then by the Lipschitz property of φ we have∣∣E [φ(θ⊤x)
]
− φ(µ)

∣∣ ≤ C
√
ν2 =

C

pη/3
, (68)

and the same holds for g.

In both cases, the bounds goes to 0 uniformly over the whole constraint set Sp, which shows that
Assumption 4 holds.

We now move to checking Assumption 7; Lemma 8 in [16] (more precisely, eq. (159)) exactly shows
that for θ ∈ Sp, the random variable θ⊤x − θ⊤µ is C-subgaussian for an absolute constant C.
Hence, we only need to show that µ is uniformly bounded. Recall that

µi = E
[
σ(f⊤

i z)
]
= E

[
σ
(
f⊤
i µz + (1 + τi)z̃

)]
where z̃ is a standard normal variable and

τi = ∥vi∥ − 1.

Then, we can write using the Lipschitz property of σ

σ(f⊤
i z) = σ(z̃) + (f⊤

i µz + τiz̃)σ̃(f
⊤
i z)

where σ̃ is a uniformly bounded function. By assumption, σ(z̃) has zero mean, and hence by the
Cauchy-Schwarz inequality

∥µ∥2 ≤
∑
i∈[d]

(f⊤
i µz)2 + (∥vi∥ − 1)2

≤ ∥F ∥2op∥µz∥2 +
∑
i∈[d]

∣∣∥vi∥2 − 1
∣∣

≤ C

under the high-probability event B.

A.8 Proof of Theorem 5

Our proof utilizes the results in [12] that describe the asymptotic limits of the estimators obtained
through empirical risk minimization on the mixture of gaussians dataset. We note that the assumptions
A1-A5 of their Theorem 1 are satisfied by our setting.

Let W ⋆ denote the minimizer of the objective in equation 22, and let Z⋆ = XW ⋆. Let ξk∈[K] ∼
N (0, IK) , Ξk ∈ RK×d be sets of K-dimensional vectors and dimensional matrices respectively,
with i.i.d entries sampled from N (0, 1).

Then, Theorem 1 in [12] proves that for any pseudo-lipschitz functions of finite order, ϕ1 : RK×d →
R, ϕ2 : RK×n → R:

ϕ1(W
⋆)

P−−−−−−→
n,d→+∞

EΞ [ϕ1(G)] , ϕ2(Z
⋆)

P−−−−−−→
n,d→+∞

Eξ [ϕ2(H)] (69)

Here G and H are functions of certain finite dimensional parameters

u := (Qk ∈ RK×K ,Mk ∈ RK ,Vk ∈ RK×K , Q̂k ∈ RK×K , m̂k ∈ RK , V̂k ∈ RK×K)k∈[K]

and the random vectors ξk∈[K],Ξk∈[K]. The matrix H is obtained by concatenating the following
functions hk, ρkn time for each k:

hk = V
1/2
k Prox

ℓ(ek,V
1/2
k •)(V

−1/2
k ωk) ∈ RK , ωk ≡ Mk + b+Q

1/2
k ξk , (70)

Similarly, the matrix G ∈ RK×d is described by:

G = A
1
2 ⊙Prox

r(A
1
2 ⊙•)

(A
1
2 ⊙B), A−1 ≡

∑
k

V̂k⊗Σk, B≡
∑
k

(
µkm̂

⊤
k +Ξk ⊙

√
Q̂k⊗Σk

)
.
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Further define the function: fk ≡ V −1
k (hk − ωk). The equivalent bias vector b⋆ is defined through

the linear equation: ∑
k

ρkEξ [Vkfk] = 0, (71)

and is therefore, unique, differentiable in u. The parameters u satisfy the following equations:
Qk=

1
dEΞ[GΣkG

⊤]

Mk=
1√
d
EΞ[Gµk]

Vk=
1
dEΞ

[(
G⊙

(
Q̂k ⊗Σk

)− 1
2⊙ (IK ⊗Σk)

)
Ξ⊤
k

]

Q̂k= αρkEξ

[
fkf

⊤
k

]
V̂k= −αρkQ

− 1
2

k Eξ

[
fkξ

⊤]
m̂k= αρkEξ [fk] .

(72)

.

We observe that the system of equations (72) can be expressed as a multi-dimensional fixed point
equation:

u = Fn(u). (73)

We make the following assumption, which is slightly stronger than (A5) in [12]:
Assumption A5. The fixed point equations u = Fn(u) have unique solutions ∀n ∈ N. Let ûn be
the unique solution to u = Fn(u). We further assume the solutions are uniformly bounded, i.e:

∥ûn∥ ≤ K (74)

for some constant K, and the jacobian of the fixed point equations I− dFn

du is invertible. Furthermore,
we assume that the same assumptions hold for the limiting equations u = F (u).

Remark: While we assume the above conditions, as noted in [12], the fixed point equations 72,
correspond to the optimality conditions of a strictly convex-concave problem. This can be rigorously
proven using the properties of Bregman envelopes, as in [18, 49]. The strict convexity-concavity then
implies the uniqueness of the fixed points as well as the differentiability of the limits.

We now prove the following result:
Lemma 12. Under assumption 8, the system of equations (72) converge uniformly to a limiting
system of equations u = F (u).

Proof. We first show that the coordinates of the equivalent minimizer G can be expressed as follows:

Gi = g({µc,i}c∈C , {σc,i}c∈C , ξi,u) (75)

Where g is differentiable function and ξi denote independent Gaussian random variables. Indeed,
from the separability assumption on r, and the definition of the prox operator, we have

Prox
r(A

1
2 ⊙•)

(A
1
2 ⊙B) = argmin

z
r(A1/2 ⊙ z) +

1

2
∥z− (A1/2 ⊙B)∥2 (76)

= argmin
z

d∑
i=1

ψr((A
1/2 ⊙ z)i) +

1

2

d∑
i=1

(zi − (A1/2 ⊙B)i)
2. (77)

u therefore only depends on the ith entry of (A1/2 ⊙B). Further, since all Σc are assumed diagonal,
the entries of (A1/2 ⊙ z)i and (A1/2 ⊙ B)i only depend on zi, {µc,i}c∈C , {σc,i}c∈C , ξi, and the
parameters u . The differentiability of g then follows from the Implicit function theorem, applied to
ψr(A

1/2 ⊙ •) + 1/2(• − (A1/2 ⊙B)i)
2 . The same holds for the matrix H .

We next observe that each coordinate of Fn of the above system of equations 72 can be expressed as an
expectation of a fixed continuous function w.r.t the joint empirical measure of ({µc,i}c∈C , {σc,i}c∈C).
For instance, consider the (i, j)th entry of Qk. We have:

Qk,ij = Fq,i,j,n =
1

d

d∑
ℓ=1

EΞ[Giℓ(Σk)ℓℓGℓj ]. (78)

Using equation (75), we have that Giℓ only depends on the ℓth coordinates of the means, co-
variances. Therefore, for fixed ûn, Qk,ij is an expectation w.r.t the joint empirical measure of
({µc,i}c∈C , {σc,i}c∈C) of a continuous function. By Assumption 8, we have that

lim
n→∞

Fq,i,j,n = Fq,i,j ,
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where Fq,i,j denotes the expectation of EΞ[Giℓ(Σk)ℓℓGℓj ] w.r.t the joint empirical measure.

To show that the convergence is uniform, we utilize assumptions 7 and A5. Since each term in Fn
can be expressed as:

F jn(u) =
1

d

d∑
i=1

Φj(u, {µc,i}c∈C , {σc,i}c∈C), (79)

for some function Φj with Lipschitz constant Lj . Therefore, for any n ∈ N ,F jn(u) is Lj Lipschitz.
This implies the uniform convergence of Fn to F .

We now use the above result to prove convergence of the sequence of solutions ûn.

Lemma 13. Under Assumptions 8 and A5:

lim
n→∞

ûn = û, (80)

where û is the solution to the limiting equations u = F (u).

Proof. By assumption, ûn are bounded. Therefore, by the Bolzano–Weierstrass theorem, there exists
a convergent subsequence. Let ûnj

be any such subsequence with corresponding limit ũ. We have:

∥F (ũ)− ũ∥ ≤ ∥F (ũ)− F (ûnj )∥+ ∥F (ûnj )− Fnj (ûnj )∥.

By uniform convergence of Fn to F (Lemma 12, we have that ∥F (ûnj ) − Fnj (ûnj )∥ → 0 while
∥F (ũ)− F (ûnj

)∥ → 0 from the convergence of ûnj
to ũ and the continuity of F . Therefore, we

must have F (ũ)− ũ = 0 and thus ũ = û. Therefore, any convergence subsequence of ûn converges
to û. Since ûn are bounded, this implies that limn→∞ ûn = û.

Now, let Φ be a twice differentiable test function with a Hessian having bounded spectral norm. We
define:

hd(W ) =
1

d

d∑
i=1

Φ({Wc,i}c∈C , {µc,i}c∈C , {σc,i}c∈C). (81)

Let û(s) denote the solution to the limiting equation u = Fs(u) defined in Lemma 12 for regulariza-
tion

rs(W ) =
λ

n
rd(W ) + shd(W )

By Assumption A5, I − dFs

du is invertible in a neighbourhood of 0. Therefore, by implicit function
theorem and uniqueness of the fixed points, û(s), is a continuously differentiable function of s.

Using equation (75), we obtain that G is a differentiable function of s. We now consider the perturbed
training loss:

R̂(W , b, s) =
1

n

n∑
i=1

ℓ

(
Wxi√
d

+ b,yi

)
+ rs(W ). (82)

By the boundedness of the Hessian of Φ, R̂(W , b, s) satisfies the assumptions of strict convexity,
coercivity for small enough s. We first note from (69) and Theorem 2 in [12], the expected training
error converges to the following limit:

EX

[
1

n

n∑
i=1

ℓ

(
Wxi√
d

+ b,yi

)]
−−−−−−→
n,d→+∞

K∑
k=1

ρkEξ[ℓ(ek,hk)]. (83)

Similar to equation (75), we have that hk differentiable functions of û(s).

From Assumption 9 and the form of the perturbation 81, we further have that λr(W ) + sh(W ) is a
pseudo-Lipschitz function of W of finite order Therefore, Equation (69) gives:

EX

[
1

d
λr(W ∗) + sh(W ∗)

]
−−−−−−→
n,d→+∞

EΞ

[
1

d
λrd(Gn) + shd(Gn)

]
. (84)
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Define:

qn(s,u) =
1

d

d∑
i=1

EΞ

[
ψr(g({µc,i}c∈C , {σc,i}c∈C ,Σ

k
i , ξi,un))

]
(85)

+ s
1

d

d∑
i=1

EΞ

[
Φ(g({µc,i}c∈C , {σc,i}c∈C ,Σ

k
i , ξi,u), {µc,i}c∈C , {σc,i}c∈C)

]
. (86)

From assumption 9 and equation 75, we have:

EΞ

[
1

d
λrd(Gn) + shd(Gn)

]
= qn(s, ûn(s)). (87)

Similar to the proof of Lemma 12, we obtain that qn(s,u) converges uniformly to q(s,u) given by
the corresponding expectation w.r.t the limiting empirical measure:

q(s,u) = Ep(σ,µ)

[
EΞ

[
Φ(g({µc,i}c∈C , {σc,i}c∈C ,Σ

k
i , ξi,u), {µc,i}c∈C , {σc,i}c∈C)

]]
. (88)

Due to the uniform convergence, we further have:

lim
n→∞

qn(s, ûn(s)) = q(s, û(s)). (89)

Using the above equation and Equation 83, we conclude that:

EX

[
1

n

n∑
i=1

ℓ

(
W ∗xi√

d
+ b∗,yi

)
+

1

d
λr(W ∗) + sh(W ∗)

]
→

K∑
k=1

ρkEξ[ℓ(ek,hk(û(s))]+q(s, û(s)),

(90)
where hk and q are differentiable functions of û(s).

Since the RHS is a differentiable function in s, Assumption 5 is satisfied for the perturbation h(W ).
Due to the coercivity of ℓ(y, •X)+ r(•), there exists a sequence of fixed compact subsets containing
the minimizers W ∗ with high probability as n→ ∞ (see Lemma 8 in [18]). Furthermore, since the
input distribution is given by a mixture of gaussians with bounded means, Assumption 8 is satisfied
for any such sequence of constraint sets. Therefore, the validity of assumption 5 through Equation
5 allows the applicability of Theorem 4 for the statistic hd(W ). Through standard approximation
technniques or the Stone–Weierstrass theorem, the restriction of differentiability and bounded Hessian
of Φ can be removed. This completes the proof of Theorem 5 for general bounded Lipschitz Φ.

B Assumptions on the target function

In this section, we discuss possible generalizations of the assumptions on the target function. In (2),
we assume a target function depending on a small number of linear projections in the input space,
along with the class labels. However, when the inputs are generated through feature maps x = ψ(z),
one may instead consider target functions depending directly on the latent vectors z. This was the
setup considered in [16] for random feature maps. For mixture models considered in our work, one
may assume:

yi(X) = η(Θ⊤
⋆ zi, εi, ci). (91)

We conjecture that our results can be generalized to the above setup through the use of the following
stronger assumption:
Assumption A6. For any Lipschitz function φ : R → R,

lim
n,p→∞

sup
Θ1∈Sx

p ,Θ2∈Sz
d

∣∣E [φ(Θ⊤
1 x,Θ

⊤
2 z)

∣∣ cx = c
]
− E

[
φ(Θ⊤

1 g,Θ
⊤
2 z)

∣∣ cg = c
]∣∣ = 0, ∀c ∈ C.

(92)
Here Sx

p is the constraint set for the training parameters Θ1 while Sz
d denotes a suitable constraint

set on Rd where d denotes the dimension of the latent vectors. Under the above assumption

Such an assumption has been discussed in [13] under the term “Hidden Manifold Model", and was
proven in [16] for random feature maps acting on Gaussian noise.
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C One-dimensional gaussian approximation

Although Theorem 7 is a powerful result, it still relies on very strong assumptions. In particular,
given a distribution ν for the inputs xi, characterizing the set of vectors θ such that Assumption 4
holds is in general a difficult task.

Rigorous results When the entries of x are i.i.d subgaussian, a classical application of the Lindeberg
method [50] shows that Assumptions 2 and 4 are satisfied with

Sp = {θ ∈ Rp | ∥θ∥∞ = op(1)}.

More recently, this result (often used under the name “Gaussian Equivalence Theorem”) was extended
to general feature models with approximate orthogonality constraints [16, 14], for the same choice of
Sp. [17] also provides a central limit theorem result for the Neural Tangent Kernel of [51], for a more
convoluted parameter set Sp. While these papers provide a strong basis for the one-dimensional CLT,
those rigorous results only concern (so far) a very restricted set of distributions.

Concentration of the norm Another, more informal line of work originating from [23], argues
that most distributions found in the real world satisfy some form of the central limit theorem. The
starting point of this analysis is the following theorem, adapted from [52]:
Theorem 14 (Corollary 2.5 from [52]). Let x ∈ Rp be a random variable, with E ∗ xx⊤ = Ip, and
ηp the smallest positive number such that

P
(∣∣∣∣∥x∥2√

p
− 1

∣∣∣∣ ≥ ηp

)
≤ ηp. (93)

Then for any δ > 0, there exists a subset Sp of the p-sphere Sp−1 of measure at least 4p3/8e−cpδ
4

,
such that

sup
θ∈Sp

sup
t∈R

∣∣P(θ⊤x ≥ t)− Φ(t)
∣∣ ≤ δ + 4ηp,

where Φ is the characteristic function of a standard Gaussian, and c is a universal constant.

If both δ and ηp are o(1), Theorem 14 implies that Assumption 4 is satisfied for any compact subset
S ′
p ⊆ Sp. This suggests that the norm concentration property of (93) is a convenient proxy for

one-dimensional CLTs. However, the proof of this theorem uses isoperimetric inequalities, and is
thus non-constructive; as a result, characterizing precisely the set Sp remains an open and challenging
mathematical problem.

Concentrated vectors In [23], the authors consider the concept of concentrated random variables,
as defined in [53]:
Definition 15. Let x ∈ Rp be a random vector. x is called (exponentially) concentrated if there
exists two constants C, c such that for any 1-Lipschitz function f : Rp → R, we have

P(|f(x)− Ef(x)| ≥ t) ≤ Ce−ct
2

.

Since the norm function is 1-Lipschitz, it can be shown that any concentrated isotropic vector x
satisfies (93), with

ηp ∝
(
log(p)

p

)1/2

The converse is obviously not true; an exponential random vector still has ηp → 0, but is not
concentrated. However, even if it is stronger that (93), the concept of concentrated vectors has two
important properties:

(i) a standard Gaussian vector x ∼ N (0, Ip) satisfies Definition 15 with constants C, c inde-
pendent from p,

(ii) if x ∈ Rp is a concentrated vector with constants C, c and Ψ : Rp → Rq is an L-Lipschitz
function, then Ψ(x) is also a concentrated vector, with constants only depending on c, C
and L.
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Figure 3: Evolution of the binary cross entropy training loss for the generator (orange) and discrimi-
nator (blue) during training.

Towards real-world datasets The real-world data considered in machine learning is often com-
posed of very high-dimensional inputs, corresponding to p≫ 1 in our setting. However, it is generally
accepted that this data actually lies on a low-dimensional manifold of dimension d0: this is the idea
behind many dimensionality reduction techniques, from PCA [54] to autoencoders [55]. Another,
more recent line of work (see e.g. [56]) studies the estimation of the latent dimension d0; results for
the MNIST dataset (p = 784) yield d0 ≈ 15, while CIFAR-10 (p = 3072) has estimated intrinsic
dimension d0 ≈ 35 [57].

Following this heuristic, the most widely used method to model realistic data is to learn a map
f : Rd0 → Rp, usually through a deep neural network, and then generate the xi according to

x = f(z) with z ∼ N (0, Id0) (94)

Examples of functions f include GANs [58], variational auto-encoders [59], or normalizing flows
[60]. This ansatz has been studied theoretically, and the results compared with real-world datasets, in
[13, 18]; the results indicate significant agreement between generated inputs and actual data.

Finally, we argue that for a large class of generative networks, the learned function f is actually
Lipschitz, with a bounded constant. This is even often a design choice; indeed, theoretical results
such as [61] imply that a smaller Lipschitz constant improve the generalization capabilities of a
network, or its numerical stability [62]. As a result, regularizations aimed at controlling the Lipschitz
properties of a network are a common occurrence; see e.g. [63] for the spectral regularization of
GANs. This indicates that concentrated vectors are indeed a good approximation for real-world data.

D Details on the numerical simulations

In this appendix we expand on how Fig. 2 was generated. This closely follows the pipeline illustrated
in Fig. 1.

Step 1: Training of the cGAN — The first step consists on training a cGAN on the real data set.
For Fig. 2, we have used a PyTorch [64] implementation of the architecture in [65] publicly available
at the pytorch-generative-model-collections repository. The cGAN was trained on the fashion-MNIST
dataset [45] following the default procedure in the repository: i.e. training for 50 epochs and batch
size 64 using Adam with learning rate 0.0002 and (β1, β2) = (0.5, 0.999) on the binary cross entropy
(BCE) loss (equal for both generator and discriminator). The evolution of the training loss during
training is given in Fig. 3, and samples from the generator during different epochs are shown in Fig. 4.

Step 2: Evaluating the class means and covariances — With the trained cGAN in hands, we
can generate as many fresh samples as needed for our experiments. Moreover, a feature map can
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Figure 4: Fake fashion-MNIST Samples from the cGAN generator at the end of epoch 1 (left), 25
(middle) and 50 (right).

be easily added on the top of the cGAN architecture, as illustrated in Fig. 1. For Fig. 2, we have
added a random feature map [46] x 7→ tanh(Fx) with projection matrix F ∈ R1176×784 with entries
Fij ∼ N (0, 1/d). In order to compare the performance of a model trained on cGAN+RF samples vs.
the equivalent Gaussian mixture model, we need to compute the class-wise means and covariances
(µc,Σc). For Fig. 2, this was done with a standard Monte Carlo scheme over 106 samples.

Step 3: Learning curves — The last step consists of computing the curves for the test error of
logistic and ridge regression trained on the cGAN+RF features. Each point in Fig. 2 corresponds
to a fixed sample complexity α = n/p. For each α, we generate fresh n = α × p training features
either from the cGAN+RF model (blue points) or from the equivalent Gaussian mixture model (red
points). For the binary classification task, we split the samples over even vs. odds class labels. The
SciPy [66] implementation of both ridge and logistic regression were used to train a classifier on the
training data, from which both training error and test error were computed, using another batch of
fresh samples for the latter. Finally, to reduce finite-size effects this procedure was repeated over 10
different seeds, with the average and standard deviation reported in Fig. 2.
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