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1 Experiments

Chairs Sofa
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

ABO PixelNeRF [7] 19.00 0.74 0.343 18.49 0.77 0.351
CodeNeRF [3] 20.51 0.75 0.264 20.38 0.77 0.31
HyP-NeRF (Ours) 25.92 0.91 0.093 26.73 0.91 0.098

w/o denoising 24.83 0.87 0.12 25.68 0.87 0.14

Table 1: Generalization. Comparison of single-view NeRF generation on the ABO dataset. Metrics
are computed on renderings of resolution 128 × 128. HyP-NeRF significantly outperforms Pixel-
NeRF [7] and CodeNeRF [3] on all of the metrics in both object categories.

1.1 Additional Architectural Details

We provide the network architecture in the main paper, Section 4. During training, we use Adam
Optimizer, with a learning rate of 1e − 3 with β1 = 0.9 and β2 = 0.99, along with a lambda LR
scheduler3. We use the PyTorch implementation InstantNGP4 and provide the training, inference,
and metric computation code in the supplementary.

1.2 Metrics and Additional Comparisons

To the best of our knowledge, we are the first work to perform single-view NeRF generation at a
resolution of 512×512. Therefore, we set a benchmark on the ABO dataset against PixelNeRF in the
main paper, Table 1. However, it is worth noting that PixelNeRF was originally trained at a resolution
of 128×128. Therefore, we also compare with PixelNeRF on ABO at a resolution of 128×128 in
the supplementary paper, Table 1 and Figure 1. To do so, we retrain PixelNeRF on 128×128 by
downsampling the ground truth datapoints in ABO. Further, we show qualitative results in the main
paper on SRN [6] against VisionNeRF [4], FE-NVS [2], CodeNeRF [3], and PixelNeRF at 128×128.
In the supplementary paper, we show quantitative results in Table 2. Lastly, in Table 3, we show
additional ablation on Denoise and Finetune (see main paper, Section 3.1-Step 2). In this table, we
primarily evaluate the geometric consistency before and after the denoising step. As explained in the
main paper, Section 4, we use Chamfer’s Distance (CD↓) to compute the geometric consistency.

To compute CD, we first train the ground truth NeRFs by optimizing InstantNGP [5] on the multi-
view ground truths. Next, we render meshes from InstantNGP’s and HyP-NeRF’s predicted NeRF
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Chairs Cars
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SRN

PixelNeRF [7] 23.72 0.90 0.128 23.17 0.89 0.146
CodeNeRF [3] 23.39 0.87 0.166 22.73 0.89 0.128
FE-NVS [2] 23.21 0.92 0.077 22.83 0.91 0.099
VisionNeRF [4] 24.48 0.92 0.077 22.88 0.90 0.084
HyP-NeRF 22.80 0.88 0.13 23.48 0.91 0.09

w/o Denoise 21.02 0.87 0.14 21.30 0.88 0.111

Table 2: Generalization. Comparison of single-view NeRF generation on the SRN dataset. Metrics
are computed on renderings of resolution 128 × 128. Results of all the models (except HyP-NeRF)
are taken from the official papers. HyP-NeRF performs comparably with the existing baselines. Note,
we do not incorporate the second step of HyP-NeRF, Denoise and Finetune (main paper, Section 3.1).

Figure 1: Qualitative results of single-view NeRF generation on ABO dataset at a resolution of
128×128. HyP-NeRF preserves fine details even at this low resolution. PixelNeRF improves in
quality when compared to 512×512 (see main paper, Figure 4). However, it still struggles to model
the fine texture and shape details in the ABO dataset and performs subpar to HyP-NeRF.

Figure 2: Multiview test-time optimization on SRN Chairs. HyP-NeRF can perform test-time optimization
(see main paper, Section 3.1) with any number of views. In this qualitative result, we start with an instance that
did not optimize well through a single pose (because of a challenging viewpoint) and show the improvement in
quality of the generated NeRF as we increase the number of views (ie. coverage) for optimization. The header
indicate the number of views used for the optimization. As shown, the difference in quality between five and ten
poses is insignificant. The rightmost result shows drastic improvement in the render quality from one to three
views showcasing the impact of pose on test-time optimization.

using torch-ngp’s save_mesh() implementation5. From the rendered mesh, we sample 4096 points
uniformly and compute CD between both the pointclouds. We encourage the readers to view the
supplementary video for the best experience of the qualitative results.

1.3 Generalization

To ensure that HyP-NeRF can model novel NeRF instances unseen at the time of training, we rely
on the conditional task of “single-view NeRF generation". In the main paper, we show experiments
on ABO dataset at 512×512 resolution; in the supplementary paper, we make comparisons on a
lower resolution of 128×128 on ABO against PixelNeRF in Table 1 and on SRN against the existing
baselines in Table 2. As can be seen, we significantly outperform PixelNeRF on the ABO dataset and
perform comparably with the existing baselines on the SRN dataset. Note that we do not employ the
Denoise and Finetune step (see main paper, Section 3.1) in SRN. However, another reason for our
low performance on SRN (when compared to ABO) is the difference in the views adopted in ABO
and SRN. ABO renders the 3D structure from 91 viewpoints on the upper icosphere with varying

5https://github.com/ashawkey/torch-ngp/blob/main/nerf/utils.py
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Figure 3: Performance of HyP-NeRF on multiple resolutions. As HyP-NeRF operates directly in the NeRF
space, it can render the NeRFs in potentially any resolution. In this plot, we showcase HyP-NeRF’s performance
rendered in different resolutions. As can be seen, the quality does not degrade with the resolution and HyP-NeRF
performs well consistently.

azimuth and elevation [1]. SRN, on the other hand, renders the upper along with the lower icosphere.
This includes viewpoints from the absolute bottom and top parts of the object providing insufficient
context for test-time optimization.

We observe that, in practice, our output quality improves significantly as we increase the number of
viewpoints on SRN as shown qualitatively in Figure 2. This indicates that although HyP-NeRF has
modeled this particular NeRF instance, it is hard to find the NeRF through single-view optimization
suggesting the need for a more robust mechanism to map to HyP-NeRF’s prior.

It is also worth noting that, PixelNeRF and VisionNeRF (trained on 16 NVIDIA A100 for 5 days) are
designed specifically for the task single-view NeRF generation. Whereas, we aim to train a prior and
use this conditional task to validate that our learned prior can model novel instances unseen at the
time of training. Further, as can be seen in Table 1, HyP-NeRF significantly outperforms PixelNeRF
on the challenging ABO dataset with high-fidelity structure and texture, indicating that HyP-NeRF is
capable of modeling datasets made of fine textures and shapes as found in the real-world, that the
existing work (PixelNeRF) struggle to train on.

2 Additional Ablations

Impact of Resolution on the Quality: As we operate directly in the NeRF space, we can essentially
render the NeRFs in any resolution. In this ablation, we measure the quality of our renderings
at different resolutions as shown in Figure 3. To generate the ground truth, we perform interarea
downsampling on the ABO datapoints. As expected, HyP-NeRF generates high-quality NeRF in
each resolution, and the quality does not degrade with the rendered resolution. As ABO consists

3



of rendering at a resolution of 512×512, we only make comparisons on the lower resolutions
as bicubic upsampling on the ground truth would reduce the quality of the ground truth itself.
However, to showcase our quality on higher resolution, we present our rendering at 1024×1024 in
the supplementary video, timestamp 01:17.

Chairs
HyP-NeRF CD ↓
with D&F 0.0062

without D&F 0.0064

Table 3: Denoise and Fine-
tune (D&F) ablation (see main
paper (Section 3.1 Step 2). We
evaluate the geometric consis-
tency using CD↓ metric defined
in Section 1.2.

Geometric Consistency on Denoising: As explained in the main pa-
per, Section 3.1, we perform Denoise and Finetune by first projecting
the NeRF into predefined multiview images, followed by perform-
ing image-level denoising frame-by-frame. As we only finetune an
already multiview and geometrically consistent NeRF, we observed
that the finetuning is robust to minor denoised image-level multiview
inconsistencies. We showcase this qualitatively in the supplementary
video (timestamps 3:05-3:30), in the main paper-Figure 4, and in
the supplementary paper-Figure 5 and Figure 6. In this section, we
quantitatively evaluate the geometric consistency using the CD metric
as defined in Section 1.2. The results are presented in Table 3, and as
expected, there is no degradation in the quality between HyP-NeRF’s
output before and after the Denoise and Finetune process, clearly showcasing that the geometric
consistency is not affected even though we only rely on a simple frame-by-frame denoising.

3 Qualitative Results

In this section, we show the qualitative results in higher resolution. Figure 4 presents the comparison
between InstantNGP, trained on a single instance, against HyP-NeRF trained on thousands of NeRF
instances, thereby compressing the instances to a single network (see the main paper, Section 4.2).
Figure 5 and Figure 6 present qualitative results on inversion and highlight the difference before and
after the Denoise and Finetune step (see main paper, Section 3.1).

Figure 4: Qualitative comparison on Compression. We compare against InstantNGP [5], which
is trained for a specific instance. On the other hand, HyP-NeRF is trained on thousands of NeRF
instances. Despite that, HyP-NeRF has learned to generate the NeRFs and essentially compress them
almost losslessly. See the main paper, Section 4.2, for more details.
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Figure 5: Qualitative Results on Generalization. We perform test-test optimization (see the main
paper, Section 3.2) to generate NeRFs from a single input view. Our Denoise and Finetune step (see
the main paper, Section 3.1) significantly improves the texture and the edges by making it smooth
and even.
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Figure 6: Qualitative Results on Generalization. We perform test-test optimization (see the main
paper, Section 3.2) to generate NeRFs from a single input view. Denoise and Finetune (see the main
paper, Section 3.1) improves the quality of the outputs, for example, the legs are clearly more evened
out and noiseless in the bottom example. The difference is, however, less drastic in the top example.
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