
Supplementary Material for “Sequential Preference
Ranking for Efficient Reinforcement Learning from

Human Feedback”

We provide additional proofs, algorithm details, experiment details, and analyses of the proposed
method in this supplementary material. Section A summarizes the definitions of symbols and terms
used in the paper and the supplementary material. Section B provides proofs for Lemma 1 to Lemma
4, Theorem 1 to Theorem 3, and Corollary 3.1. Section C describes two main algorithms for RLHF
using sequential and root pairwise comparison. Section D provides detailed experiment settings and
detailed analyses.

A Summary of Notations

The definitions of symbols and terms described in Greek letters or alphabets are summarized in
Table 1. The alphabets in the table are arranged in alphabetical order.

Symbol / Term Definition

σ fixed-length trajectory segment

σi ith sampled trajectory segment

σi ≻ σj σi is preferred to σj
σi ≺ σj σi is preferred to σj

θ estimated reward model parameter

θ∗ true reward model parameter

ϕ trajectory encoder

ψ 1-dim discrete action for real robot experiment

∆(G) the maximum degree of a dependency graph G

∆M,t the maximum degree of a dependency graph Gt generated
at the t-th iteration by comparing M segments per iteration

α coefficient of M in the linear approximation function of aM
β E[SM,T] divided by TM

γ intercept of the linear approximation function of aM
η feedback efficiency

νϕ learning rate of policy update

νθ learning rate of reward update

1K steps 1, 000 steps of training the agent policy

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

aM E[SM], the number of trajectory segment pairs by comparing
M trajectory segments using sequential pairwise comparison

B ln
(
1 + exp

(
2S2M(M−1)
κλmin(ΣX) + 2SD

))
bM E[SM] for root pairwise comparison

D upper bound of the norm of θ⋆, i.e., ∥θ⋆∥2 ≤ D
F

(
2SM(M−1)
κDλmin(ΣX) + 2

)
S

G = (V,E) dependency graph G defined with the set of nodes V and the set of edges E

H time horizon of every segment

K the set of previously chosen trajectories sampled from U for reward update

Ki {σ1, σ2, ..., σi}
Lpref cross-entropy loss for predicting the preference label

M the number of sampled trajectories at each iteration

N the number of human feedback at each iteration

pN the expected total number of segment pairs collected from N human feedback

Q upper bound of the norm of∇θ, i.e., ||∇θ||2 ≤ Q
R true risk of the reward model

R̂ empirical risk of the reward model, same with Lpref

r(s, a) true reward for a state-action pair (s, a)

r̂(s, a) estimated reward for a state-action pair (s, a)

r̂θ a linear reward model parameterized by θ

S upper bound of the norm of ϕ(σ), i.e., ∥ϕ(σ)∥2 ≤ S
SM the total number of segment pairs collected among M trajectory segments

SM,T the cumulative sum of the number of training data of the reward model
from iteration 1 to T , with M segments compared per iteration

T number of training iterations of the global iterative process

U number of training iterations of policy update

U the set of trajectories in the replay buffer

W number of training iterations of reward update

XM SM |σ1 ≺ σ2
x ϕ(σ1)− ϕ(σ2)
YM SM |σ1 ≻ σ2
y true preference label

ŷ estimated preference label

Table 1: Summary of Notations.

B Proofs

B.1 Feedback Efficiency of the Algorithm

In this section, we provide detailed proofs for Lemma 1, Theorem 1, and Theorem 2.

2

B.1.1 Sequential Pairwise Comparison

𝑗

1

2

𝑀

1

2

𝑀

2

𝑗

2
+ 𝑎𝑀−𝑗+1

𝑗+1

𝑀

first decreasing

index

Total number of pairs 𝑠𝑀

Cases

Figure 1: Total number of pairs from two cases in sequential pairwise comparison. The left
figure shows an increasing sequence of segments. The right figure shows a non-increasing sequence
with the first decreasing index j. Numbers indicate the total number of pairs from all the cases in
each scenario. Due to symmetry, we only illustrate sequences starting with an increasing pair.

Definition B.1. When comparing two segments σi and σj , we define the pair (σi, σj) as an increasing
pair if σi ≺ σj . If σi ≻ σj , the pair is called a decreasing pair.
We define a conditional random variable XM := SM |σ1 ≺ σ2, starting the sequence with an
increasing pair, and define YM := SM |σ1 ≻ σ2, starting the sequence with a decreasing pair. By
definitions, SM = XM I[σ1 ≺ σ2] + YM I[σ1 ≻ σ2] and E[XM] = E[YM].

Proof of Lemma 1. For the proof of Lemma 1, let us define a random index J that indicates the
index of the first appearance of a decreasing pair in a sequence. Note that J occurs within [2,M − 1],
σJ ≻ σJ+1 holds, and let J =M indicate a decreasing pair not appearing in a sequence. Then, let
us derive the probability P(J ≥ j|σ1 ≺ σ2) as follows:

P(J ≥ j|σ1 ≺ σ2) =
P(J ≥ j, σ1 ≺ σ2)

P(σ1 ≺ σ2)
(1)

=

(Mj)(M−j)!

M !

(M2)(M−2)!

M !

=
1/j!

1/2
=

2

j!
. (2)

From P(J ≥ j|σ1 ≺ σ2), we have,

P(J = j|σ1 ≺ σ2) = P(J ≥ j|σ1 ≺ σ2) (3)
− P(J ≥ j + 1|σ1 ≺ σ2) (4)

=
2

j!
− 2

(j + 1)!
=

2j

(j + 1)!
. (5)

Then, we can derive the recurrence relation of aM as follows:

aM = E[SM] = E[SM |σ1 ≺ σ2]P(σ1 ≺ σ2) + E[SM |σ1 ≻ σ2]P(σ1 ≻ σ2) (6)

=
1

2
E[XM] +

1

2
E[YM] = E[XM] (∵ E[XM] = E[YM]) (7)

=

M∑
j=2

E[SM |σ1 ≺ σ2, J = j]P(J = j|σ1 ≺ σ2) (8)

=

(
M

2

)
2

M !
+

M−1∑
j=2

E[SM |σ1 ≺ σ2, J = j]P(J = j|σ1 ≺ σ2) (9)

=
1

(M−2)!
+

M−1∑
j=2

E[
(
j

2

)
+YM−j+1|σ1≺ σ2, J = j]

2j

(j + 1)!
(10)

=
1

(M−2)!
+

M−1∑
j=2

2j
(
j
2

)
(j + 1)!

+

M−1∑
j=2

E[YM−j+1|σ1 ≺ σ2, J = j]
2j

(j + 1)!
(11)

3

= 2− 2

M !
+

M−1∑
j=2

aM−j+1
2j

(j + 1)!
. (12)

Proof of Theorem 1. For the base case, let M = 2. Then, we have,∣∣∣∣a22 − 1

e− 2

∣∣∣∣ = ∣∣∣∣12 − 1

e− 2

∣∣∣∣ = 4− e
2(e− 2)

= constant. (13)

Hence, the statement holds for M = 2.

Now, let us assume that the statement holds for all n ∈ [3,M − 1].

Suppose that there exists a constant α > 0 such that α(n− γ) + f(n) = an, where f(n) indicates
a remainder function bounded as |f(n)| < c for all n ∈ [2,M − 1]. c indicates a finite positive
constant. Then, from Lemma 1 and the following Taylor series expansion and its variants

∞∑
j=0

xj

j!
= ex,

∞∑
j=2

j

(j+1)!
=

1

2
,

∞∑
j=2

j2

(j+1)!
= e− 3

2
, (14)

we have the following conjecture.

|f(M)| (15)

=

∣∣∣∣∣∣−α(M − γ) + 2− 2

M !
+

M−1∑
j=2

(α(M − j + 1− γ) + f(M − j + 1))
2j

(j + 1)!

∣∣∣∣∣∣ (16)

≤

∣∣∣∣∣∣−α(M − γ) + 2− 2

M !
+ α(M + 1− γ)

(
1− 2

M !

)
− α

M−1∑
j=2

2j2

(j + 1)!

∣∣∣∣∣∣+ c

∣∣∣∣1− 2

M !

∣∣∣∣ (17)

=

∣∣∣∣∣∣α+ 2− 2

M !
(1 + α(M+1−γ))− α(2e−3)−2α

M−1∑
j=2

j2

(j + 1)!

−e+3

2

∣∣∣∣∣∣+c
∣∣∣∣1− 2

M !

∣∣∣∣ (18)

≤2 + c− α(2e− 4) +

∣∣∣∣ 2

M !
(1 + α(M + 1− γ))

∣∣∣∣+2α

∣∣∣∣∣∣
M−1∑

j=2

j2

(j + 1)!

−e+3

2

∣∣∣∣∣∣+c
∣∣∣∣ 2

M !

∣∣∣∣ (19)

≤2 + c− α(2e− 4) + o(1). (20)

Hence, if we set α := 2+c
2e−4 , |aM − αM | = |f(M)| = o(1).

Then, we prove that the statement holds for M .

∣∣∣∣aM − M

e− 2

∣∣∣∣ = ∣∣∣∣aM − αM +M(α− 1

e− 2
)

∣∣∣∣ = ∣∣∣∣aM − αM +M
c

2e− 4

∣∣∣∣ (21)∣∣∣∣aMM − 1

e− 2

∣∣∣∣ = ∣∣∣∣aMM − α+
c

2e− 4

∣∣∣∣ ≤ ∣∣∣aMM − α
∣∣∣+ ∣∣∣∣ c

2e− 4

∣∣∣∣ ≤ o(1

M
) +

c

2e− 4
≤ o(1) (22)

Therefore, for any integer M ≥ 2, the expected number of trajectory segment pairs collected from
sequential pairwise comparison aM is approximately linear toM as |aM/M−1/(e−2)| = o(1).

Theorem 1 denotes that aM/(M − γ) is approximated to 1/(e− 2) for sufficiently large M . Sub-
stituting M for a value of greater than 100, the expected feedback efficiency of sequential pairwise
comparison is calculated as 1.392(M − 1.324)/(M − 1), which converges to 1.392 as M increases.
For M ≥ 4, the error of the linear approximation of aM is bounded as 0.003.

4

B.1.2 Extension to Root Pairwise Comparison

𝑛

𝑏𝑛−1

𝑏𝑛−1 + 1

𝑛
𝑏𝑛−1

𝑏𝑛−1 + 𝑛 − 1Total number of pairs 𝑠𝑀

Cases

Figure 2: Total number of pairs from two cases in root pairwise comparison. The left figure
shows the case of the nth segment being preferred to the root segment until n− 1. The right figure
shows the opposite case. Numbers indicate the total number of pairs from all the cases in each
scenario.

Proof of Theorem 2.

bM = 2(M −
M∑
n=1

1

n
). (23)

(23) is satisfied for M = 2 as b2 = 1. Intuitively, if the last pair of trajectory segments is increasing,
the expected number of pairs is bn−1+n− 1 and otherwise, the expected number of pairs is bn−1+1
for all n ≥ 3. Considering that the probability of the last pair is increasing is 1

n ,

bn =
1

n
(bn−1 + n− 1) +

n− 1

n
(bn−1 + 1) = bn−1 +

2(n− 1)

n
(24)

is satisfied for all n ≥ 3. Therefore, for M ≥ 2, bM can be written as follows:

bM = b2 + 2

M∑
n=3

(1− 1

n
) = 2(M −

M∑
n=1

1

n
). (25)

B.2 Convergence of the Reward Model

B.2.1 High Probability Feedback Efficiency

In this section, we provide detailed proof of Lemma 2 using Lemma B.1.
Lemma B.1. Let X be an n-dimensional random variable with a dependency graph G. Let f be
c-Lipschitz and ci be a coefficient for each dimension. Assume that G consists of T -disjoint sub-
graphs, i.e., V (G) = ∪Ti=1V (Gi), E(G) = ∪Ti=1E(Gi) and, for any i and j, V (Gi) ∩ V (Gj) = ∅
and E(Gi) ∩ E(Gj) = ∅. Then, for ϵ > 0,

P (f(X)− E[f(X)] ≥ ϵ) ≤ exp

(
− 2ϵ2(

maxt∈[T] ∆(Gt) + 1
)∑n

i=1 c
2
i

)
(26)

Proof of Lemma B.1. We simply apply the result of [1, 2] to T separated sub-graphs. First, from
[1, 2], we have the following inequality,

P (f(X)− E[f(X)] ≥ ϵ) ≤ exp

(
− 2ϵ2

χ∗(G)
∑n

i=1 c
2
i

)
(27)

where χ∗(G) is the fractional chromatic number of G. From the fact that χ∗(G) ≤ ∆(G) + 1, we
have χ∗(G) ≤ maxt∈[T] ∆(Gt) + 1. Note that, from the assumption, G consists of the union of T
separated sub-graphs. Hence, the maximum degree of G is exactly the same as the maximum of
∆(Gt) among T sub-graphs.

5

Definition B.2. We formalize the definition of SM,T as the number of data points generated after T
iterations with M comparisons per iteration.

SM,T :=

T∑
t=1

sM,t =

T∑
t=1

∑
1≤i<j≤M

I [(σt,i, σt,j) ∈ D] (28)

Proof of Lemma 2. From Definition B.2, the expectation of E[SM,T] can be computed as follows:

E[SM,T] =

T∑
t=1

E[sM,t] = βTM, (29)

where β is the ratio of the number of train samples generated by the comparison method.

Let us define Iij,t := I [(σi,t, σj,t) ∈ D] and IM,T be a random vector that stacks
[Iij,t]t∈[T],1≤i<j≤M . Note that IM,T is TM(M − 1)/2 dimensional random variables. Then,
the random variable SM,T can be considered as f(IM,T) where f(x) :=

∑
i xi whose Lipschitz

coefficients are all 1.

From our procedure, we reset the sequence of comparisons for every iteration. Hence, data points
generated in different iterations are independent while data points generated in the same iteration
may be dependent on each other. In other words, our procedure generates a T -separated dependency
graph. Then, from Lemma B.1,

P (SM,T − βTM ≤ −ϵ) ≤ exp

(
− 2ϵ2

(maxt ∆M,t + 1)TM(M − 1)/2

)
≥ δ, (30)

by setting ϵ =
√
(maxt ∆M,t + 1)TM(M − 1) ln(1/δ)/4. If T is sufficiently large such that

T >
(maxt ∆M,t+1)(M−1) ln(1/δ)

β2M holds, with probability at least 1− δ,

SM,T > βTM −
√

(maxt ∆M,t + 1)TM(M − 1) ln(1/δ)

4
(31)

> βTM −
√
TM × β2TM

4
=
βTM

2
. (32)

B.2.2 Generalization Bound with Rademacher Complexity

In this section, we provide detailed proofs of Theorem 3, Lemma 3, Lemma 4, and Corollary 3.1. We
first find Rademacher bounds for a dependent dataset in Lemma B.2 and Rademacher complexity of
a linear model in Lemma B.3 based on prior work [3].
Lemma B.2 (Rademacher bounds for dependent dataset). Given a set of samples D of size n with
dependency graph G and a loss function ℓ : Y × Y → [0, Bℓ]. Let θ⋆ be the parameter of an oracle
linear classifier. We set θ(x) := θ⊺x for simplicity. Then, for any δ ∈ (0, 1), with probability at least
1− δ,

∀θ ∈ H, R(θ) ≤ R̂(θ) + 2R̂D(ℓ ◦ θ) + 3Bℓ

√
χf (G)

2n
ln

(
4

δ

)
, (33)

whereH is the parameter space of θ, Bℓ is a bound of loss function ℓ, and R̂D(ℓ ◦ θ) is the empirical
Rademacher complexity of ℓ ◦ θ. If G consists of T -separated sub-graphs, then,

∀θ ∈ H, R(θ) ≤ R̂(θ) + 2R̂(ℓ ◦ θ) + 3Bℓ

√
maxt ∆(Gt) + 1

2n
ln

(
4

δ

)
(34)

Lemma B.3 (Rademacher complexity of linear model on dependency graph G). Let ∥θ∥2 ≤ Bθ and
∥x∥2 ≤ Bx. Let ℓ(x) be a 1-Lipschitz function.

∀θ ∈ H, R̂S(ℓ ◦ θ) ≤ BθBx

√
χf (G)

n
, (35)

6

where Bθ is the upper bound of the norm of θ and Bx is the upper bound of the norm of x. If G
consists of T -separated sub-graphs, then,

∀θ ∈ H, R̂S(ℓ ◦ θ) ≤ BθBx

√
maxt ∆(Gt) + 1

n
(36)

Proof of Lemma B.2 and B.3. (33) and (35) hold from the results of [3]. Then, for T -separated
sub-graphs, we can apply χf (G) ≤ ∆(G) + 1 ≤ maxt ∆(Gt) + 1.

We find the bound of reward model parameter θ as the following lemma.
Lemma B.4 (Boundedness of the parameter in logistic regression). Suppose that M segments are
compared per iteration, and T iterations are executed. Let θ̂ be the minimizer of the logistic regression
with a regularization coefficient λ > 0 as follows,

min
θ
L(θ) =

∑
(xi,yi)∈D

ln
(
1 + e−yix

⊺
i θ
)
+
λ

2
∥θ∥22 (37)

Then, ∥θ̂∥2 ≤ 2SM(M−1)
κλmin(ΣX) +2D holds with probability at least 1−δ for T ≥ 2

(
C1

√
d+C2

√
ln(1/δ)

λmin(ΣX)

)2

,

where C1 =, C2 =, λmin =, ΣX =, and κ = inf∥θ−θ⋆∥2≤D,∥x∥2≤2S
e−x⊺θ

(1+e−x⊺θ)
2 .

Proof of Lemma B.4. From the fact that θ̂ is the minimizer of L, we have,

∇θL(θ̂) =
∑

(xi,yi)∈D

(pi(θ̂)− 1)yixi + λθ̂ = 0, (38)

where pi(θ̂) := (1 + e−yix
⊺
i θ̂)−1. The Hessian of L is computed as

∇2
θL(θ) =

∑
(xi,yi)∈D

pi(θ)[1− pi(θ)]y2i xix
⊺
i + λId. (39)

If ∥θ− θ⋆∥2 ≤ r, let us define κr as inf∥θ−θ⋆∥2≤r,∥xi∥2≤2S pi(θ)[1− pi(θ)]. Note that data samples
generated from different iterations are independent. Hence, we can select at least one sample per
iteration and have T i.i.d. samples in total.

∇2
θL(θ) ≻ κr

∑
(xi,yi)∈D

y2i xix
⊺
i + λId (40)

≻ κr
T∑

t=1

xtx
⊺
t + λId ≻ (κrλmin(T) + λ) Id, (41)

where λmin(T) is the smallest eigen value of
∑T

t=1 xtx
⊺
t . From the mean value theorem, the

following equality holds for θ̄ such that θ̄ = cθ̂ + (1− c)θ⋆ for c ∈ (0, 1).

∥∇θL(θ⋆)∥2 =
∥∥∥∇θL(θ⋆)−∇θL(θ̂)

∥∥∥
2
=
∥∥∥∇2

θL(θ̄)[θ⋆ − θ̂]
∥∥∥
2

(42)

≥ (κrλmin(T) + λ) ∥θ⋆ − θ̂∥2 (43)

∥∇θL(θ⋆)∥2 ≤
∑

(xi,yi)∈D

|yi(pi(θ⋆)− 1)|∥xi∥2 + λ∥θ⋆∥2 (44)

≤ 2S · SM,T + λD ≤ 2S · TM(M − 1)/2 + λD (45)

∥θ⋆ − θ̂∥2 ≤
STM(M − 1) + λD

(κrλmin(T) + λ)
≤ STM(M − 1) + λD

κrλmin(ΣX)T/2 + λ
≤ 2SM(M − 1)

κrλmin(ΣX)
+D (46)

Hence, we have ∥θ⋆ − θ̂∥2 ≤ 2SM(M−1)
κrλmin(ΣX) +D. Then, for any dataset, the norm of θ̂ can be bounded

as ∥θ̂∥2 ≤ ∥θ̂ − θ⋆∥2 + ∥θ⋆∥2 ≤ 2SM(M−1)
κrλmin(ΣX) + 2D. Then, if we set r to be greater than this bound,

then, we can define κ such that 2SM(M−1)
κλmin(ΣX) +D ≤ r and κr ≤ κ hold.

7

By applying Lemma B.4 and Lemma B.3 to Lemma B.2, we can prove Theorem 3 as follows.

Proof of Theorem 3. Let θ be the minimizer of the logistic regression with a regularization coeffi-
cient λ > 0. Then, for δ ∈ (0, 1), with probability at least 1− δ, the following bound holds,

∀θ ∈ H, R(θ) ≤ R̂(θ) +
(
2SM(M − 1)

κλmin(ΣX)
+ 2D

)
2S

√
maxt ∆M,t + 1

SM,T
(47)

+ 3 ln

(
1 + exp

(
2S2M(M − 1)

κλmin(ΣX)
+ 2SD

))√
maxt ∆M,t + 1

2SM,T
ln

(
4

δ

)
(48)

Therefore, we can derive the statement as follows:

∀θ ∈ H, R(θ) ≤ R̂(θ) +

√
maxt ∆M,t + 1

SM,T
·

(
2FD + 3B

√
1

2
ln

(
4

δ

))
, (49)

where F =
(

2SM(M−1)
κDλmin(ΣX) + 2

)
S = O(M2) and B = ln

(
1 + exp

(
2S2M(M−1)
κλmin(ΣX) + 2SD

))
=

O(M2).

As we address in the paper, a trade-off exists between the feedback efficiency and data dependency in
(49). To demonstrate ∆M,t, we prove Lemma 3 and 4 for sequential and root pairwise comparison,
respectively.

Proof of Lemma 3. Let us first consider the degree ∆M of the dependency graph G at a single itera-
tion. Let K be the length of the longest fully increasing or decreasing subsequence (σi, ..., σi+K−1),
where i is the index of the first node in this sequence. Let I1 and I2 be the maximum length of fully
increasing or decreasing subsequence that ends with σi and that starts from σi+K−1, respectively.
Hence, the maximum degree of the entire graph G has the following relationship.

∆M = max(K + I1 − 3,K + I2 − 3) = J +max(I1, I2)− 3 (50)

Then for a constant c and a sufficiently large M ,

P (∆M ≤ c)
M−1∑
k=2

P (J +max(I1, I2)− 3 ≤ c|K = k)P (K = k) (51)

≥
M−1∑
k=2

P (2K − 3 ≤ c|K = k)P (K = k) (52)

≥
M−1∑
k=2

P (2k − 3 ≤ c)P (K = k) (53)

≥
⌊ c+3

2 ⌋∑
k=2

P (K = k) (54)

= P (K ≤ c+ 3

2
) (55)

= 1− P (K >
c+ 3

2
) (56)

= 1−

(
M
c+3
2

)
· 2 · (M − c+3

2 + 1) · (M − c+3
2)!

M !
(57)

= 1−
2(M − c+3

2 + 1)
c+3
2 !

≥ exp

(
− M

ec−2 − 1

)
≥ 1− δ. (58)

8

Hence, if c := 2 + ln(1 +M/(ln(1/(1− δ)))), ∆M ≤ 2 + ln(1 +M/(ln(1/(1− δ)))) holds with
probability at least 1− δ.

For all t ∈ [T], with probability at least 1 − δ, the maximum degree of dependency graph has the
following upper bound.

max
t∈[T]

∆M,t ≤ 2 + ln(1 +M/(ln(1/(1− δ)))) (59)

Proof of Lemma 4. Let us first consider the degree ∆M of the dependency graph G at a single
iteration. In root pairwise comparison, the agent constructs a tree structure of segments T . Suppose
Dnl(T) = {σ∗

0 , ..., σ
∗
L} is the set of non-leaf nodes in T , where L and σ∗

i denote the depth of T and
the ith non-leaf node inserted to T , respectively. In other words, σ∗

L denotes the root node of T after
the tree is fully constructed. After augmenting queries, edges are added for every pair of parent-child
nodes. Let T ′ be the augmented tree. The maximum degree of the dependency graph is achieved
as the degree of (σ∗

L−1, σ
∗
L) in the dependency graph G, as both nodes in this query have the most

children among nodes in T ′. Therefore, we obtain ∆M as follows:

∆M = dT ′(σ∗
L) + dT ′(σ∗

L−1)− 2 (60)
= (M − 1) + (M − dT (σ∗

L))− 2 (61)
= 2M − dT (σ∗

L))− 3, (62)

where dT ′(σ) denotes the degree of a segment σ in the augmented tree T ′. Then for a constant c,

P (∆M ≤ c) = P (2M − dT (σ∗
L))− 3 ≤ c) (63)

= P (dT ≥ 2M − 3− c) (64)
= P (i ≤M − (2M − 3− c) s.t. σi = σ∗

L) (65)

=
−M + 3 + c

M
≥ 1− δ, (66)

where σi denotes the ith sampled trajectory segment.

Hence, if c :=M(2− δ)− 3, ∆M ≤M(2− δ)− 3 holds with probability at least 1− δ.

For all t ∈ [T], with probability at least 1 − δ, the maximum degree of dependency graph has the
following upper bound.

max
t∈[T]

∆M,t ≤M(2− δ)− 3 (67)

Proof of Corollary 3.1. By applying Lemma 3 and 4 to Theorem 3, we derive the generalization
bounds of the reward model using sequential and root pairwise comparison, respectively. For pairwise
comparison, we substitute maxt ∆M,t = 0 and SM,T = TM in Theorem 3. Note that F and B are
constants as we fix M from the assumption. By substituting δ = 1/T , we prove the generalization
bound for each trajectory comparison method as follows.

Pairwise comparison:

∀θ ∈ H, R(θ) ≤ R̂(θ) +
√

1

TM
·

(
2FD + 3B

√
1

2
(ln(T) + ln(4))

)
(68)

= R̂(θ) +O

(√
ln(T)

T

)
(69)

Sequential pairwise comparison:

∀θ ∈ H, R(θ) ≤ R̂(θ) +

√√√√√3 + ln

(
1 + M

ln(1

1− 1
T

)

)
1.392TM

·

(
2FD + 3B

√
1

2
(ln(T) + ln(4))

)
(70)

9

= R̂(θ) +O

√√√√ln

(
1

ln(1
1− 1

T

)

)
ln(T)

T

 (71)

= R̂(θ) +O

(√
(ln(T))2

T

)
∵ linear approximation for T ≫ 1 (72)

Root pairwise comparison:

∀θ ∈ H, R(θ) ≤ R̂(θ) +
√
M(2− 1/T)− 3 + 1

2TM
·

(
2FD + 3B

√
1

2
(ln(T) + ln(4))

)
(73)

= R̂(θ) +O

(√
ln(T)

T

)
∵ for sufficiently large T , 1/T → 0 (74)

Therefore, we can find the convergence rates of generalization bounds of the reward model as
O(
√
ln(T)/T),O(

√
(ln(T))2/T), andO(

√
ln(T)/T) with probability at least 1−1/T for pairwise,

sequential pairwise, and root pairwise comparison, respectively.

10

C Algorithm

Algorithm 1 summarizes the process of RLHF using sequential pairwise comparison. Algorithm 2
summarizes the process of RLHF using root pairwise comparison.

Algorithm 1: Sequential Pairwise Comparison RLHF
Require: Teacher frequency K, queries per session N , time horizon of a trajectory: T
time horizon of a segment: H
Learning rate of policy update: νϕ, learning rate of reward update: νθ
Initialize parameters of πϕ and r̂θ
Initialize buffers U ← ∅
for each iteration do

// SIMULATION
for n = 1, ..., Ns do

for each timestep t = 1, ..., T do
Collect st+1 by taking at ∼ πϕ(at|st)

end
U ← U ∪ {τn|τn = (s1, a1, ..., sT , aT)}

end
// POLICY LEARNING
for each gradient step do

Sample random minibatch B = {τj}Bj=1 ∼ U
ϕ← ϕ− νϕ∇ϕLpolicy(ϕ,B)

end
// REWARD LEARNING
Initialize preference buffer D ← ∅
Randomly sample σ1 ∈ U
for m = 1, 2, .., N do

Randomly sample the mth challenger σm+1 ∈ U \ {σ1, ..., σm}
ym ← true preference label for pair (σm, σm+1)
D ← D ∪ ((σm, σm+1), ym)

end
// Augment pairs by sequential preference ranking
inc← (σ1 ≺ σ2)
Initialize temporal buffer K ← {σ1}
for m = 2, .., N do

if inc is not (σm ≺ σm+1) then
for i < j s.t. σi, σj ∈ K do
D ← D ∪ ((σi, σj),¬inc)

end
Reinitialize K ← {σm+1}
Reinitialize inc← (σm ≺ σm+1)

else
K ← K ∪ {σm+1}

end
end
θ ← θ − νθ∇θLpref (θ,D)

end

11

Algorithm 2: Root Pairwise Comparison RLHF
Require: Teacher frequency K, queries per session N , time horizon of a trajectory: T
time horizon of a segment: H
Learning rate of policy update: νϕ, learning rate of reward update: νθ
Initialize parameters of πϕ and r̂θ
Initialize buffers U ← ∅
for each iteration do

// SIMULATION
for n = 1, ..., Ns do

for each timestep t = 1, ..., T do
Collect st+1 by taking at ∼ πϕ(at|st)

end
U ← U ∪ {τn|τn = (s1, a1, ..., sT , aT)}

end
// POLICY LEARNING
for each gradient step do

Sample random minibatch B = {τj}Bj=1 ∼ U
ϕ← ϕ− νϕ∇ϕLpolicy(ϕ,B)

end
// REWARD LEARNING
Initialize preference buffer as a tree T ← ∅
Randomly sample σ1 ∈ U
Root(T)← σ1
for m = 1, 2, .., N do

Randomly sample σm+1 ∈ U \ {σ1, ..., σm}
ym ← true preference label for pair (σm, σm+1)
if ym is 0 then

// Insert σm+1 as root
Root(T)← σm+1

else
// Insert σm+1 as a new child of current root
Root(T).newChild← σm+1

end
end
// Augment pairs by sequential preference ranking
for σi ∈ T do

for σj ∈ T s.t. σj is a child of σi do
D ← D ∪ ((σi, σj),+1)

end
end
θ ← θ − νθ∇θLpref (θ,D)

end

12

(a) Walker Walk (b) Cheetah Run

(c) Quadruped Walk (d) Humanoid Walk (e) Hopper Hop

(f) Button Press (g) Door Open (h) Drawer Open

(i) Sweep Into (j) Window Open (k) Hammer

Figure 3: Visualization of Tasks.

D Experiments

D.1 Experiment Settings

Tasks. We evaluate our algorithm in locomotion tasks from DMControl [4, 5] and manipulation tasks
from Meta-World [6] as shown in Figure 3.

Baselines. We use both MRN[7] and PEBBLE[8] as baselines of the proposed methods. Experiment
results with PEBBLE baseline are provided in Section D.5.

13

Computation. We train and evaluate each task in DMControl and Meta-World on a single machine
with one NVIDIA GeForce RTX 3090 GPU for 160 hours. For the block placing task, we pre-train
the agent in the mujoco simulator on a single machine with one NVIDIA GeForce RTX 3090 GPU
for 16 hours and fine-tune the agent in the real-world on a single machine with one NVIDIA GeForce
RTX 2060 GPU for 1.5 hours.

Experiments with real human feedback. A total of 35 individuals (8 female, 27 male) between the
ages of 21 and 61 were selected for our study. All participants had prior knowledge of the concept of
reinforcement learning and the importance of appropriate rewards in agent training. Each participant
provided feedback based on their preferences. Then, the policy and reward models were fine-tuned
using the feedback data. The random seed was fixed as 12345.

Real robot experiments. The tabletop environment has a size of 60 cm x 70 cm. The initial position
of the block is randomly sampled from the 20 cm x 20 cm space on the top left corner of the tabletop
plane. Then, the agent has to pick and place the block at the fixed goal position, located in the bottom
right corner of the tabletop plane. At each action, the agent can move the block for 5cm in a direction
chosen from {0, π4 ,

2π
4 , ..,

7π
4 }. The episode is considered a success if the agent moves the block’s

center of mass near the goal at a distance less than 3cm. During the pre-training phase, we start with
ϵ = 1.0 to collect diverse trajectories for 1000 steps. Then, we gradually reduce ϵ from 0.5 to 0.1
with a rate of 0.98 per 100 steps during the learning phase. For fine-tuning in the real world, we
collect diverse trajectories with ϵ = 0.3 for 100 steps. Then, we gradually reduce ϵ with a rate of
0.98. Considering the training time, we fix the random seed as 12345.

D.2 Implementation Details

The length of a segment is fixed as H = 50, and the learning rate of the reward model is fixed as
3e − 4. For each task, we perform unsupervised pre-training [8] for 9, 000 steps on each model.
Table 2 and Table 3 show training hyperparameters, including the learning rate, frequency of feedback,
the maximum number of feedback, the batch size for reward updates, the meta update frequency [7],
and the number of training steps for simulation experiments.

Tasks learning feedback max reward meta update training
rate frequency feedback batch size frequency steps

Walker Walk 5e-4 20,000 400 40 1,000 5e5
Cheetah Run 5e-4 20,000 200 20 1,000 1e6

Quadruped Walk 1e-4 30,000 1,000 100 1,000 1e6
Humanoid Walk 1e-4 30,000 40,000 500 10,000 1e6

Hopper Hop 1e-4 20,000 4,000 100 1,000 1e6
Button Press 3e-4 5,000 10,000 50 5,000 1e6
Door Open 3e-4 5,000 10,000 200 10,000 1e6

Drawer Open 3e-4 5,000 20,000 200 5,000 1e6
Sweep Into 3e-4 5,000 10,000 100 5,000 1e6

Window Open 3e-4 5,000 1,000 100 5,000 1e6
Hammer 3e-4 5,000 10,000 30 10,000 1e6

Table 2: Hyperparameters for Training in DMControl and Meta-World Tasks.

Tasks learning feedback max reward meta update training
rate frequency feedback batch size frequency steps

Cheetah Run (Real human feedback) 1e-8 200 20 10 - 400

Table 3: Hyperparameters for Training the Cheetah Run Task from Real Human Feedback.

We adopt DQN from prior work [9] for real robot experiments and use hyparameters described in
Table 4. The length of a segment is fixed as 30.

14

Tasks learning rate learning rate feedback max reward training
of policy update of reward update frequency feedback batch size steps

Block Placing 1e-6 1e-6 200 800 50 3,000

Table 4: Hyperparameters for Training the Block Placing Task Using the Real UR-5 Robot.

(a) Walker Walk
(feedback=0.4K)

(b) Cheetah Run
(feedback=0.2K)

(c) Humanoid Walk
(feedback=40K)

Figure 4: Reward graphs in three locomotion tasks from DMControl. All methods are implemented based
on MRN. Each subfigure describes the comparison results among three trajectory comparison methods: pairwise
(green), sequential pairwise (orange), and root pairwise (blue). Pink lines describe the oracle performance using
SAC with the true reward.

D.3 Experiments in Locomotion Tasks (DMControl)

Reward graphs in Figure 4 demonstrate that the proposed sequential and root pairwise comparison
outperforms the pairwise comparison baseline for walker walk, cheetah run, and humanoid walk tasks
in DMControl. As we discuss in the paper, while both proposed methods are successful, root pairwise
comparison shows faster convergence and higher reward after convergence compared to sequential
pairwise comparison. Figure 5 and 6 illustrate the examples of agent trajectories in quadruped walk
and walker walk tasks after training, respectively. In Figure 5, the agent trained using pairwise
comparison fails to turn its body upside down to a normal state that the agent stands upright. On
the other hand, both sequential and root pairwise comparison trains the agent to flip its body, but
sequential pairwise comparison requires twice the time as root pairwise comparison. In Figure 6,
while the agents trained using pairwise and sequential pairwise comparison fall and put their knees
to the floor at initial timesteps, the agent trained using root pairwise comparison learns to walk by
repeating bending and releasing its legs appropriately.

(a) Pairwise (Reward=112.2)

(b) Sequential Pairwise (Reward=457.7)

(c) Root Pairwise (Reward=934.0)

Figure 5: Example trajectories of the agent in the quadruped walk task. (a), (b), and (c) describe a trajectory
of an agent trained using pairwise, sequential pairwise, and root pairwise comparison, respectively. The images
are shown every 20 frames from the initial frame.

15

(a) Pairwise (Reward=730.2)

(b) Sequential Pairwise (Reward=820.9)

(c) Root Pairwise (Reward=985.1)

Figure 6: Example trajectories of the agent in the walker walk task. (a), (b), and (c) describe a trajectory of
an agent trained using pairwise, sequential pairwise, and root pairwise comparison, respectively. The images are
shown every 20 frames from the initial frame.

(a) Button Press (feedback=10K) (b) Door Open (feedback=10K)

(c) Sweep Into (feedback=10K) (d) Hammer (feedback=10K)
Figure 7: Success rate graphs in four manipulation tasks from Meta-World. All methods are implemented
based on MRN. Each subfigure describes the comparison results among three trajectory comparison methods:
pairwise (green), sequential pairwise (orange), and root pairwise (blue). Pink lines describe the oracle perfor-
mance using SAC with the true reward.

D.4 Experiments in Manipulation Tasks (Meta-world)

Success rate graphs in Figure 7 demonstrate that the proposed sequential and root pairwise comparison
outperforms the pairwise comparison baseline for button press, door open, sweep into, and hammer
tasks in Meta-World. Figure 8, 9, and 10 illustrate examples of agent trajectories in drawer open
and window open tasks. Especially for the drawer open task, we analyze two different scenarios in
Figure 8 and 9. Figure 8 demonstrates a scenario that the agent trained using pairwise comparison
fails to open the drawer, while agents trained using sequential and root pairwise comparison succeed.
Additionally, the agent trained using root pairwise comparison opens the drawer faster than the agent
trained with sequential pairwise comparison. These results imply that three trajectory comparison
methods are successful in the order of root pairwise, sequential pairwise, and pairwise comparison.
We also analyze another scenario described in Figure 9. In this scenario, the agent trained using

16

(a) Pairwise (Reward=2578.1)

(b) Sequential Pairwise (Reward=4192.8)

(c) Root Pairwise (Reward=4718.0)

Figure 8: Example trajectories of the agent in the drawer open task (Scenario 1). (a), (b), and (c) describe
a trajectory of an agent trained using pairwise, sequential pairwise, and root pairwise comparison, respectively.
The images are shown every 5 frames from the initial frame. In this scenario, the agent trained using pairwise
comparison fails to open the drawer, while agents trained using sequential and root pairwise comparison succeed.

(a) Pairwise (Reward=3880.0)

(b) Sequential Pairwise (Reward=4196.6)

(c) Root Pairwise (Reward=4766.9)

Figure 9: Example trajectories of the agent in the drawer open task (Scenario 2). (a), (b), and (c) describe
a trajectory of an agent trained using pairwise, sequential pairwise, and root pairwise comparison, respectively.
Four images on the left are shown every 5 frames from the initial frame and five images on the right are shown
every 70 frames from frame 140. In this scenario, all agents trained using three different trajectory comparison
methods succeed. However, the agent trained using pairwise comparison shows an unstable performance due to
the oscillation of the position of the end effector after opening the drawer.

pairwise comparison succeeds in the episode but achieves a lower reward of 3880.0 compared to the
reward values of 4196.6 and 4766.9 obtained from agents trained using sequential and root pairwise
comparison during the episode, respectively. Comparing the rendered trajectories, the agent trained
using pairwise comparison repeats to open and close the drawer slightly after pulling the drawer to
the goal position. Figure 10 illustrates a scenario that the agent trained using pairwise comparison
fails to open the window, while the agents trained using sequential and root pairwise comparison
open the door partially and fully, respectively.

Results in Table 5 show the comparison results with baseline in terms of rewards after convergence.
Root pairwise comparison shows the highest rewards on average among three trajectory comparison
methods. Additionally, while sequential pairwise comparison outperforms pairwise comparison by
only 1.2% in success rates, the rewards after convergence are improved by 5.2% compared to pairwise
comparison. This result implies that even if the success rates are similar between pairwise comparison
and sequential pairwise comparison, agents trained using sequential pairwise comparison generate
more ideal actions. Reward graphs in Figure 11 also show that sequential pairwise comparison
converges to higher rewards than pairwise comparison for all tasks except the sweep into task.

17

(a) Pairwise (Reward=288.3)

(b) Sequential Pairwise (Reward=762.3)

(c) Root Pairwise (Reward=853.6)

Figure 10: Example trajectories of the agent in the window open task. (a), (b), and (c) describe a trajectory
of an agent trained using pairwise, sequential pairwise, and root pairwise comparison, respectively. The images
are shown every 5 frames from the initial frame.

Task # feedback Oracle Pairwise Sequential Pairwise Root Pairwise
Button Press 10K 3521.2 ± 229.9 3467.8 ± 254.4 3519.1 ± 324.0 3490.0 ± 281.8
Door Open 10K 4541.1 ± 11.1 3468.0 ± 1069.4 3733.3 ± 1112.3 4151.8 ± 460.2
Drawer Open 20K 4617.1 ± 144.7 3734.4 ± 860.2 3859.7 ± 896.0 4309.9 ± 680.5
Sweep Into 10K 4062.9 ± 1388.1 2528.9 ± 1239.9 2371.5 ± 1667.2 3212.7 ± 1501.7
Window Open 1K 4418.4 ± 51.8 876.8 ± 633.4 1429.5 ± 832.8 1748.2 ± 1214.7
Hammer 10K 4415.9 ± 532.5 2824.9 ± 529.7 2862.4 ± 904.1 3146.7 ± 943.2

Table 5: Rewards after convergence in Meta-World manipulation tasks. Two elements in each
cell denote the average value and standard deviation of rewards after convergence across runs with 10
random seeds.

(a) Button Press (feedback=10K) (b) Door Open (feedback=10K) (c) Drawer Open (feedback=10K)

(d) Sweep Into (feedback=10K) (e) Window Open (feedback=10K) (f) Hammer (feedback=10K)
Figure 11: Reward graphs in six manipulation tasks from Meta-World. All methods are implemented based
on MRN. Each subfigure describes the comparison results among three trajectory comparison methods: pairwise
(green), sequential pairwise (orange), and root pairwise (blue). Pink lines describe the oracle performance using
SAC with the true reward.

18

Task # feedback Oracle Pairwise Sequential Pairwise Root Pairwise
Walker Walk 0.4K 957.3 ± 2.3 848.1 ± 170.5 864.4 ± 120.8 919.8 ± 31.2
Cheetah Run 0.2K 886.9 ± 43.2 712.5 ± 117.0 730.0 ± 96.9 763.5 ± 73.4
Quadruped Walk 1K 843.3 ± 247.3 380.7 ± 283.6 380.2 ± 319.6 425.1 ± 327.3
Hopper Hop 4K 273.5 ± 47.0 8.9 ± 8.6 0.1 ± 0.1 104.0 ± 3.5

Table 6: Rewards after convergence in DMControl locomotion tasks using PEBBLE Baseline.
Two elements in each cell denote the average value and standard deviation of rewards across runs
with 5 random seeds.

Task # feedback Oracle Pairwise Sequential Pairwise Root Pairwise
Door Open 10K 100.0 ± 0.0 99.6 ± 0.9 99.8 ± 0.4 100.0 ± 0.0
Drawer Open 20K 99.9 ± 0.3 82.2 ± 39.2 88.8 ± 25.0 100.0 ± 0.0
Sweep Into 10K 88.8 ± 29.9 27.5 ± 47.8 41.2 ± 43.2 71.8 ± 48.0
Window Open 1K 99.9 ± 0.3 49.4 ± 43.2 72.4 ± 39.0 98.6 ± 3.1

Table 7: Success rates in Meta-World manipulation tasks using PEBBLE Baseline. Two elements
in each cell denote the average value and standard deviation of success rates across runs with 5
random seeds.

(a) Walker Walk
(feedback=0.4K)

(b) Cheetah Run
(feedback=0.2K)

(c) Quadruped Walk
(feedback=1K)

(d) Hopper Hop
(feedback=4K)

(e) Door Open
(feedback=10K)

(f) Drawer Open
(feedback=20K)

(g) Sweep Into
(feedback=10K)

(h) Window Open
(feedback=1K)

Figure 12: Exp1: PEBBLE Baseline Experiment Results. We compare three trajectory comparison methods:
pairwise (green), sequential pairwise (orange), and root pairwise (blue). Pink lines describe the oracle perfor-
mance using SAC with the true reward.

D.5 PEBBLE Baseline Experiments

We train four tasks in DMControl (walker walk, cheetah run, quadruped walk, and hopper hop) and
four tasks in Meta-World (door open, drawer open, sweep into, and window open), using 5 random
seeds to check the validity of our method using PEBBLE baseline. The oracle performance is also
evaluated from the same 5 random seeds. All tasks are trained for 1M steps from scratch.

Locomotion Tasks from DMControl. Results in Table 6 demonstrate that root and sequential
pairwise comparison outperform baseline pairwise comparison by 14.0% and 1.3% on average,
respectively. Especially, root pairwise comparison demonstrates its superiority over the baseline
pairwise comparison for all four tasks: walker walk, cheetah run, quadruped walk, and hopper
hop. Based on the standard deviation of rewards after convergence in walker walk and cheetah run
tasks, root pairwise comparison shows the highest stability among the three trajectory comparison
methods. In the hopper hop task, it is notable that only root pairwise comparison achieves an average
reward larger than 100 while training the agent using pairwise or sequential pairwise comparison is
unsuccessful.

19

Manipulation Tasks from Meta-World. Results in Table 7 show that root and sequential pairwise
comparison outperform baseline pairwise comparison by 43.2% and 16.8% on average, respectively.

Overall, the experiment results in Table 6 and Table 7 show that PEBBLE combined with SeqRank
outperforms the PEBBLE baseline for eight robotic tasks. Performance graphs in Figure 12 show
that root pairwise comparison enables faster convergence of the policy.

D.6 Data Dependency and Data Augmentation Measurements

(a) Average Graph Dependency (b) Maximum Graph Dependency

(c) Number of Augmented Preference
Data at Current Iteration

(d) Total Number of Augmented
Preference Data

Figure 13: Data dependency and the Number of Augmented Data while Training the Agent. We compare
sequential pairwise comparison (orange) and root pairwise comparison (blue).

We measure the number of augmented trajectory pairs and the graph dependency while training the
DMControl Quadruped Walk task with 1000 feedback. We set M = 100 and the reward learning
frequency as 1/30, 000 so that we sample 100 trajectories at each 30, 000 policy training steps to
train the reward model. We use hyperparameters in Table 2. Figure 13 illustrates the average graph
dependency, maximum graph dependency, number of augmented preference data at the current
training step, and the cumulative number of augmented preference data.

Data Dependency. Theoretically, based on Lemma 3 and Lemma 4 on page 7 of the main paper, the
upper bound of maximum graph dependency for sequential and root pairwise comparison is 10.11
and 195.97, respectively, when N = 100, M = N + 1 = 101, and δ = 0.03. The experiment results
in Figure 13 show that the maximum graph dependency for sequential and root pairwise comparison
is 9.86 and 190.43, respectively. This shows that our theoretical analysis could be practically used to
model the experimental results.

Number of Augmented Data. For the number of augmented data at the current training step, the
range of the number of augmented data for sequential and root pairwise comparison is [39.57, 46.00]
and [71.71, 640.29], respectively. The values are averaged across 10 random seeds. It is notable
that the number of augmented data decreases as the training step increases for both sequential and
root pairwise comparison. For root pairwise comparison, the number of augmented data at the first
reward learning iteration, 640.29, is 7 times larger than the expected number of augmented data,
91.61. On the other hand, for sequential pairwise comparison, the number of augmented data at the
first reward learning iteration, 46.00, is 1.19 times larger than the expected number of augmented
data, 38.75. The results imply that both proposed methods, especially root pairwise comparison,
perform better than the expected scenario and boost the early-stage reward learning process, while
the data dependency does not explode and remains in a limited range.

20

D.7 Experiments with Real Human Feedback

For experiments with real human feedback, we show the following instruction before starting the
experiment.

Instructions:

Welcome to the experiment! In this task, you will train a cheetah using three different methods to
compare its running trajectories: pairwise comparison, sequential pairwise comparison, and root
pairwise comparison. The goal is to make the cheetah run as fast as possible in the forward direction
on the screen.

You will go through two runs, each consisting of 10 feedback sessions. In the first run, you will
watch low-performing trajectories. In the second run, you will observe trajectories with varying
performance.

During each feedback session, you will watch two videos of the cheetah running to the right side
of the screen. Each video has 30 frames, and they will be played one after another. Your task is
to select the preferred trajectory between the two shown on the screen within a time limit of 3 seconds.

We will use different methods for comparing trajectories:

Pairwise Comparison:
You will watch 20 different trajectories divided into 10 pairs (e.g., σ1 and σ11, σ2 and σ12).

Sequential Pairwise Comparison:
You will watch 11 different trajectories grouped into 10 pairs (e.g., σ1 and σ2, σ2 and σ3).

Root Pairwise Comparison:
Similar to sequential pairwise comparison, you will observe 11 different trajectories and compare
each new trajectory with the previously most preferred one.

To indicate your preference during each query, simply click on the preferred trajectory within the
given time. The chosen trajectory will be highlighted with a red box, and the next query will follow.

After the experiments end, the participants take a survey by answering the following questions.

Survey Questions:

Q1) Express the user satisfaction that you have experienced from each trajectory comparison method
in levels from 1 to 5. A higher score indicates more satisfaction and less stress, while a lower
score indicates less satisfaction and more stress. (1: strong stress, 2: weak stress, 3: no stress or
satisfaction, 4: weak satisfaction, 5: strong satisfaction)

Q2) What were your own criteria for selecting one trajectory over the other? If you have multiple
criteria, please write them down in order of priority.

Figure 14 (a) presents a histogram illustrating the user satisfaction scores for three trajectory compar-
ison methods. The average scores resulted in 2.20, 3.00, and 3.93 for pairwise, sequential, and root
pairwise comparison, respectively. In Figure 14 (b), the responses to Q2 are depicted, indicating that
participants considered the overall moved distance of the agent as the most significant criterion to
consider. Participants who responded for the moved distance of a specific leg prioritized the front leg
over the back leg.

21

(a) Training Curves (b) Preference Criteria

Figure 14: Real Human Feedback Experiments in the Cheetah Run Task. (a) We compare three trajectory
comparison methods: pairwise (green), sequential pairwise (orange), and root pairwise (blue). The reward
graphs are averaged across 5 human participants who trained the policy and the reward models from scratch.
Each participant provides 200 feedbacks using each method. (b) The histogram shows the types of criteria and
the number of people who chose them during the user study.

Experiment # human feedback # participants Pairwise Sequential Pairwise Root Pairwise
Fine-tuning 20 30 860.10 ± 3.35 860.93 ± 2.28 861.70 ± 2.25
Training from Scratch 200 5 260.2 ± 143.0 312.0 ± 276.5 384.3 ± 124.6

Table 8: Performance of Real Human Feedback Experiments in the Cheetah Run Task. Two ele-
ments in each cell denote the average value and standard deviation of rewards across the participants.

We also perform statistical analysis using paired-sample t-test for (1) rewards and (2) user satisfaction
scores. For both metrics, we use the following hypotheses.

• Null Hypothesis (H0): The mean difference between the methods (two chosen from
pairwise, sequential pairwise, and root pairwise comparison) in terms of rewards after
convergence (or user satisfaction scores) is equal to zero.

• Alternative Hypothesis (Ha): The mean difference between the methods (two chosen
from pairwise, sequential pairwise, and root pairwise comparison, same as H0) in terms of
rewards after convergence (or user satisfaction scores) is not equal to zero.

22

References
[1] Nicolas Usunier, Massih-Reza Amini, and Patrick Gallinari. Generalization error bounds for classifiers

trained with interdependent data. In Advances in Neural Information Processing Systems (NeurIPS), 2005.

[2] Massih-Reza Amini and Nicolas Usunier. Learning with partially labeled and interdependent data. Springer,
2015.

[3] Rui-Ray Zhang and Massih-Reza Amini. Generalization bounds for learning under graph-dependence: A
survey. arXiv preprint arXiv:2203.13534, 181:109272, 2022.

[4] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690,
2018.

[5] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom Erez,
Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for continuous control.
Software Impacts, 6:100022, 2020.

[6] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine.
Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In Proceedings
of the Conference on robot learning (CoRL), 2020.

[7] Runze Liu, Fengshuo Bai, Yali Du, and Yaodong Yang. Meta-reward-net: Implicitly differentiable reward
learning for preference-based reinforcement learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

[8] Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement learning
via relabeling experience and unsupervised pre-training. Proceedings of the International Conference on
Machine Learning (ICML), 2021.

[9] Hogun Kee, Minjae Kang, Dohyeong Kim, Jaegoo Choy, and Songhwai Oh. Sdf-based graph convolutional
q-networks for rearrangement of multiple objects. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2023.

23

	Summary of Notations
	Proofs
	Feedback Efficiency of the Algorithm
	Sequential Pairwise Comparison
	Extension to Root Pairwise Comparison

	Convergence of the Reward Model
	High Probability Feedback Efficiency
	Generalization Bound with Rademacher Complexity

	Algorithm
	Experiments
	Experiment Settings
	Implementation Details
	Experiments in Locomotion Tasks (DMControl)
	Experiments in Manipulation Tasks (Meta-world)
	PEBBLE Baseline Experiments
	Data Dependency and Data Augmentation Measurements
	Experiments with Real Human Feedback

