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A Extended Discussion of Related Work

Prior work on causal representation learning with general nonlinear relationships (both among latents
and between latents and observations) and without an explicit task or label typically relies on some
form of weak supervision. One example of weak supervision is “multi-view” data consisting of
tuples of related observations. von Kügelgen et al. [123] consider counterfactual pairs of observations
arising from imperfect interventions through data augmentation, and prove identifiability for the
invariant non-descendants of intervened-upon variables. Brehmer et al. [18] also use counterfactual
pre- and post-intervention views and show that the latent SCM can be identified given all single-node
perfect stochastic interventions. Another type of weak-supervision is temporal structure [2], possibly
combined with nonstationarity [132, 133], interventions on known targets [80, 81], or observed
actions inducing sparse mechanism shifts [74, 75, 110]. Other works use more explicit supervision in
the form of annotations of the ground truth causal variables or a known causal graph [111, 126, 130].

A different line of work instead approaches causal representation learning from the perspective
of causal discovery in the presence of latent variables [115]. Doing so from purely observational
i.i.d. data requires additional constraints on the generative process, such as restrictions on the
graph structure or particular parametric and distributional assumptions, and typically leverages the
identifiability of linear ICA [27, 38, 79]. For linear, non-Gaussian models, Silva et al. [113] show
that the causal DAG can be recovered up to Markov equivalence if all observed variables are “pure” in
that they have a unique latent causal parent. Cai et al. [23] and Xie et al. [128, 129] extend this result
to identify the full graph given two pure observed children per latent, and Adams et al. [1] provide
sufficient and necessary graphical conditions for full identification. For discrete causal variables,
Kivva et al. [68] introduce a similar “no twins” condition to reduce the task of learning the number
and cardinality of latents and the Markov-equivalence class of the graph to mixture identifiability.

Other lines of work have investigated the relationship between causal models at different levels of
coarse-graining or abstraction [6, 11, 12, 24–26, 35, 105, 134, 135], or learning invariant represen-
tations in a supervised setting [3, 8, 32, 33, 73, 86, 92, 124, 125], often for domain generalization.

Other concurrent works address, e.g., learning from soft interventions with polynomial mixing [136],
or inferring both causal graph and the number of latents subject to graphical constraints [63].

A.1 Comparison of Related Identifiability Results

To complement the presentation of related multienvironment CRL works in § 1, we provide a
structured overview of and comparison with existing identifiability results for causal representation
learning in Tab. 1. The table categorizes work along different dimensions. First, we make a distinction
based on the type of data (observational, interventional, or counterfactual) results rely on (colour
coded in green, yellow, and red, respectively). These are also referred to as different rungs in the
“ladder of causation” [97] or layers in the Pearl Causal Hierarchy [10]. Second, we categorize work
depending on the assumptions placed on the latent causal model and the mixing function. As can be
seen, works relying solely on observational data often require restrictive graphical assumptions on the
mixing function. On the other hand, access to much more informative counterfactual data has allowed
identification even for nonparametric causal models and mixing functions. Our work can be viewed as
a step towards addressing the lack of nonparametric identifiability results in the interventional regime.

We emphasize that Tab. 1 is not exhaustive: certain relevant works did not easily fit into our catego-
rization or the causal representation learning framework adopted in the present work. For example,
not listed are works that leverage temporal structure [2, 74, 75, 80, 81], rely on heterogenous data and
distribution shifts which are not directly expressed in terms of or linked to interventions [82, 132, 133],
allow for edges from observed to latent variables [1], or require more direct supervision [111, 130].

20



Table 1: Comparison of Existing Identifiability Results for Causal Reresentation Learning. All of the listed
works assume invertibility (or injectivity) of the mixing function, as well as causal sufficiency (Markovianity)
for the causal latent variables. Most or all of the listed results require additional technical assumptions, and
may provide additional results, which we omit for sake of readability; see the references for more details.

Work Layer Causal Model Mixing Function Main Identifiability Result

Cai et al. [23], Xie
et al. [128, 129] observational linear, non-Gaussian

linear with non-Gaussian
noise s.t. each Vi has 2 pure
(obs. or unobs.) children

number of latents + G

Kivva et al. [68] observational discrete, nonparametric
indentifiable mixture model
s.t. obs. children of Vi 6✓ obs.
children of Vj

number, cardinality & dist. of dis-
crete latents + G up to Markov
equivalence

Ahuja et al. [5,
Thm. 4] observational nonlinear w. indepen-

dent support [103, 125] finite-degree polynomial V up to permutation, shift, & linear
scaling

Squires et al. [117,
Thms. 1 & 2] interventional linear linear

G and V up to partial-order preserv-
ing permutations from obs. dist. &
all single-node perfect interventions

Squires et al. [117,
Thm. 1] interventional linear linear

G up to transitive closure from obs.
dist. & all single-node imperfect in-
terventions

Varici et al. [122,
Thm. 16] interventional nonparametric linear

G and V up to partial-order preserv-
ing permutations from obs. dist. &
all single-node perfect interventions

Ahuja et al. [5,
Thm. 2] interventional nonparametric finite-degree polynomial

V up to permutation, shift, and lin-
ear scaling from all single-node per-
fect hard interventions

Buchholz et al.
[22] interventional linear Gaussian nonparametric

G and V up to permutation from
obs. dist. & all single-node perfect
interventions

This

Work (Thm. 3.2) interventional nonparametric nonparametric
for n = 2: G and V up to ⇠CRL

from all single-node perfect inter-
ventions, subject to genericity (3.2)

This

Work (Thm. 3.4) interventional nonparametric nonparametric
G and V up to ⇠CRL from two dis-
tinct, paired single-node perfect in-
terventions per node

von Kügelgen et al.
[123] counterfactual nonparametric nonparametric

block of non-descendants Vnd(I) up
to invertible function from fat-hand
imperfect interventions on VI

Brehmer et al. [18] counterfactual nonparametric nonparametric G and V up to ⇠CRL from all single-
node perfect interventions
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B Proof of Minimality of the CRL Equivalence Class ⇠CRL

First, let us recall the main statements from § 2.2.
Definition 2.6 (⇠CRL-identifiability). Let H be a space of unmixing functions h : X ! Rn and let G
be the space of DAGs over n vertices. Let ⇠CRL be the equivalence relation on H⇥ G defined as

(h1, G1) ⇠CRL (h2, G2) () (h2, G2) = (P⇡�1 � � � h1,⇡(G1)) (2.3)

for some element-wise diffeomorphism �(v) = (�1(v1), . . . ,�n(vn)) of Rn and a permutation ⇡
of [n] such that ⇡ : G1 7! G2 is a graph isomorphism and P⇡ the corresponding permutation matrix.
Proposition 3.1 (Minimality of ⇠CRL; informal). Let Z be any representation that is ⇠CRL equivalent
to V , with G0 = ⇡(G) the associated DAG. Then for any intervention on VI ✓ V in G, there exists
an equally sparse intervention on Z⇡(I) ✓ Z in G0 inducing the same observed distribution on X .

We now restate this result more formally.
Proposition B.1 (Minimality of ⇠CRL). Let (h,G0) ⇠CRL (f�1, G) with ⇡ denoting the graph
isomorphism mapping G to G0 (i.e., a permutation that preserves the partial topological order of G).
Let Z = h(X) be the inferred representation with distribution QZ = h⇤(PX) Markov w.r.t. G0 and
associated density q. Let Ie

✓ [n] denote a set of intervention targets, and consider an intervention
that changes pi(vi | vpa(i)) to some intervened mechanism p̃i(vi | vpa(i)) for all i 2 I

e, giving rise
to the interventional distributions P e

V and P e
X = f⇤(P e

V ). Then there exist appropriately chosen
q̃⇡(i)(z⇡(i) | zpa(⇡(i),G0)) for i 2 I

e such that the resulting interventional distribution Qe
Z gives rise

to the same observed distributions, that is, P e
X = h�1

⇤ (Qe
Z).

Proof. Since (h,G0) ⇠CRL (f�1, G), by Defn. 2.6 we have

Z = P⇡�1 � �(V ) (B.1)

for some element-wise diffeomorphism � with inverse  = ��1. Then (B.1) implies that for all
i 2 [n]

Vi =  i(Z⇡(i)) (B.2)

According to (B.2), each conditional in the Markov factorization of QZ is given in terms of p by

q⇡(i)
⇣
z⇡(i) | zpa(⇡(i);G0)

⌘
= pi

✓
 i

⇣
z⇡(i)

⌘
|  pa(i)

⇣
zpa(⇡(i);G0)

⌘◆ �����
d i

dz⇡(i)

⇣
z⇡(i)

⌘����� (B.3)

where we have used the change of variables in (B.2) and the fact that ⇡(pa(i)) = pa(⇡(i);G0) since
⇡ : G 7! G0 is a graph isomorphism.

Consider an intervention that changes pi(vi | vpa(i)) to some intervened mechanism p̃i(vi | vpa(i))
for all i 2 I

e. Denote the corresponding intervened joint distribution by P e
V with joint density pe

given by
pe(v) =

Y

i2Ie

p̃i
⇣
vi | vpa(i)

⌘ Y

j2[n]\Ie

pj
⇣
vj | vpa(j)

⌘
. (B.4)

Denote by Qe
Z = (P⇡�1 � �)⇤(P e

V ) the corresponding distribution over Z with joint density given
by qe

qe(z) = pe( � P⇡(z))
��detJ �P⇡ (z)

�� (B.5)

=
Y

i2Ie

p̃i

✓
 i

⇣
z⇡(i)

⌘
|  pa(i)

⇣
zpa(⇡(i);G0)

⌘◆ �����
d i

dz⇡(i)

⇣
z⇡(i)

⌘�����
Y

j2[n]\Ie

q⇡(j)
⇣
z⇡(j) | zpa(⇡(j);G0)

⌘
,

(B.6)

where we have used (B.3), (B.4), and the fact that J is diagonal.

By defining

q̃⇡(i)
⇣
z⇡(i) | zpa(⇡(i);G0)

⌘
:= p̃i

✓
 i

⇣
z⇡(i)

⌘
|  pa(i)

⇣
zpa(⇡(i);G0)

⌘◆ �����
d i

dz⇡(i)

⇣
z⇡(i)

⌘����� (B.7)
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we finally arrive at

qe(z) =
Y

i2Ie

q̃⇡(i)
⇣
z⇡(i) | zpa(⇡(i);G0)

⌘ Y

j2[n]\Ie

q⇡(j)
⇣
z⇡(j) | zpa(⇡(j);G0)

⌘
. (B.8)

This shows that any intervention on {Vi}i2Ie ✓ V which replaces
n
pi(vi | vpa(i))

o

i2Ie
7!

n
p̃i(vi | vpa(i))

o

i2Ie
, (B.9)

can equivalently be captured by an intervention on {Z⇡(i)}i2Ie ✓ Z which replaces
⇢
q⇡(i)

⇣
z⇡(i) | zpa(⇡(i);G0)

⌘�

i2Ie

7!

⇢
q̃⇡(i)

⇣
z⇡(i) | zpa(⇡(i);G0)

⌘�

i2Ie

. (B.10)

with q̃i defined according to (B.7).

C Identifiability Proofs

C.1 Auxiliary Lemmata

Lemma C.1 (Lemma 2 of Brehmer et al. [18]). Let A = C = R and B = Rn. Let f : A⇥B ! C
be differentiable. Define two differentiable measures pA on A and pC on C. Let 8b 2 B,
f(·, b) : A! C be measure-preserving, in the sense that the pushforward of pA is always pC . Then
f(·, b) is constant in b on B.

Proof. See Appendix A.2 of Brehmer et al. [18].

Lemma C.2 (Preservation of conditional independence under invertible transformation.). Let X and
Y be continuous real-valued random variables, and let Z be a continuous random vector taking
values in Rn. Suppose that (X,Y,Z) have a joint density w.r.t. the Lebesgue measure. Let f : R! R,
g : R! R, and h : Rn

! Rn be diffeomorphisms. Then X ?? Y | Z =) f(X) ?? g(Y ) | h(Z).

Proof. Denote by p(x, y, z) the density of (X,Y,Z). Then X ?? Y | Z implies that for all (x, y, z),
p can be factorized as follows:

p(x, y, z) = pz(z)px(x | z)py(y | z) . (C.1)

Let (A,B,C) = (f(X), g(Y ), h(Z)), and write f̃ = f�1, g̃ = g�1, and h̃ = h�1.

Then (A,B,C) also has a density q(a, b, c), which for all (a, b, c) is given by the change of variable
formula:

q(a, b, c) = p
⇣
f̃(a), g̃(b), h̃(c)

⌘ �����
df̃

da
(a)

dg̃

db
(b) detJh̃(c)

����� (C.2)

= pz
⇣
h̃(c)

⌘ ��detJh̃(c)
�� px

⇣
f̃(a) | h̃(c)

⌘ �����
df̃

da
(a)

����� py
⇣
g̃(b) | h̃(c)

⌘ ����
dg̃

db
(b)

���� (C.3)

where in (C.2) we have used the fact that (X,Y,Z) 7! (f(X), g(Y ), h(Z)) has block-diagonal
Jacobian, and in (C.3) that p factorises as in (C.1). Next, define

qc(c) := pz
⇣
h̃(c)

⌘ ��detJh̃(c)
�� , (C.4)

qa(a | c) := px
⇣
f̃(a) | h̃(c)

⌘ �����
df̃

da
(a)

����� , (C.5)

qb(b | c) := py
⇣
g̃(b) | h̃(c)

⌘ ����
dg̃

db
(b)

���� . (C.6)

Since pz , px, and py are valid densities (non-negative and integrating to one), so are qc, qa, and qb.
Substitution into (C.3) yields for all (a, b, c),

q(a, b, c) = qc(c)qa(a | c)qb(b | c) , (C.7)
which implies that A ?? B | C, concluding the proof.
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C.2 Proof of Thm. 3.2

Theorem 3.2 (Bivariate identifiability up to ⇠CRL from one perfect stochastic intervention per node).
Suppose that we have access to multiple environments {P e

X}e2E generated as described in § 2
under Asms. 2.2, 2.5, 2.8 and 2.9 with n = 2. Let (h,G0) be any candidate solution such that the
inferred latent distributions Qe

Z = h⇤(P e
X) of Z = h(X) and the inferred mixing function h�1

satisfy the above assumptions w.r.t. the candidate causal graph G0. Assume additionally that

(A1) all densities pe and qe are continuously differentiable and fully supported on Rn;

(A2) we have access to a known observational environment e0 and one single node perfect interven-
tion for each node, with unknown targets: there exist n+1 environments E = {ei}ni=0 such that
I
e0 = ? and for each i 2 [n] we have I

ei = {⇡(i)} for an unknown permutation ⇡ of [n];

(A3) for all i 2 [n], the intervened mechanisms p̃i(vi) differ from the corresponding base
mechanisms pi(vi | vpa(i)) everywhere, in the sense that

8v :
@

@vi

p̃i(vi)

pi(vi | vpa(i))
6= 0 ; (3.1)

(A4) (“genericity”) the base and intervened mechanisms are not fine-tuned to each other, in the
sense that there exists a continuous function ' : R+

! R for which

Ev⇠P
e0
V

"
'

✓
p̃2(v2)

p2(v2 | v1)

◆#
6= Ev⇠P

e1
V

"
'

✓
p̃2(v2)

p2(v2 | v1)

◆#
(3.2)

Then the ground truth is identified in the sense of Defn. 2.6, that is, (f�1, G) ⇠CRL (h,G0).

Proof. From the assumption of a shared mixing f and shared encoder h across all environments, we
have that

Z = h(X) = h(f(V )) = h � f(V ) . (C.8)
Let  = f�1

� h�1 : Rn
! Rn such that

V =  (Z) .

By Asm. 2.5, f , h, and thus also h � f are diffeomorphisms. Hence,  is well-defined and also
diffeomorphic.

By the change of variable formula, for all e and all z the density qe(z) is given by

qe(z) = pe( (z))
��detJ (z)

�� (C.9)

where (J (z))ij =
@ i

@zj
(z) denotes the Jacobian of  .

We now consider two separate cases, depending on whether the intervention targets in qei for
ei 2 {e1, e2} match those in pei (Case 1) or not (Case 2).

Case 1: Aligned Intervention Targets. According to Asm. 2.8 and (A2), (C.9) applied to the
known observational environment e0 and the interventional environments e1, e2 leads to the system
of equations:

q1(z1)q2(z2 | zpa(2;G0)) = p1
�
 1(z)

�
p2
⇣
 2(z) |  pa(2)(z)

⌘ ��detJ (z)
�� (C.10)

q̃1(z1)q2(z2 | zpa(2;G0)) = p̃1
�
 1(z)

�
p2
⇣
 2(z) |  pa(2)(z)

⌘ ��detJ (z)
�� (C.11)

q1(z1)q̃2(z2) = p1
�
 1(z)

�
p̃2
�
 2(z)

� ��detJ (z)
�� (C.12)

where zpa(2;G0) denotes the parents of z2 in G0, and pa(2) denotes the parents of V2 in G.

Note that neither side of the previous equations can be zero due to the full support assumption12

(A1) and  being diffeomorphic implying the determinant is non-zero.

12This can also be relaxed to fully supported on a Cartesian product of intervals.

24



Taking quotients of (C.11) and (C.10), yields
q̃1
q1

(z1) =
p̃1
p1

( 1(z)) . (C.13)

Next, we take the partial derivative w.r.t. z2 on both sides and use the chain rule to obtain:

0 =

✓
p̃1
p1

◆0 �
 1(z)

� @ 1

@z2
(z) . (C.14)

Now, by assumption (A3), the first term on the RHS of (C.14) is non-zero everywhere. Hence,

8z :
@ 1

@z2
(z) = 0 . (C.15)

It follows that  1 is, in fact, a scalar function, and

V1 =  1(Z1) . (C.16)

Since  is a diffeomorphism,  1 must also be diffeomorphic. Hence, by the change of variable
formula applied to (C.16), the marginal density q1(z1) is given by

q1(z1) = p1( 1(z1))

����
@ 1

@z1
(z1)

���� . (C.17)

Further, since J is triangular due to (C.15), its determinant is given by
��detJ (z)

�� =
����
@ 1

@z1
(z1)

@ 2

@z2
(z1, z2)

���� . (C.18)

Substituting (C.17) and (C.18) into (C.12) yields (after cancellation of equal terms):

q̃2(z2) = p̃2
�
 2(z1, z2)

� ����
@ 2

@z2
(z1, z2)

���� . (C.19)

The expression in (C.19) implies that, for all z1, the mapping  2(z1, ·) : R ! R is measure
preserving for the differentiable q̃2 and p̃2. By Lemma C.1 (Lemma 2 of Brehmer et al. [18, § A.2]),
it then follows that  2 must, in fact, be constant in z1, that is

8z :
@ 2

@z1
(z) = 0 . (C.20)

Note that this last step is where the assumption of perfect interventions (Asm. 2.9) is leveraged:
the conclusion would not hold for arbitrary imperfect interventions for which (3.8) would involve
q̃2(z2 | z1) and p2

�
 2(z1, z2) |  1(z1)

�
.

Hence, we have shown that  is an element-wise function:

V = (V1, V2) =  (Z) = ( 1(Z1), 2(Z2)) . (C.21)

Finally, since  is a diffeomorphism, (C.21) implies that

V1 ?? V2 () Z1 ?? Z2 . (C.22)

It then follows from the faithfulness assumption (Asm. 2.2) that we also must have G = G0.

This concludes the proof of Case 1, as we have shown that (h,G0) ⇠CRL (f�1, G) with G0 = ⇡(G) =
G (⇡ being the identity permutation) and h � f =  �1 =: � an element-wise diffeomorphism.

Case 2: Misaligned Intervention Targets. Writing down the system of equations similar
to (C.10)–(C.12), but for the case with misaligned intervention targets across p and q yields:

q1(z1)q2(z2 | zpa(2;G0)) = p1
�
 1(z)

�
p2
⇣
 2(z) |  pa(2)(z)

⌘ ��detJ (z)
�� (C.23)

q̃1(z1)q2(z2 | zpa(2;G0)) = p1
�
 1(z)

�
p̃2
�
 2(z)

� ��detJ (z)
�� (C.24)

q1(z1)q̃2(z2) = p̃1
�
 1(z)

�
p2
⇣
 2(z) |  pa(2)(z)

⌘ ��detJ (z)
�� . (C.25)
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Taking ratios of e1 and e2 with e0 yields

q̃1
q1

(z1) =
p̃2
�
 2(z)

�

p2
⇣
 2(z) |  pa(2)(z)

⌘ (C.26)

q̃2(z2)

q2(z2 | zpa(2;G0))
=

p̃1
p1

�
 1(z)

�
. (C.27)

We separate the remainder of the proof of Case 2 into different subcases depending on G and G0:
as we will see, we can use a similar reasoning as in Case 1, except for the case where both G and
G0 are missing no edge.

Case 2a: V1 6! V2 in G, that is pa(2) = ?. Then we can proceed similarly to Case 1. First, we
take the partial derivative of (C.26) w.r.t. z2 to arrive at:

0 =

✓
p̃2
p2

◆0 �
 2(z)

� @ 2

@z2
(z) . (C.28)

Using (A3), this implies that  2 does not depend on Z2, that is, V2 =  2(Z1).

Next, we again write q(z1) in terms of p2( 2(z1)) using the univariate change of variable formula,
substitute into (C.25), cancel the corresponding terms, and arrive at:

q̃2(z2) = p̃1
�
 1(z1, z2)

� ����
@ 1

@z2
(z1, z2)

���� (C.29)

Lemma C.1 applied to  1(z1, ·) which preserves q̃2 and p̃1 for all z1 shows that  1 is constant in
Z1, that is

V = (V1, V2) =  (Z) = ( 1(Z2), 2(Z1)) . (C.30)

Since V1 ?? V2 by the assumption of Case 2a, it follows from the invertible element-wise
reparametrisation above that Z1 ?? Z2 and hence, by faithfulness, Z1 6! Z2 in G0.

Finally, note that there is no partial order on the empty graph and so G0 = ⇡(G) = G and
Z = P⇡�1 ·  �1(V ) where ⇡ is the nontrivial permutation of {1, 2}.

Case 2b: V1 ! V2 in G, that is pa(2) = {1}. If G0
6= G, that is Z1 6! Z2 in G0, then the same

argument as in Case 2a, this time starting by taking the partial derivative of (C.27) w.r.t. z1, can be used
to reach the same conclusion in (C.30). However, this contradicts faithfulness since V1 6?? V2 in G.

Hence, we must have G0 = G, and the following two equations must hold for all z:

q̃1(z1)

q1(z1)
=

p̃2
�
 2(z)

�

p2
�
 2(z) |  1(z)

� (C.31)

q̃2(z2)

q2(z2 | z1)
=

p̃1
�
 1(z)

�

p1
�
 1(z)

� (C.32)

The remainder of the proof consists of exploring the implications of (C.32) and (C.31), ultimately
resulting in a violation of the genericity condition (A4).

To ease notation, define the following auxiliary functions:

a(z1) :=
q̃1(z1)

q1(z1)
, (C.33)

b(v) :=
p̃2(v2)

p2(v2 | v1)
, (C.34)

c(z) :=
q̃2(z2)

q2|1(z2 | z1)
, (C.35)

d(v1) :=
p̃1 (v1)

p1 (v1)
. (C.36)
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With this, (C.31) and (C.32) take the following form:

a(z1) = b( (z)) . (C.37)
c(z) = d( 1(z)) , (C.38)

Next, define the following maps:

 : z 7!


a(z1)
c(z)

�
(C.39)

⇢ : v 7!


b(v)
d(v1)

�
(C.40)

Then, (C.37) and (C.38) together imply that

 = ⇢ �  . (C.41)

Recalling that by (A1) all densities are continuously differentiable, the Jacobians of  and ⇢ are given
by:

J(z) =

"
a0(z1) 0
@c
@z1

(z) @c
@z2

(z)

#
, (C.42)

J⇢(v) =

"
@b
@v1

(v) @b
@v2

(v)
d0(v1) 0

#
, (C.43)

and the corresponding determinants are given by
��detJ(z)

�� =
����a

0(z1)
@c

@z2
(z)

���� 6= 0 (C.44)

��detJ⇢(v)
�� =

����d
0(v1)

@b

@v2
(v)

���� 6= 0 (C.45)

where the inequalities for all z follow since, by assumption (A3), the derivatives of ratios of
intervened and original mechanisms are non-vanishing everywhere:

a0(z1) 6= 0 6=
@c

@z2
(z) and d0(v1) 6= 0 6=

@b

@v2
(v) , (C.46)

This implies that the following families of maps are continuously differentiable, monotonic, and
invertible,

a : z1 7! a(z1) , (C.47)
bv1 : v2 7! b(v1, v2) , (C.48)
cz1 : z2 7! c(z1, z2) , (C.49)
d : v1 7! d(v1) , (C.50)

with continuously differentiable inverses

a�1 : w1 7! a�1(w1) , (C.51)

b�1
v1 : w1 7! b�1

v1 (w1) , (C.52)

c�1
z1 : w2 7! c�1

z1 (w2) , (C.53)

d�1 : w2 7! d�1(w2) . (C.54)

This implies that ⇢ and  are valid diffeomorphisms onto their image and their inverses are given by:

�1 : w 7!

"
a�1(w1)

c�1
a�1(w1)

(w2)

#
, (C.55)

⇢�1 : w 7!

"
d�1(w2)

b�1
d�1(w2)

(w1)

#
. (C.56)
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Since V =  (Z), by (C.41) we have

W := ⇢(V ) = ⇢ �  (Z) = (Z) . (C.57)

Denote the distributions of W by RW and its density by r(w). Since for all e, we have

P e
V =  ⇤(Q

e
Z) (C.58)

it follows from (C.57) that
Re

W = ⇢⇤(P
e
V ) = ⇤(Q

e
Z) . (C.59)

This provides two different ways of applying the change of variable formula to compute r(w).

First, we consider the pushforward of Qe0
Z by :

r(w) = q
⇣
�1(w)

⌘ ��detJ�1(w)
�� (C.60)

= q1
⇣
a�1(w1)

⌘
q2
⇣
c�1
a�1(w1)

(w2) | a�1(w1)
⌘ ����

d

dw1
a�1(w1)

d

dw2
c�1
a�1(w1)

(w2)

���� (C.61)

By integrating this joint density with respect to w2, we obtain the following expression for the
marginal r1(w1):

r1(w1) =

����
d

dw1
a�1(w1)

���� q1
⇣
a�1(w1)

⌘Z
q2
⇣
c�1
a�1(w1)

(w2) | a�1(w1)
⌘ ����

d

dw2
c�1
a�1(w1)

(w2)

���� dw2 .

(C.62)

By the diffeomorphic change of variable z2 = c�1
a�1(w1)

(w2), 13 this can be written as

r1(w1) =

����
d

dw1
a�1(w1)

���� q1
⇣
a�1(w1)

⌘Z
q2
⇣
z2 | a�1(w1)

⌘
dz2 (C.63)

=

����
d

dw1
a�1(w1)

���� q1
⇣
a�1(w1)

⌘
(C.64)

Next, we carry out the same calculation for the pushforward of P e0
V by ⇢:

r(w) = p
⇣
⇢�1(w)

⌘ ��detJ⇢�1(w)
�� (C.65)

= p1
⇣
d�1(w2)

⌘
p2
⇣
b�1
d�1(w2)

(w1) | d�1(w2)
⌘ ����

d

dw2
d�1(w2)

d

dw1
b�1
d�1(w2)

(w1)

���� ,

(C.66)

leading to the marginal

r1(w1) =

Z
p1
⇣
d�1(w2)

⌘
p2
⇣
b�1
d�1(w2)

(w1) | d�1(w2)
⌘ ����

d

dw1
b�1
d�1(w2)

(w1)

����

����
d

dw2
d�1(w2)

���� dw2

(C.67)

=

Z
p1(v1)p2

⇣
b�1
v1 (w1) | v1

⌘ ����
d

dw1
b�1
v1 (w1)

���� dv1 , (C.68)

where the second line is obtained by the diffeomorphic change of variable v1 = d�1(w2).

Equating the two expressions for r(w1) in e0 in (C.68) and (C.64), we obtain for all w1:
����

d

dw1
a�1(w1)

���� q1
⇣
a�1(w1)

⌘
=

Z
p1(v1)p2

⇣
b�1
v1 (w1) | v1

⌘ ����
d

dw1
b�1
v1 (w1)

���� dv1 . (C.69)

Applying the same approach to the environment in which V1 is intervened upon changing p1 to p̃1
while Z2 is intervened upon leaving q1 invariant, yields for all w1:

����
d

dw1
a�1(w1)

���� q1
⇣
a�1(w1)

⌘
=

Z
p̃1(v1)p2

⇣
b�1
v1 (w1) | v1

⌘ ����
d

dw1
b�1
v1 (w1)

���� dv1 . (C.70)

13Note that:
R
q2(z2(w2))

��� dz2
dw2

��� dw2 =
R
q2(z2) dz2 .
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Finally, by equating (C.69) and (C.70), we arrive at the following expression which must hold for
all w1:
Z

p1(v1)p2
⇣
b�1
v1 (w1) | v1

⌘ ����
d

dw1
b�1
v1 (w1)

���� dv1 =

Z
p̃1(v1)p2

⇣
b�1
v1 (w1) | v1

⌘ ����
d

dw1
b�1
v1 (w1)

���� dv1
(C.71)

which we can rewrite as
Z �

p̃1(v1)� p1(v1)
�
p2
⇣
b�1
v1 (w1) | v1

⌘ ����
d

dw1
b�1
v1 (w1)

���� dv1 = 0 . (C.72)

Multiplying by any continuous function '(w1), integrating w.r.t. w1 and applying the diffeomorphic
change of variable v2 = b�1

v1 (w1), this can be expressed as:

0 =

Z
'(w1)

Z �
p̃1(v1)� p1(v1)

�
p2
⇣
b�1
v1 (w1) | v1

⌘ ����
d

dw1
b�1
v1 (w1)

���� dv1 dw1 (C.73)

=

Z Z
'
�
bv1(v2)

� �
p̃1(v1)� p1(v1)

�
p2(v2 | v1) dv2 dv1 (C.74)

=

Z Z
'

✓
p̃2(v2)

p2(v2 | v1)

◆�
p̃1(v1)� p1(v1)

�
p2(v2 | v1) dv2 dv1 (C.75)

where we have resubstituted the expression for bv1(v2) in the last line.

Equivalently, this can be written as: for any continuous function ',

Ev⇠P
e0
V

"
'

✓
p̃2(v2)

p2(v2 | v1)

◆#
= Ev⇠P

e1
V

"
'

✓
p̃2(v2)

p2(v2 | v1)

◆#
. (C.76)

However, the genericity condition (A4) precisely rules this out, since the above equality must be
violated for at least one ', concluding this last case.

To sum up, all cases either lead to a contradiction, or imply the conclusion that (f�1, G) ⇠CRL (h,G0),
concluding the proof.

C.3 Proof of Thm. 3.4

Theorem 3.4 (Identifiability up to ⇠CRL from two paired perfect stochastic interventions per node).
Suppose that we have access to multiple environments {P e

X}e2E generated as described in § 2
under Asms. 2.2, 2.3, 2.5, 2.8 and 2.9. Let (h,G0) be any candidate solution such that the inferred
latent distributions Qe

Z = h⇤(P e
X) of Z = h(X) and the inferred mixing function h�1 satisfy the

above assumptions w.r.t. the candidate causal graph G0. Assume additionally that

(A1) all densities pe and qe are continuously differentiable and fully supported on Rn;

(A2’) we have access to at least one pair of single-node perfect interventions per node, with unknown
targets: there exist m � n known pairs of environments E = {(ej , e0j)}

m
j=1 such that for each

i 2 [n] there exists some unknown j 2 [m] for which I
ej = I

e0j = {i};

(A3’) for all i 2 [n], the intervened mechanisms p̃i(vi) and ˜̃pi(vi) differ everywhere, in the sense that

8vi :

✓
˜̃pi
p̃i

◆0
(vi) 6= 0 ; (3.10)

Then the ground truth is identified in the sense of Defn. 2.6, that is, (f�1, G) ⇠CRL (h,G0).

Proof. First, we show that we can extract from the m � n available pairs of environments a suitable
subset En of exactly n pairs, containing one pair of interventional environments for each node.

Let En ✓ E be a subset of n pairs of environments which are assumed to correspond to distinct
targets in the model q, and suppose for a contradiction that this is not actually the case for the ground
truth p (i.e., there are duplicate and missing interventions w.r.t. p). Then there must be two pairs of
environments (ea, e0a), (eb, e0b) 2 En, both corresponding to interventions on some Vi in p, but which

29



are modelled as interventions on distinct nodes Zj and Zk with j 6= k in q. We show that this implies
that Vi must simultaneously be a deterministic function of only Zj and only Zk. Similar to the proof
of Thm. 3.2, we obtain the following equations,

˜̃qj
q̃j

�
zj
�
=

˜̃pi
p̃i

�
 i(z)

�
, (C.77)

˜̃qk
q̃k

(zk) =
ˆ̂pi
p̂i

�
 i(z)

�
. (C.78)

By taking partial derivatives w.r.t. zl and applying assumption (A3’), we find that

@ i

@zl
= 0 8l 6= j , (C.79)

@ i

@zl
= 0 8l 6= k . (C.80)

Since j 6= k, this implies that @ i/@zl = 0 for all l which contradicts invertibility of  . Thus, by
contradiction, we find that En must contain exactly one pair of intervention per node also w.r.t. p. For
the remainder of the proof, we only consider En.

W.l.o.g., for any (ei, e0i) 2 En we now fix the intervention targets in p to I
ei = I

e0i = {i} and let ⇡
be a permutation of [n] such that ⇡(i) denotes the inferred intervention target in q that by (A2’) is
shared across (ei, e0i). (We will show later that not all permutations are admissible, but only ones that
preserve the partial order of G.)

The first part of the proof is similar to Case 1 in the proof of Thm. 3.2. Consider the densities in
environments ei and e0i, which are related through the change of variable formula by:

q̃⇡(i)
⇣
z⇡(i)

⌘ Y

j2[n]\{⇡(i)}

qj
⇣
zj | zpa(j;G0)

⌘
= p̃i

�
 i(z)

� Y

j2[n]\{i}

pj
⇣
 j(z) |  pa(j)(z)

⌘ ��detJ (z)
�� ,

(C.81)

˜̃q⇡(i)
⇣
z⇡(i)

⌘ Y

j2[n]\{⇡(i)}

qj
⇣
zj | zpa(j;G0)

⌘
= ˜̃pi

�
 i(z)

� Y

j2[n]\{i}

pj
⇣
 j(z) |  pa(j)(z)

⌘ ��detJ (z)
�� ,

(C.82)

where Zpa(j;G0) ✓ Z \ {Zj} denotes the parents of Zj in G0.

Taking the quotient of the two equations yields

˜̃q⇡(i)
q̃⇡(i)

⇣
z⇡(i)

⌘
=

˜̃pi
p̃i

�
 i(z)

�
. (C.83)

Next, for any j 6= ⇡(i), taking partial derivatives w.r.t. zj on both sides yields

0 =

 
˜̃pi
p̃i

!0
�
 i(z)

� @ i

@zj
(z) . (C.84)

By assumption (A3’), the first term on the RHS is non-zero everywhere. Hence, (C.84) implies

8j 6= ⇡(i), 8z :
@ i

@zj
(z) = 0 (C.85)

from which we can conclude that

Vi =  i

⇣
Z⇡(i)

⌘
(C.86)

for all i 2 [n]. That is,  is the composition of the permutation ⇡ with an element-wise reparametri-
sation.

It remains to show that ⇡ must, in fact, be a graph isomorphism, which is equivalent to the statement

Vi ! Vj in G () Z⇡(i) ! Z⇡(j) in G0. (C.87)
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( =) ) Suppose for a contradiction that there exist (i, j) such that Vi ! Vj in G, but Z⇡(i) 6! Z⇡(j)
in G0.

The main idea is to demonstrate that the lack of such direct arrow implies a certain conditional
independence which, by faithfulness, would contradict the unconditional dependence of Vi and Vj .

Consider environment ei in which there are perfect interventions on Z⇡(i) and Vi, which has the
effect of removing all incoming arrows to Z⇡(i) and Vi in the respective post-intervention graphs
G0

Z⇡(i)
and GV i

.

As a result of this and the lack of direct arrow by assumption, any d-connecting path between Z⇡(i)
and Z⇡(j) must enter the latter via Zpa(⇡(j);G0) [95].

It then follows from Markovianity of q w.r.t. G0 that the following holds in Qei
Z :

Z⇡(i) ?? Z⇡(j) | Zpa(⇡(j);G0) . (C.88)

We now consider the corresponding implication for P ei
V . Define

Ṽ =

⇢
Vk =  k

⇣
Z⇡(k)

⌘
: Z⇡(k) 2 Zpa(⇡(j);G0)

�
✓ V \ {Vi, Vj} , (C.89)

and note that by assumption, Z⇡(i) 62 Zpa(⇡(j);G0) and hence Vi 62 Ṽ .

By applying the corresponding diffeomorphic functions  i from (C.86) to (C.88), it follows
from Lemma C.2 that

Vi ?? Vj | Ṽ (C.90)
in P ei

V . However, this violates faithfulness (Asm. 2.2) of PV to G since Vi and Vj are d-connected in
GV i

.

Thus, by contradiction, we must have Z⇡(i) ! Z⇡(j) in G0.

((=) Now, suppose for a contradiction that there exist (i, j) such that Z⇡(i) ! Z⇡(j) in G0, but
Vi 6! Vj in G.

By the same argument as before, we find that

Vi ?? Vj | Vpa(j) (C.91)

in P ei
V , and thus by Lemma C.2

Z⇡(i) ?? Z⇡(j) | Z̃ (C.92)

in Qei
Z where

Z̃ =
n
Z⇡(k) : Vk 2 Vpa(j)

o
✓ Z \ {Z⇡(i), Z⇡(j)} .

However, this contradicts faithfulness of QZ to G0. Hence, we must have that Vi ! Vj in G.

This shows that ⇡ must be a graph isomorphism, thus concluding the proof.

C.4 Proof of Thm. 4.2

Theorem 4.2 (Preservation of causal influences under ⇠CRL). Let PV be Markovian w.r.t. G, let ⇡ be
a graph isomorphism of G, and let � be an element-wise diffeomorphism. Let Z = P⇡�1 ��(V ) and
denote its induced distribution by QZ . Then for any Vi ! Vj in G we have CPV

i!j = CQZ

⇡(i)!⇡(j).

Proof. First, recall that according to Defn. 4.1,

CPV
i!j := DKL

�
PV

�� P i!j
V

�
, (C.93)

where P i!j
V denotes the interventional distribution obtained by replacing pj

⇣
vj | vpa(j)

⌘
with

pi!j
j

�
vj | vpa(j)\{i}

�
=

Z

Vi

pj
�
vj | vpa(j)

�
pi(vi) dvi . (C.94)
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Writing out the KL divergence and noting that all terms except the interved mechanism j cancel
inside the log, we obtain

CPV
i!j =

Z

V
log

0

B@
pj
⇣
vj | vpa(j)

⌘

R
Vi

pj
�
vj | vpa(j)

�
pi(vi) dvi

1

CA p(v) dv . (C.95)

and similarly

CQZ

⇡(i)!⇡(j) =

Z

Z
log

0

B@
q⇡(j)

⇣
z⇡(j) | zpa(⇡(j);G0)

⌘

R
Z⇡(i)

q⇡(j)
⇣
z⇡(j) | zpa(⇡(j);G0)

⌘
q⇡(i)(z⇡(i)) dz⇡(i)

1

CA q(z) dz . (C.96)

Since Z = P⇡�1 � �(V ), we have Vi =  i(Z⇡(i)) for all i 2 [n] where  = ��1.

Thus, by the change of variable formula, and using the fact that ⇡(pa(i)) = pa(⇡(i);G0) since
⇡ : G 7! G0 is a graph isomorphism, we have for all i 2 [n]:

q⇡(i)
⇣
z⇡(i) | zpa(⇡(i);G0)

⌘
= pi

✓
 i

⇣
z⇡(i)

⌘
|  pa(i)

⇣
zpa(⇡(i);G0)

⌘◆ �����
d i

dz⇡(i)

⇣
z⇡(i)

⌘����� , (C.97)

as well as for the marginal density

q⇡(i)
⇣
z⇡(i)

⌘
= pi

✓
 i

⇣
z⇡(i)

⌘◆ �����
d i

dz⇡(i)

⇣
z⇡(i)

⌘����� , (C.98)

and

q(z) = p( � P⇡(z))
��detJ (z)

�� . (C.99)

Substitution into the expression for CQZ

⇡(i)!⇡(j) yields:

CQZ

⇡(i)!⇡(j) =

Z

Z
log

0

B@
pj
⇣
 j(z⇡(j)) |  pa(j)(zpa(⇡(j);G0))

⌘

R
Z⇡(i)

pj
⇣
 j(z⇡(j)) |  pa(j)(zpa(⇡(j);G0))

⌘
pi( i(z⇡(i)))

��� d i

dz⇡(i)
(z⇡(i))

��� dz⇡(i)

1

CA

(C.100)
p( � P⇡(z))

��detJ (z)
�� dz . (C.101)

=

Z

V
log

0

B@
pj
⇣
vj | vpa(j)

⌘

R
Vi

pj
�
vj | vpa(j)

�
pi(vi) dvi

1

CA p(v) dv (C.102)

= CPV
i!j . (C.103)

where the second to last line follows by integration by substitution, applied to both integrals.

32



D Experimental Details and Additional Results

In this appemndix, we describe the experiments presented in § 6 in more details (Appx. D.1), and
present additional results (Appx. D.2).

D.1 Experimental Details for § 6

Synthetic Data Generating Process. We consider linear Gaussian latent SCMs of the form

V1 := U1, V2 := ↵V1 + U2, (D.1)

with standard normal U1 and U2. As a mixing function, we use a three-layer multilayer perceptron
(MLP),

f = � �W3 � � �W2 � � �W1 (D.2)

where W1,W2,W3 2 R2⇥2 are invertible weight matrices, and � is an element-wise invertible
nonlinear leaky-tanh activation function used in [41]:

�(x) = tanh(x) + 0.1x . (D.3)

To compute averages of our results over multiple runs, we construct different ground truth data
generating processes as follows. We generate different latent SCMs by drawing ↵ uniformly from
[�10,�2] [ [2, 10]. (We exclude (�2, 2) to avoid sampling near unfaithful models.) We generate
the corresponding mixing functions by uniformly sampling each element of the weight matrices,
(Wk)ij ⇠ U(0, 1). (To avoid the sampled weight matrices being too close to singular, we reject and
resample if |detWk| < 0.1.)

Interventional Environments. In line with Thm. 3.2, for each choice of latent SCM and mixing
function, we generate three environments: one observational environment and one interventional
environment for each perfect single-node intervention. For i = 1, 2, we model a perfect intervention
on Vi by removing the influence of the parent variables and changing the exogenous noise by shifting
its mean up or down. Specifically, we replace the corresponding assignment in (D.1) by

Vi := Ũi , where Ũi ⇠ N (mi, 1) (D.4)

where the mean mi of the shifted Gaussian noise is fixed per environment and sampled uniformly
from {±2}.

We label the observational environment as e = 0 and the environment arising from intervention on Vi

by e = i for i = 1, 2. Samples from pe are then generated by sampling latents v from the respective
(un)intervened SCM and then applying the mixing function.

Model Architecture. We use normalizing flows [93] to model observations x as the result of an
invertible, differentiable transformation g of some latent (noise) variable z,

x = g(z) . (D.5)

We apply a series of L such transformations gl : R2
! R2 such that g = gL � . . . � g1 which we

refer to as flow layers. We use Neural Spline Flows [30] for the invertible transformation, with a
3-layer feedforward neural network with hidden dimension 128 and permutation in each flow layer
and L = 12 layers. The transformations g, g1, . . . , gL have learnable parameters (the weights and
biases of the neural networks), which we omit to simplify notation.

Typically, simple distributions such as a uniform or isotropic Gaussian are used as base distribution
q(z) in normalizing flows. Here, we instead choose a base distribution that encodes information
about the latent SCM. Specifically, we model the base mechanism as

q1(z1) = N

⇣
µ1,�

2
1

⌘
, q2(z2 | z1) = N

⇣
↵̂z1,�

2
2

⌘
, q2(z2) = N

⇣
µ2, �̂

2
2

⌘
(D.6)

and the intervened mechanism as

q̃1(z1) = N (µ̃1, �̃
2
1) , q̃2(z2) = N (µ̃2, �̃

2
2) . (D.7)
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Candidate Graphs and Intervention Targets. We train a separate normalizing-flow based model
for each choice of candidate graph G0 and inferred intervention targets. For the bivariate case with n =
2, this gives rise to four models, depending on whether G0 matches G or not, and whether the interven-
tion targets are aligned or misaligned w.r.t. the ground truth intervention targets. To model the setting
G0
6= G in which Z1 and Z2 are assumed independent, we use q2(z2) in place of q2(z2 | z1) in (D.6).

If the intervention targets are aligned, we use q̃i instead of qi in e = i for i = 1, 2. Else, if they are mis-
aligned, we use q̃2 instead of q2 in e = 1 and q̃1 instead of q1 in e = 2. By multiplying the respective
mechanisms, we thus obtain three environment-specific joint base distributions qe(z) for e = 0, 1, 2.

Learning Objective. Given multi-environment data, the parameters µ1, �1, ↵̂, �2, µ2, �̂2, µ̃2, �̃2,
µ̃1 and �̃1 are jointly learned with the parameters of the invertible transformations gl by maximising
the log-likelihood of the data under our model, which is given by:

X

e2E
Ex⇠pe(x)

⇥
log pemodel(x)

⇤
=
X

e2E
Ex⇠pe(x)

h
log qe(h(x)) + log

��detJh(x)
��
i

(D.8)

where the encoder h := g�1 is the inverse of the normalizing flow which is readily available by con-
struction; and where the expectations are empirical averages over the respective datasets in practice.

Training and Model Selection Details. Each environment comprises a total of 200k data points.
We use the ADAM optimizer [67] with cosine annealing learning rate scheduling, starting with a
learning rate of 5⇥ 10�3 and ending with 1⇥ 10�7. We train the model for 200 epochs with a batch
size of 4096. We split the dataset into 70% for training, and 15% for validation and held-out test data,
each sampled randomly across all environments. For each drawn data generating process, we train
three versions of each model with different random initializations and select the one with the highest
validation log likelihood at the end of training for evaluation.

Evaluation Metrics. We evaluate the trained models w.r.t. mean correlation coefficient (MCC) on
held-out data and log-likelihood on validation data (for model selection).

• The MCC measures the extent to which there is a one-to-one correspondence between the
ground truth latents Vi and (a permuted version of) the inferred latents Zi = hi(X). Its
maximum value of one indicates a perfect correlation between the two. MCC is thus a proxy
measure for the level of identifiability up to permutation and invertible reparametrisation.
We report MCC based on Pearson (linear) correlation, though we found the results based on
Spearman (nonlinear monotonic) correlation to be almost identical.

• The log-likelihood, on the other hand, measures how well a model explains or fits the data.
Since the ground truth is typically unknown, a reasonable procedure when training multiple
models is to select the one that attains the highest likelihood. For this reason, we report the
difference in log-likelihood between misspecified models (ones assuming a wrong graph
or intervention targets) to the correctly specified model. Whenever this difference is larger
than zero, the correct model fits the data better and would thus be selected.

D.2 Additional Results: Learning Nonlinear Latent SCMs from Partial Causal Order

In this subsection, we present an additional experiment, in which we extend the setting investigated
in § 6 and Appx. D.1 along the following axes.

• We fit generative models over three instead of two variables, corresponding to the setting
of Thm. 3.4.

• The ground-truth SCM is now given by nonlinear mechanisms with non-additive, non-Gaussian
noise.

• The generative model, including the learnt mechanisms, is now fully nonlinear.
• Despite Thm. 3.4 formally requiring two environments per single-node intervention, we only

provide one interventional environment per node.
• Rather than searching over candidate graphs, we only fix the causal order and fit the reduced form

of the SCM (see § 2.1) with a second normalizing flow.

Below, we describe these differences in more detail.
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Figure 4: Comparison of Correctly and Incorrectly Specified Models for V2  V1 ! V3 with

Fixed Causal Order and Nonlinear SCM. Each violinplot corresponds to one setting where the
intervention target labels are permuted. The blue plot (123⇤) is the setting with correct intervention
target labels. The yellow plot (132(⇤)) has the targets for the two children V2 and V3 permuted, which
also corresponds to a correct causal ordering and should thus be considered equivalent. We show
mean correlation coefficients (MCCs) between the learned and ground truth latents (Left) and the
difference in validation model log-likelihood between the well-specified (blue) and misspecified
models (Right). Each violin plot is based on 20 different ground truth data generating processes;
the horizontal lines indicate the minimum, median and maximum values.

Three-Variable Graph. The unknown ground truth graph is given by

V2  V1 ! V3 . (D.9)

This is consistent with the partial ordering V1 � V2 � V3, which is assumed for all models a priori
w.l.o.g., see § 2.2. Note that, due to the encoding of causal structure in the nonparametric model
explained below, we only iterate over different permutations of the intervention targets and not over
latent graph configurations. Due to the causal order implied by the graph (D.9), the permutations
(1, 2, 3) (no permutaion) and (1, 3, 2) (permutation of the two effects) are equivalent since the latter
also implies the correct causal ordering.

Nonlinear, Non-Gaussian SCM. The mechanisms in the ground-truth SCM are now given by

Vi := �f loc
i (Vpa(i)) + f scale

i (Vpa(i))Ui (D.10)

for all i, where the location and scale functions f loc
i , f scale

i : R|pa(i)|
! R are parameterized by

random 3-layer neural networks (sampled as the random mixing function in (D.2)) and the noise
variables are Gaussian, Ui ⇠ N (0, 1). The factor � controls the influence of the parent variables
relative to the exogenous noise. As � increases, variables tend to become more dependent, as also the
mean shifts as a function of the parent variables. We set � = 10 for the experiments shown in Fig. 4.

Nonparametric Latent SCM. We use a second normalizing flow to learn a reduced form of the
latent SCM via the transformation gSCM : R3

! R3 mapping an exogenous noise variable ✏ to the
latent variable z,

z = gSCM(✏) . (D.11)

The distribution of the exogenous noise variable ✏ as well as the distribution of the intervened
mechanisms q̃i(zi) for i = 1, 2, 3 is fixed and standard (isotropic) Gaussian. The flow layers in
gSCM have an upper triangular Jacobian and thus allow us to encode assumptions about the causal
graph: by passing the variables in topological order, which we can assume w.l.o.g., we ensure that
an exogenous noise variable ✏i can only influence endogenous variables in z that are descendants
of zi. The learned weights of the flow layers then implicitly encode which endogenous variables
are connected. Therefore, only different choices of the permutations of the intervention targets need
to be considered as candidate models. We use a similar architecture based on Neural Spline Flows.
However, we omit permutation layers, which would violate the topological order of the variables.
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Results. In Fig. 4, we present identifiability scores and model fits for both well-specified and
misspecified models (corresponding to different intervention target choices). Notably, we observe
that the well-specified model (in blue) or its equivalent (in yellow) yield the highest log-likelihood in
the majority of cases, as depicted in Fig. 4 (Right). This demonstrates that, even in this nonparametric
setting without fully specified graph, the log-likelihood remains a reliable criterion for selecting
the correct intervention targets. Fig. 4 (Left) shows that the selected models (blue or yellow)
approximately identify the ground-truth latent variables up to element-wise rescaling, whereas other
choices lead to much lower MCCs.

It is worth noting that, compared to the parametric setting investigated in § 6 and Fig. 3, the
nonparametric setting appears to be more challenging (as expected), as there is a less pronounced
distinction between well-specified and misspecified models, both in terms of identifiability scores
and model fits. Moreover, future work is needed to parse the implicitly learned causal relationships in
the transformation gSCM in (D.11): since only the (pre-imposed) causal order is specified, in practice,
gSCM may learn to use additional or fewer edges than in the true graph G.

E Discussion of the Role of Our Assumptions

Below, we summarize the rationale and intuition behind each assumption:

• Asm. 2.2 helps rule out degenerate cases (cancellation along different paths) in which variables are
(conditionally) independent despite being causally related. It is a standard assumption in classical
causal discovery from observational data, and therefore also helps in CRL to recover the true causal
graph.

• Asm. 2.3 is required to know how many latent variables we are looking for. It is a standard
assumption in identifiable representation learning (that is often made implicitly). However, it
may be dropped when suitable techniques for estimating the intrinsic dimensionality of X can be
employed.

• Asm. 2.5 is needed for the mapping between latents and observations to be invertible in the first
place. Without it, full recovery of the causal variables (up to CRL equivalence) is infeasible. This
assumption is also standard for the simpler problem of nonlinear ICA.

• Asm. 2.8 is a characterisation of our generative setup. Sharing of some mechanisms and the mixing
function is needed for the multi-environment setting to provide useful additional information: if
everything may change across environments, the datasets can only be analysed in isolation, running
into the non-identifiability of CRL from iid data.

• Asm. 2.9 and (A2) / (A2’) are needed since with imperfect interventions or interventions not on all
nodes, identifiability is not achievable even in the linear setting as shown by Squires et al. [117].

• Asm. (A1) is a technical assumption needed for our analysis. It is not strictly necessary (it can
also be relaxed to fully supported on a Cartesian product of intervals) but substantially eases the
readability and accessibility of the proof, without a major impact on the main causal aspects of the
problem setup.

• Asm. (A3) / (A3’) is needed to avoid spurious solutions based on applying a measure preserving
transformation on a part of the domain unaffected by the intervention.

• Asm. (A4) is needed to rule out a fine-tuning of the ground-truth generating process that are
possible due to fully non-parametric nature of the setup, see also Remark 4.2 and the following
paragraph.
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