
Fast Exact Leverage Score Sampling from Khatri-Rao
Products with Applications to Tensor Decomposition

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present a data structure to randomly sample rows from the Khatri-Rao product1

of several matrices according to the exact distribution of its leverage scores. Our2

proposed sampler draws each row in time logarithmic in the height of the Khatri-3

Rao product and quadratic in its column count, with persistent space overhead4

at most the size of the input matrices. As a result, it tractably draws samples5

even when the matrices forming the Khatri-Rao product have tens of millions6

of rows each. When used to sketch the linear least squares problems arising in7

CANDECOMP / PARAFAC decomposition, our method achieves lower asymptotic8

complexity per solve than recent state-of-the-art methods. Experiments on billion-9

scale sparse tensors and synthetic data validate our theoretical claims, with our10

algorithm achieving higher accuracy than competing methods as the decomposition11

rank grows.12

1 Introduction13

The Khatri-Rao product (KRP, denoted ⊙) is the column-wise Kronecker product of two matrices, and14

it appears in diverse applications across numerical analysis and machine learning [13]. We examine15

overdetermined linear least squares problems of the form minX ∥AX −B∥F , where the design16

matrix A = U1 ⊙ ... ⊙ UN is the Khatri-Rao product of matrices Uj ∈ R|Ij |×R. These problems17

appear prominently in signal processing [21], compressed sensing [29], approximate second-order18

gradient descent [18, 17], and alternating least squares (ALS) CANDECOMP / PARAFAC (CP)19

tensor decomposition [11]. In this work, we focus on the case where A has moderate column count20

(several hundred at most). Despite this, the problem remains formidable because the height of A is21 ∏N
j=1 |Ij |. For row counts |Ij | in the millions, it is intractable to even materialize A explicitly.22

Several recently-proposed randomized sketching algorithms can approximately solve least squares23

problems with Khatri-Rao product design matrices [10, 12, 15, 27]. These methods apply a24

sketching operator S to the design and data matrices to solve the reduced least squares problem25

minX̃

∥∥∥SAX̃ − SB
∥∥∥
F

, where S has far fewer rows than columns. For appropriately chosen S, the26

residual of the downsampled system falls within a specified tolerance ε of the optimal residual with27

high probability 1− δ. In this work, we constrain S to be a sampling matrix that selects and reweights28

a subset of rows from both A and B. When the rows are selected according to the distribution of29

statistical leverage scores on the design matrix A, only O (R/(εδ)) samples are required (subject to30

the assumptions at the end of section 2.1). The challenge, then, is to efficiently sample according to31

the leverage scores when A has Khatri-Rao structure.32

We propose a leverage-score sampler for the Khatri-Rao product of matrices with tens of millions of33

rows each. After construction, our sampler draws each row in time quadratic in the column count, but34

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

logarithmic in the total row count of the Khatri-Rao product. Our core contribution is the following35

theorem.36

Theorem 1.1 (Efficient Khatri-Rao Product Leverage Sampling). Given U1, ..., UN with Uj ∈37

R|Ij |×R, there exists a data structure satisfying the following:38

1. The data structure has construction time O
(∑N

j=1 |Ij |R2
)

and requires additional storage39

space O
(∑N

j=1 |Ij |R
)
. If a single entry in a matrix Uj changes, it can be updated in time40

O(R log (|Ij | /R)). If the entire matrix Uj changes, it can be updated in time O
(
|Ij |R2

)
.41

2. The data structure produces J samples from the Khatri-Rao product U1⊙ ...⊙UN according42

to the exact leverage score distribution on its rows in time43

O

(
NR3 + J

N∑
k=1

(
R2 logmax (|Ik| , R)

))
using O(R3) scratch space. The structure can also draw samples from the Khatri-Rao44

product of all matrices excluding Uj for any index j.45

The efficient update property and ability to exclude one matrix are important in CP decomposition.46

When the inputs U1, ..., UN are sparse, an analogous data structure with O
(
R
∑N

j=1 nnz(Uj)
)

47

construction time and O
(∑N

j=1 nnz(Uj)
)

storage space exists with identical sampling time. Since48

our applications deal with dense inputs, we defer the proof to Appendix A.8. Combined with error49

guarantees for leverage-score sampling, we achieve an algorithm for alternating least squares CP50

decomposition with asymptotic complexity lower than recent state-of-the-art methods (see Table 1).51

Our method provides the most practical benefit on sparse tensors with massive mode sizes. As a52

result, we test our sampler on sparse tensor CP decomposition via alternating least squares. On the53

Amazon tensor with 1.8 billion nonzeros, our algorithm STS-CP achieves 5.7% higher fit for a rank54

100 decomposition compared to competing method CP-ARLS-LEV, with only 2% higher average55

runtime at the same sample count. Even when CP-ARLS-LEV uses three times as many samples and56

49% more runtime compared to our STS-CP, STS-CP still exhibits 1.3% higher fit (see Figure 8a in57

Appendix A.12.3).58

Table 1: Complexity of recent methods for N -dimensional dense tensor CP decomposition via
alternating least squares. Factors involving logR and log(1/δ) are hidden. See A.1 for details.

METHOD COMPLEXITY PER ITERATION

CP-ALS [11] N(N + I)IN−1R
CP-ARLS-LEV [12] N(R+ I)RN/(εδ)
TNS-CP [16] N3IR3/(εδ)
GAUSSIAN TNE [14] N2(N1.5R3.5/ε3 + IR2)/ε2

STS-CP (OURS) N(NR3 log I + IR2)/(εδ)

2 Preliminaries and Related Work59

Notation. We use Matlab notation A [i, :] , A [:, i] to index rows, resp. columns, of matrices. For60

consistency, we use the convention that A [i, :] is a row vector. Hence A [i, :]
⊤
A [i, :] denotes an outer61

product, not an inner product. We use · for standard matrix multiplication, ⊛ as the elementwise62

product, ⊗ to denote the Kronecker product, and ⊙ for the Khatri-Rao product. See Appendix A.263

for a definition of each operation. Given matrices A ∈ Rm1×n, B ∈ Rm2×n, the j’th column of the64

Khatri-Rao product A⊙B ∈ Rm1m2×n is the Kronecker product A [:, j]⊗B [:, j].65

We use angle brackets ⟨·, ..., ·⟩ to denote a generalized inner product. For identically-sized vectors /66

matrices, it returns the sum of all entries in their elementwise product. For A,B,C ∈ Rm×n,67

⟨A,B,C⟩ :=
m,n∑

i=1,j=1

A [i, j]B [i, j]C [i, j] .

2

Finally, M+ denotes the pseudoinverse of matrix M .68

2.1 Sketched Linear Least Squares69

A variety of random sketching operators S have been proposed to solve overdetermined least squares70

problems minX ∥AX −B∥F when A has no special structure [28, 2]. When A has Khatri-Rao71

product structure, prior work has focused on sampling matrices [4, 12], which have a single nonzero72

entry per row, operators composed of fast Fourier / trigonometric transforms [10], or Countsketch-73

type operators [25, 1]. For tensor decomposition, however, the matrix B may be sparse or implicitly74

specified as a black-box function. When B is sparse, Countsketch-type operators still require the75

algorithm to iterate over all nonzero values in B. As Larsen and Kolda [12] note, operators similar76

to the FFT induce fill-in when applied to a sparse matrix B, destroying the benefits of sketching.77

Similar difficulties arise when B is implicitly specified. This motivates our decision to focus on78

sampling operators, which only touch a subset of entries from B. Let x̂1, ..., x̂J be a selection of J79

indices for the rows of A ∈ RI×R, sampled i.i.d. according to a probability distribution q1, ..., qI .80

The associated sampling matrix S ∈ RJ×I is specified by81

S [i, j] =

{
1√
Jqj

, if x̂i = j

0, otherwise
where the weight of each nonzero entry corrects bias induced by sampling. When the probabilities qj82

are proportional to the leverage scores of the rows of A, strong guarantees apply to the solution of83

the downsampled problem.84

Leverage Score Sampling. The leverage scores of a matrix assign a measure of importance to each85

of its rows. The leverage score of row i from matrix A ∈ RI×R is given by86

ℓi = A [i, :] (A⊤A)+A [i, :]
⊤ (1)

for 1 ≤ i ≤ I . Leverage scores can be expressed equivalently as the squared row norms of the matrix87

Q in any reduced QR factorization of A [6]. The sum of all leverage scores is the rank of A [28].88

Dividing the scores by their sum, we induce a probability distribution on the rows used to generate a89

sampling matrix S. The next theorem has appeared in several works, and we take the form given by90

Malik et al. [16]. For an appropriate sample count, it guarantees that the residual of the downsampled91

problem is close to the residual of the original problem.92

Theorem 2.1 (Guarantees for Leverage Score Sampling). Given A ∈ RI×R and ε, δ ∈ (0, 1), let S ∈93

RJ×I be a leverage score sampling matrix for A. Further define X̃ = argminX ∥SAX − SB∥F .94

If J ≳ Rmax (log (R/δ) , 1/(εδ)), then with probability at least 1− δ it holds that95 ∥∥∥AX̃ −B
∥∥∥
F
≤ (1 + ε)min

X
∥AX −B∥F .

96

For the applications considered in this work, R ranges up to a few hundred. As ε and δ tend to 097

with fixed R, 1/(εδ) dominates log(R/δ). Hence, we assume that the minimum sample count J to98

achieve the guarantees of the theorem is O(R/(εδ)).99

2.2 Prior Work100

Khatri-Rao Product Leverage Score Sampling. Well-known sketching algorithms exist to quickly101

estimate the leverage scores of dense matrices [6]. These algorithms are, however, intractable for102

A = U1 ⊙ ...⊙UN due to the height of the Khatri-Rao product. Cheng et al. [4] instead approximate103

each score as a product of leverage scores associated with each matrix Uj . Larsen and Kolda [12]104

propose CP-ARLS-LEV, which uses a similar approximation and combines random sampling with a105

deterministic selection of high-probability indices. Both methods were presented in the context of CP106

decomposition. To sample from the Khatri-Rao product of N matrices, both require O(RN/(εδ))107

samples to achieve the (ε, δ) guarantee on the residual of each least squares solution. These methods108

are simple to implement and perform well when the Khatri-Rao product has column count up to 20-30.109

On the other hand, they suffer from high sample complexity as R and N increase. The TNS-CP110

algorithm by Malik et al. [16] samples from the exact leverage score distribution, thus requiring only111

O(R/(εδ)) samples per least squares solve. Unfortunately, it requires time O
(∑N

j=1 |Ij |R2
)

to112

draw each sample.113

3

Comparison to Woodruff and Zandieh. The most comparable results to ours appear in work by114

Woodruff and Zandieh [27], who detail an algorithm for approximate ridge leverage-score sampling115

for the Khatri-Rao product in near input-sparsity time. Their work relies on a prior oblivious method116

by Ahle et al. [1], which sketches a Khatri-Rao product using a sequence of Countsketch / OSNAP117

operators arranged in a tree. Used in isolation to solve a linear least squares problem, the tree sketch118

construction time scales as O
(

1
ε

∑N
j=1 nnz(Uj)

)
and requires an embedding dimension quadratic in119

R to achieve the (ε, δ) solution-quality guarantee. Woodruff and Zandieh use a collection of these120

tree sketches, each with carefully-controlled approximation error, to design an algorithm with linear121

runtime dependence on the column count R. On the other hand, the method exhibits O(N7) scaling in122

the number of matrices involved, has O(ε−4) scaling in terms of the desired accuracy, and relies on a123

sufficiently high ridge regularization parameter. Our data structure instead requires construction time124

quadratic in R. In exchange, we use distinct methods to design an efficiently-updatable sampler with125

runtime linear in both N and ε−1. These properties are attractive when the column count R is below126

several thousand and when error as low as ϵ ≈ 10−3 is needed in the context of an iterative solver127

(see Figure 5). Moreover, the term O(R2
∑N

j=1 |Ij |) in our construction complexity arises from128

symmetric rank-k updates, a highly-optimized BLAS3 kernel on modern CPU and GPU architectures.129

Appendix A.3 provides a more detailed comparison between the two approaches.130

Kronecker Regression. Kronecker regression is distinct (but closely related) problem to the one131

we consider. Here, A = U1 ⊗ ...⊗ UN and the matrices Ui have potentially distinct column counts132

R1, ..., RN . Similar techniques, including leverage-score sampling [5, 7] and dynamically-updatable133

tree-sketches [19], yield efficient sketched solutions, but none of these results apply directly in our134

case due to the distinct properties of Kronecker and Khatri-Rao products.135

3 An Efficient Khatri-Rao Leverage Sampler136

Without loss of generality, we will prove part 2 of Theorem 1.1 for the case where A = U1⊙ ...⊙UN ;137

the case that excludes a single matrix follows by reindexing matrices Uk. We further assume that A138

is a nonzero matrix, though it may be rank-deficient. Similar to prior sampling works [15, 27], our139

algorithm will draw a single sample from the Khatri-Rao product by sampling a row from each of140

U1, U2, in an autoregressive fashion, returning their elementwise product. This means that the141

row from each matrix Uj is drawn conditioned on prior draws from U1, ..., Uj−1.142

Let us index each row of A by a tuple (i1, ..., iN) ∈ I1 × ...× IN . Equation (1) gives143

ℓi1,...,iN = A [(i1, ..., iN), :] (A⊤A)+A [(i1, ..., iN), :]
⊤
. (2)

For 1 ≤ k ≤ N , define Gk := U⊤
k Uk and G :=

(
⊛N

k=1 Gk

)
; it is a well-known fact that G = A⊤A144

[11]. For a single row sample from A, let ŝ1, ..., ŝN be random variables for the draws from multi-145

index set I1 × ... × IN according to the leverage score distribution. Assume, for some k, that we146

have already sampled an index from each of I1, ..., Ik−1, and that the first k − 1 random variables147

take values ŝ1 = s1, ..., ŝk−1 = sk−1. We abbreviate the latter condition as ŝ<k = s<k. To sample148

from Ik, we seek the distribution of ŝk conditioned on ŝ1, ...ŝk−1. Define h<k as the transposed149

elementwise product1 of rows already sampled:150

h<k :=

k−1

⊛
i=1

Ui [si, :]
⊤
. (3)

Also define G>k as151

G>k := G+ ⊛
N

⊛
i=k+1

Gi. (4)

Then the following theorem provides the conditional distribution of ŝk.152

Theorem 3.1 (Malik 2022, Adapted). For any sk ∈ Ik,153

p(ŝk = sk | ŝ<k = s<k) = C−1⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G>k⟩

:= qh<k,Uk,G>k
[sk]

(5)

1For a > b, assume that⊛b
i=a (...) produces a vector / matrix filled with ones.

4

where C = ⟨h<kh
⊤
<k, U

⊤
k Uk, G>k⟩ is nonzero.154

We include the derivation of Theorem 3.1 from Equation (2) in Appendix A.4. Computing all entries155

of the probability vector qh<k,Uk,G>k
would cost O(|Ij |R2) per sample, too costly when Uj has156

millions of rows. It is likewise intractable (in preprocessing time and space complexity) to precompute157

probabilities for every possible conditional distribution on the rows of Uj , since the conditioning158

random variable has
∏j−1

k=1 |Ik| potential values. Our key innovation is a data structure to sample from159

a discrete distribution of the form qh<k,Uk,G>k
without materializing all of its entries or incurring160

superlinear cost in either N or ε−1. We introduce this data structure in the next section and will apply161

it twice in succession to get the complexity in theorem 1.1.162

3.1 Efficient Sampling from qh,U,Y163

We introduce a slight change of notation in this section to simplify the problem and generalize our164

sampling lemma. Let h ∈ RR, Y ∈ RR×R be a vector and a positive semidefinite (p.s.d.) matrix,165

respectively. Our task is to sample J rows from a matrix U ∈ RI×R according to the distribution166

qh,U,Y [s] := C−1⟨hh⊤, U⊤ [s, :]U [s, :] , Y ⟩ (6)

provided the normalizing constant C = ⟨hh⊤, U⊤U, Y ⟩, is nonzero. We impose that all J rows are167

drawn with the same matrices Y and U , but potentially distinct vectors h. The following lemma168

establishes that an efficient sampler for this problem exists.169

Lemma 3.2 (Efficient Row Sampler). Given matrices U ∈ RI×R, Y ∈ RR×R with Y p.s.d., there170

exists a data structure parameterized by positive integer F that satisfies the following:171

1. The structure has construction time O
(
IR2

)
and storage requirement O

(
R2⌈I/F ⌉

)
. If172

I < F , the storage requirement drops to O(1).173

2. After construction, the data structure can produce a sample according to the distribution174

qh,U,Y in time O(R2 log⌈I/F ⌉+ FR2) for any vector h.175

3. If Y is a rank-1 matrix, the time per sample drops to O(R2 log⌈I/F ⌉+ FR).176

[1..8]

[1..4]

[1, 2] [3, 4]

[5..8]

[5, 6] [7, 8]

q1 q2 q3 q4 q5 q6 q7 q8

Figure 1: A segment tree T8,2 and probability dis-
tribution {q1, ..., q8} on [1, ..., 8].

This data structure relies on an adaptation of a177

classic binary-tree inversion sampling technique178

[20]. Consider a partition of the interval [0, 1]179

into I bins, the i’th having width qh,U,Y [i]. We180

sample d ∼ Uniform [0, 1] and return the index181

of the containing bin. We locate the bin index182

through a binary search terminated when at most183

F bins remain in the search space, which are184

then scanned in linear time. Here, F is a tuning185

parameter that we will use to control sampling186

complexity and space usage.187

We can regard the binary search as a walk down188

a full, complete binary tree TI,F with ⌈I/F ⌉189

leaves, the nodes of which store contiguous,190

disjoint segments S(v) = {S0(v)..S1(v)} ⊆ {0..I} of size at most F . The segment of each191

internal node is the union of segments held by its children, and the root node holds {1..I}.192

Suppose that the binary search reaches node v with left child L(v) and maintains the interval193

[low, high] ⊆ [0, 1]
2 as the remaining search space to explore. Then the search branches left in the194

tree iff d < low +
∑

i∈S(L(v)) qh,U,Y [i] .195

This branching condition can be evaluated efficiently if appropriate information is stored at each node196

of the segment tree. Excluding the offset “low", the branching threshold takes the form197 ∑
i∈S(v)

qh,U,Y [i] = C−1⟨hh⊤,
∑

i∈S(v)

U [i, :]
⊤
U [i, :] , Y ⟩ := C−1⟨hh⊤, Gv, Y ⟩. (7)

Here, we call each matrix Gv ∈ RR×R a partial Gram matrix. In time O(IR2) and space198

O(R2⌈I/F ⌉), we can compute and cache Gv for each node of the tree to construct our data structure.199

5

Each subsequent binary search costs O(R2) time to evaluate Equation (7) at each of log⌈I/F ⌉200

internal nodes and O(FR2) to evaluate qh,U,Y at the F indices held by each leaf, giving point 2 of201

the lemma. This cost at each leaf node reduces to O(FR) in case Y is rank-1, giving point 3. A202

complete proof of this lemma appears in Appendix A.5.203

3.2 Sampling from the Khatri-Rao Product204

We face difficulties if we directly apply Lemma 3.2 to sample from the conditional distribution in205

Theorem 3.1. Because G>k is not rank-1 in general, we must use point 2 of the lemma, where no206

selection of the parameter F allows us to simultaneously satisfy the space and runtime constraints of207

theorem 1.1. Selecting F = R results in cost O(R3) per sample (violating the runtime requirement208

in point 2), whereas F = 1 results in a superlinear storage requirement O(IR2) (violating the209

space requirement in point 1, and becoming prohibitively expensive for I ≥ 106). To avoid these210

extremes, we break the sampling procedure into two stages. The first stage selects a 1-dimensional211

subspace spanned by an eigenvector of G>k, while the second samples according to Theorem 3.1212

after projecting the relevant vectors onto the selected subspace. Lemma 3.2 can be used for both213

stages, and the second stage benefits from point 3 to achieve better time and space complexity.214

Below, we abbreviate q = qh<k,Uk,G>k
and h = h<k. When sampling from Ik, observe that G>k is215

the same for all samples. We compute a symmetric eigendecomposition G>k = V ΛV ⊤, where each216

column of V is an eigenvector of G>k and Λ = diag((λu)
R
u=1) contains the eigenvalues along the217

diagonal. This allows us to rewrite entries of q as218

q [s] = C−1
R∑

u=1

λu⟨hh⊤, Uk [s, :]
⊤
Uk [s, :] , V [:, u]V [:, u]

⊤⟩. (8)

Define matrix W ∈ R|Ik|×R elementwise by219

W [t, u] := ⟨hh⊤, Uk [t, :]
⊤
Uk [t, :] , V [:, u]V [:, u]

⊤⟩
and observe that all of its entries are nonnegative. Since λu ≥ 0 for all u (G>k is p.s.d.), we can220

write q as a mixture of probability distributions given by the normalized columns of W :221

q =

R∑
u=1

w [u]
W [:, u]

∥W [:, u]∥1
,

where the vector w of nonnegative weights is given by w [u] = (C−1λu ∥W [:, u]∥1). Rewriting q222

in this form gives us the two stage sampling procedure: first sample a component u of the mixture223

according to the weight vector w, then sample an index in {1.. |Ik|} according to the probability224

vector defined by W [:, u] / ∥W [:, u]∥1. Let ûk be a random variable distributed according to the225

probability mass vector w. We have, for C taken from Theorem 3.1,226

p(ûk = uk) = C−1λuk

|Ik|∑
t=1

W [t, uk]

= C−1λuk
⟨hh⊤, V [:, uk]V [:, uk]

⊤
, Gk⟩

= qh,
√
ΛV ⊤,Gk

[uk] .

(9)

Hence, we can use point 2 of Lemma 3.2 with F = 1 to sample a value for ûk efficiently. Now,227

introduce a random variable t̂k with distribution conditioned on ûk = uk given by228

p(t̂k = tk | ûk = uk) := W [tk, uk] / ∥W [:, uk]∥1 . (10)
This distribution is well-defined, since we suppose that ûk = uk occurs with nonzero probability229

e [uk], which implies that ∥W [:, uk]∥1 ̸= 0. Our remaining task is to efficiently sample from the230

distribution above. Below, we abbreviate h̃ = V [:, uk]⊛ h and derive231

p(t̂k = tk | ûk = uk) =
⟨hh⊤, Uk [tk, :]

⊤
Uk [tk, :] , V [:, uk]V [:, uk]

⊤⟩
∥W [:, uk]∥1

=
⟨h̃h̃⊤, Uk [tk, :]

⊤
Uk [tk, :] , [1]⟩

∥W [:, uk]∥1
= qh̃,Uk,[1]

[tk] .

(11)

6

Based on the last line of Equation (11), we apply Lemma 3.2 again to build an efficient data structure232

to sample a row of Uk. Since Y = [1] is a rank-1 matrix, we can use point 3 of the lemma and select233

a larger parameter value F = R to reduce space usage. The sampling time for this stage becomes234

O(R2 log⌈|Ij | /R⌉).235

To summarize, Algorithms 1 and 2 give the construction and sampling procedures for our data236

structure. They rely on the “BuildSampler" and “RowSample" procedures from Algorithms 3 and237

4 in Appendix A.5, which relate to the data structure in Lemma 3.2. In the construction phase, we238

build N data structures from Lemma 3.2 for the distribution in Equation (11). Construction costs239

O
(∑N

j=1 |Ij |R2
)

, and if any matrix Uj changes, we can rebuild Zj in isolation. Because F = R,240

the space required for Zj is O (|Ij |R). In the sampling phase, the procedure in Algorithm 2 accepts241

an optional index j of a matrix to exclude from the Khatri-Rao product. The procedure begins242

by computing the symmetric eigendecomposition of each matrix G>k. The eigendecomposition243

is computed only once per binary tree structure, and its computation cost is amortized over all J244

samples. It then creates data structures Ek for each of the distributions specified by Equation (9).245

These data structures (along with those from the construction phase) are used to draw ûk and t̂k in246

succession. The random variables t̂k follow the distribution in Theorem 3.1 conditioned on prior247

draws, so the multi-index (t̂k)k ̸=j follows the leverage score distribution on A, as desired. Appendix248

A.6 proves the complexity claims in the theorem and provides further details about the algorithms.249

3.3 Application to Tensor Decomposition250
Algorithm 1 ConstructKRPSampler(U1, ..., UN)

1: for j = 1..N do
2: Zj := BuildSampler(Uj , F = R, [1])
3: Gj := U⊤

j Uj

Algorithm 2 KRPSample(j, J)

1: G :=⊛k ̸=j Gk

2: for k ̸= j do
3: G>k := G+ ⊛⊛N

k=j+1 Gk

4: Decompose G>k = VkΛkV
⊤
k

5: Ek := BuildSampler(
√
Λk · V ⊤

k , F =
1, Gk)

6: for d = 1..J do
7: h = [1, ..., 1]

⊤

8: for k ̸= j do
9: ûk := RowSample(Ek, h)

10: t̂k := RowSample(Zk, h⊛ (Vk [:, ûk]))
11: h ∗= Uk

[
t̂k, :
]

12: sd = (t̂k)k ̸=j

13: return s1, ..., sJ

A tensor is a multidimensional array, and the CP251

decomposition represents a tensor as a sum of252

outer products [11]. See Appendix A.9 for an253

overview. To approximately decompose tensor254

T ∈ R|I1|×...×|IN |, the popular alternating least255

squares (ALS) algorithm begins with randomly256

initialized factor matrices Uj , Uj ∈ R|Ij |×R257

for 1 ≤ j ≤ N . We call the column count258

R the rank of the decomposition. Each round259

of ALS solves N overdetermined least squares260

problems in sequence, each optimizing a single261

factor matrix while holding the others constant.262

The j’th least squares problem occurs in the263

update264

Uj := argmin
X

∥∥U̸=j ·X⊤ − mat(T , j)⊤
∥∥
F

where U̸=j is the Khatri-Rao product of all265

matrices excluding Uj and mat(·) denotes the266

mode-j matricization of tensor T . These prob-267

lems are ideal candidates for randomized sketch-268

ing [3, 10, 12], and applying the data structure269

in Theorem 1.1 gives us the STS-CP algorithm.270

Corollary 3.3 (STS-CP). Suppose T is dense, and suppose we solve each least squares problem271

in ALS with a randomized sketching algorithm. A leverage score sampling approach as defined in272

section 2 guarantees that with O(R/(εδ)) samples per solve, the residual of each sketched least273

squares problem is within (1 + ε) of the optimal residual with probability (1 − δ). The efficient274

sampler from Theorem 1.1 brings the complexity of ALS to275

O

#it
εδ

·
N∑
j=1

(
NR3 log |Ij |+ |Ij |R2

)
where “#it" is the number of ALS iterations, and with any term log |Ij | replaced by logR if |Ij | < R.276

277

The proof appears in Appendix A.9 and combines Theorem 1.1 with Theorem 2.1. STS-CP also278

works for sparse tensors and likely provides a greater advantage here than the dense case, as sparse279

7

tensors tend to have much larger mode sizes. The complexity for sparse tensors depends heavily on280

the sparsity structure and is difficult to predict. Nevertheless, we expect a significant speedup based281

on prior works that use sketching to accelerate CP decomposition [4, 12].282

4 Experiments283

Experiments were conducted on CPU nodes of NERSC Perlmutter, an HPE Cray EX super-284

computer, and our code is available at https://anonymous.4open.science/r/fast_tensor_285

leverage-E0EE. On tensor decomposition experiments, we compare our algorithms against the286

random and hybrid versions of CP-ARLS-LEV proposed by Larsen and Kolda [12]. These algorithms287

outperform uniform sampling and row-norm-squared sampling, achieving excellent accuracy and288

runtime relative to exact ALS. In contrast to TNS-CP and the Gaussian tensor network embedding289

proposed by Ma and Solomonik (see Table 1), CP-ARLS-LEV is one of the few algorithms that290

can practically decompose sparse tensors with mode sizes in the millions. In the worst case, CP-291

ARLS-LEV requires O(RN−1/(εδ)) samples per solve for an N -dimensional tensor to achieve292

solution guarantees like those in Theorem 2.1, compared to O(R/(εδ)) samples required by STS-CP.293

Appendices A.10, A.11, and A.12 provide configuration details and additional results.294

4.1 Runtime Benchmark295

102 103 104 105 106 107

I

10 3

10 2

10 1

100

Ti
m

e
(s

)

R = 32, N = 3

16 32 64 128
R

0

1

2

Ti
m

e
(s

)

I = 222, N=3

2 4 6 8
N

0.2

0.4

0.6

I = 222, R=32

Construction Sampling

Figure 2: Average time (5 trials) to construct our
proposed sampler and draw J = 50, 000 samples
from U1 ⊙ ...⊙ UN , with Uj ∈ RI×R ∀j.

4 6 8
N

10 3

10 2

10 1

100
R = 64

16 32 64 128
R

N = 6

Product Approx. Our Sampler

Figure 3: Average error ε (50 trials) for varying R
and N on least squares, I = 216, J = 5000.

Figure 2 shows the time to construct our sam-296

pler and draw 50,000 samples from the Khatri-297

Rao product of i.i.d. Gaussian initialized factor298

matrices. We quantify the runtime impacts of299

varying N , R, and I . The asymptotic behav-300

ior in Theorem 1.1 is reflected in our perfor-301

mance measurements, with the exception of the302

plot that varies R. Here, construction becomes303

disproportionately cheaper than sampling due304

to cache-efficient BLAS3 calls during construc-305

tion. Even when the full Khatri-Rao product has306

≈ 3.78× 1022 rows (for I = 225, N = 3, R =307

32), we require only 0.31 seconds on average308

for sampling (top plot, rightmost points).309

4.2 Least Squares Accuracy Comparison310

We now test our sampler on least squares prob-311

lems of the form minx ∥Ax− b∥, where A =312

U1 ⊙ ... ⊙ UN with Uj ∈ RI×R for all j. We313

initialize all matrices Uj entrywise i.i.d. from a314

standard normal distribution and randomly mul-315

tiply 1% of all entries by 10. We choose b as316

a Kronecker product c1 ⊗ ... ⊗ cN , with each317

vector cj ∈ RI also initialized entrywise from318

a Gaussian distribution. We assume this form319

for b to tractably compute the exact solution to320

the linear least squares problem and evaluate the321

accuracy of our randomized methods. We do322

not give our algorithms access to the Kronecker323

form of b; they are only permitted on-demand,324

black-box access to its entries.325

Define ε = residualapprox

residualopt
−1, where residualapprox is the residual of a randomized least squares algorithm.326

ε is always positive and (similar to its role in Theorem 2.1) quantifies the quality of the randomized327

algorithm’s solution. For varying N and R, Figure 3 shows the values ε achieved by our algorithm328

against the leverage product approximation used by Larsen and Kolda [12]. Our sampler achieves329

ϵ ≈ 10−2 even when N = 9, while the product approximation increases its error by nearly two orders330

of magnitude.331

8

https://anonymous.4open.science/r/fast_tensor_leverage-E0EE
https://anonymous.4open.science/r/fast_tensor_leverage-E0EE
https://anonymous.4open.science/r/fast_tensor_leverage-E0EE

4.3 Sparse Tensor Decomposition332

0.20 0.22 0.24

25

50

75

100

125
Ta

rg
et

 R
an

k
R

Uber (~3.3e6 nz)

0.05 0.10 0.15 0.20
Fit

Enron* (~5.4e7 nz)

0.05 0.06 0.07 0.08

NELL-2* (~7.7e7 nz)

0.34 0.36 0.38 0.40

Amazon (~1.8e9 nz)

0.06 0.08 0.10

Reddit* (~4.7e9 nz)

CP-ARLS-LEV CP-ARLS-LEV (hybrid) STS-CP (ours) Exact Solve

Figure 4: Average fits (8 trials) achieved by randomized (J = 216) and exact ALS for sparse tensor
CP decomposition. Error bars indicate 3 standard deviations. See Appendix A.11 for details.

We next apply STS-CP to decompose several large sparse tensors from the FROSTT collection [23]333

(see Appendix A.11 for more details on the experimental configuration). Our accuracy metric is the334

tensor fit. Letting T̃ be our low-rank CP approximation, the fit with respect to ground-truth tensor T335

is fit(T̃ , T) = 1−
∥∥∥T̃ − T

∥∥∥
F
/ ∥T ∥F .336

As Figure 4 shows, the fit achieved by CP-ARLS-LEV compared to STS-CP degrades as the rank337

increases for fixed sample count. By contrast, STS-CP improves the fit consistently, with a significant338

improvement at rank 125 over CP-ARLS-LEV. Timings for both algorithms are available in Appendix339

A.12.4. Figure 5 explains the higher fit achieved by our sampler on the Uber and Amazon tensors.340

In the first 10 rounds of ALS, we compute the exact solution to each least squares problem before341

updating the factor matrix with a randomized algorithm’s solution. Figure 5 plots ε as ALS progresses342

for hybrid CP-ARLS-LEV and STS-CP. The latter achieves lower residual per solve. We further note343

that CP-ARLS-LEV exhibits an oscillating error pattern based on the tensor mode isolated in each344

ALS update.345

To assess the tradeoff between sampling time and accuracy, we compare the fit as a function of346

ALS update time for STS-CP and random CP-ARLS-LEV in Figure 6 (time to compute the fit347

excluded). On the Reddit tensor with R = 100, we compared CP-ARLS-LEV with J = 216 against348

CP-ARLS-LEV with progressively larger sample count. Even with 218 samples per randomized least349

squares solve, CP-ARLS-LEV cannot achieve the maximum fit of STS-CP. Furthermore, STS-CP350

makes progress more quickly than CP-ARLS-LEV. See Appendix A.12.3 for similar plots for other351

datasets.352

5 Discussion and Future Work353

Our method for exact Khatri-Rao leverage score sampling enjoys strong theoretical guarantees and354

practical performance benefits. Especially for massive tensors such as Amazon and Reddit, our355

randomized algorithm’s guarantees translate to faster progress to solution and higher final accuracies.356

The segment tree approach described here can be applied to sample from tensor networks besides the357

Khatri-Rao product. In particular, modifications to Lemma 3.2 permit efficient leverage sampling358

from a contraction of 3D tensor cores in ALS tensor train decomposition. We leave the generalization359

of our fast sampling technique as future work.360

0 10 20 30
LSTSQ Problem Number

10 3

10 2
Amazon

0 10 20 30 40
LSTSQ Problem Number

10 3

10 2

Uber

CP-ARLS-LEV hybrid STS-CP (ours)

Figure 5: Average ε (5 runs) for randomized
least squares solves in 10 ALS rounds, R = 50.

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

0.080

0.085

0.090

0.095

0.100

Fi
t

STS-CP (ours), J=65,536
CP-ARLS-LEV, J=196,608
CP-ARLS-LEV, J=163,840
CP-ARLS-LEV, J=131,072
CP-ARLS-LEV, J=98,304
CP-ARLS-LEV, J=65,536

Figure 6: Fit vs. time, Reddit tensor, R = 100.
Thick lines are averages 4 trial interpolations.

9

References361

[1] Thomas D. Ahle, Michael Kapralov, Jakob B. T. Knudsen, Rasmus Pagh, Ameya Velingker,362

David P. Woodruff, and Amir Zandieh. Oblivious Sketching of High-Degree Polynomial Kernels,363

pages 141–160. 2020. doi: 10.1137/1.9781611975994.9.364

[2] Nir Ailon and Bernard Chazelle. The fast Johnson–Lindenstrauss transform and approximate365

nearest neighbors. SIAM Journal on computing, 39(1):302–322, 2009.366

[3] Casey Battaglino, Grey Ballard, and Tamara G. Kolda. A practical randomized CP tensor367

decomposition. SIAM Journal on Matrix Analysis and Applications, 39(2):876–901, 2018. doi:368

10.1137/17M1112303.369

[4] Dehua Cheng, Richard Peng, Yan Liu, and Ioakeim Perros. SPALS: Fast alternating least370

squares via implicit leverage scores sampling. In Advances in Neural Information Processing371

Systems, volume 29. Curran Associates, Inc., 2016.372

[5] Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal sketching373

for Kronecker product regression and low rank approximation. In H. Wallach, H. Larochelle,374

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information375

Processing Systems, volume 32. Curran Associates, Inc., 2019.376

[6] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff. Fast377

approximation of matrix coherence and statistical leverage. J. Mach. Learn. Res., 13(1):378

3475–3506, dec 2012. ISSN 1532-4435.379

[7] Matthew Fahrbach, Gang Fu, and Mehrdad Ghadiri. Subquadratic Kronecker regression with380

applications to tensor decomposition. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,381

K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,382

pages 28776–28789. Curran Associates, Inc., 2022.383

[8] Azzam Haidar, Tingxing Dong, Stanimire Tomov, Piotr Luszczek, and Jack Dongarra. Frame-384

work for batched and GPU-resident factorization algorithms to block Householder transforma-385

tions. In ISC High Performance, Frankfurt, Germany, 07-2015 2015. Springer, Springer.386

[9] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic387

algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288,388

2011. doi: 10.1137/090771806.389

[10] Ruhui Jin, Tamara G Kolda, and Rachel Ward. Faster Johnson–Lindenstrauss transforms via390

Kronecker products. Information and Inference: A Journal of the IMA, 10(4):1533–1562,391

October 2020. ISSN 2049-8772. doi: 10.1093/imaiai/iaaa028.392

[11] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review,393

51(3):455–500, August 2009. ISSN 0036-1445. doi: 10.1137/07070111X. Publisher: Society394

for Industrial and Applied Mathematics.395

[12] Brett W. Larsen and Tamara G. Kolda. Practical leverage-based sampling for low-rank tensor396

decomposition. SIAM J. Matrix Analysis and Applications, 43(3):1488–1517, August 2022. doi:397

10.1137/21M1441754.398

[13] Shuangzhe Liu and Götz Trenkler. Hadamard, Khatri-Rao, Kronecker and other matrix products.399

International Journal of Information and Systems Sciences, 4(1):160–177, 2008.400

[14] Linjian Ma and Edgar Solomonik. Cost-efficient Gaussian tensor network embeddings for401

tensor-structured inputs. CoRR, abs/2205.13163, 2022. doi: 10.48550/arXiv.2205.13163.402

[15] Osman Asif Malik. More efficient sampling for tensor decomposition with worst-case guarantees.403

In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan404

Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume405

162 of Proceedings of Machine Learning Research, pages 14887–14917. PMLR, 17–23 Jul406

2022.407

10

[16] Osman Asif Malik, Vivek Bharadwaj, and Riley Murray. Sampling-based decomposition408

algorithms for arbitrary tensor networks, October 2022. arXiv:2210.03828 [cs, math].409

[17] James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored410

approximate curvature. In Proceedings of the 32nd International Conference on International411

Conference on Machine Learning - Volume 37, ICML’15, pages 2408–2417, Lille, France, July412

2015. JMLR.org.413

[18] Baorun Mu, Saeed Soori, Bugra Can, Mert Gürbüzbalaban, and Maryam Mehri Dehnavi.414

HyLo: A hybrid low-rank natural gradient descent method. In Proceedings of the International415

Conference on High Performance Computing, Networking, Storage and Analysis, SC ’22. IEEE416

Press, 2022. ISBN 9784665454445.417

[19] Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic tensor product regression. In418

S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in419

Neural Information Processing Systems, volume 35, pages 4791–4804. Curran Associates, Inc.,420

2022.421

[20] Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka. Optimal422

approximate sampling from discrete probability distributions. Proceedings of the ACM on423

Programming Languages, 4(POPL):1–31, January 2020. ISSN 2475-1421. doi: 10.1145/424

3371104.425

[21] N.D. Sidiropoulos and R.S. Budampati. Khatri-Rao space-time codes. IEEE Transactions on426

Signal Processing, 50(10):2396–2407, 2002. doi: 10.1109/TSP.2002.803341.427

[22] Shaden Smith and George Karypis. SPLATT: The Surprisingly ParalleL spArse Tensor Toolkit.428

http://cs.umn.edu/~splatt/, 2016.429

[23] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George430

Karypis. FROSTT: The formidable repository of open sparse tensors and tools, 2017. URL431

http://frostt.io/.432

[24] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young-kyu Choi, Jason Lau, and Jason Cong.433

Sextans: A streaming accelerator for general-purpose sparse-matrix dense-matrix multiplication.434

In Proceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable435

Gate Arrays, FPGA ’22, page 65–77, New York, NY, USA, 2022. Association for Computing436

Machinery. ISBN 9781450391498. doi: 10.1145/3490422.3502357.437

[25] Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast and guaranteed438

tensor decomposition via sketching. Advances in neural information processing systems, 28,439

2015.440

[26] Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, and Viktor Prasanna. Accelerating441

sparse MTTKRP for tensor decomposition on FPGA. In Proceedings of the 2023 ACM/SIGDA442

International Symposium on Field Programmable Gate Arrays, FPGA ’23, page 259–269, New443

York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394178. doi:444

10.1145/3543622.3573179.445

[27] David Woodruff and Amir Zandieh. Leverage score sampling for tensor product matrices in446

input sparsity time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang447

Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine448

Learning, volume 162 of Proceedings of Machine Learning Research, pages 23933–23964.449

PMLR, 17–23 Jul 2022.450

[28] David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and451

Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.452

[29] Yao Yu, Athina P. Petropulu, and H. Vincent Poor. MIMO radar using compressive sampling.453

IEEE Journal of Selected Topics in Signal Processing, 4(1):146–163, February 2010. doi:454

10.1109/JSTSP.2009.2038973.455

11

http://cs.umn.edu/~splatt/
http://frostt.io/

A Appendix456

A.1 Details about Table 1457

CP-ALS [11] is the standard, non-randomized alternating least squares method given by Algorithm458

6 in Appendix A.9. The least squares problems in the algorithm are solved by exact methods.459

CP-ARLS-LEV is the algorithm proposed by Larsen and Kolda [12] that samples rows from the460

Khatri-Rao product according to a product distribution of leverage scores on each factor matrix. The461

per-iteration runtimes for both algorithms are re-derived in Appendix C.3 of the work by Malik [15]462

from their original sources. Malik [15] proposed the CP-ALS-ES algorithm (not listed in the table),463

which is superseded by the TNS-CP algorithm [16]. We report the complexity from Table 1 of the464

latter work. The algorithm by Ma and Solomonik [14] is based on a general method to sketch tensor465

networks. Our reported complexity is listed in Table 1 for Algorithm 1 in their work.466

Table 1 does not list the one-time initialization costs for any of the methods. All methods require467

at least O(NIR) time to randomly initialize factor matrices, and CP-ALS requires no further setup.468

CP-ARLS-LEV, TNS-CP, and STS-CP all require O(NIR2) initialization time. CP-ARLS-LEV469

uses the initialization phase to compute the initial leverage scores of all factor matrices. TNS-CP uses470

the initialization step to compute and cache Gram matrices of all factors Uj . STS-CP must build the471

efficient sampling data structure described in Theorem 1.1. The algorithm from Ma and Solomonik472

requires an initialization cost of O(INm), where m is a sketch size parameter that is O(NR/ε2) to473

achieve the (ε, δ) accuracy guarantee for each least squares solve.474

A.2 Definitions of Matrix Products475

Table 2 defines the standard matrix product ·, Hadamard product ⊛, Kronecker product ⊗, and476

Khatri-Rao product ⊙, as well as the dimensions of their operands.477

Table 2: Matrix product definitions.

OPERATION SIZE OF A SIZE OF B SIZE OF C DEFINITION

C = A ·B (m, k) (k, n) (m,n) C[i, j] =
∑k

a=1 A [i, a]B [a, j]
C = A⊛B (m,n) (m,n) (m,n) C [i, j] = A [i, j]B [i, j]
C = A⊗B (m1, n1) (m2, n2) (m1m2, n1n2) C [(i1, i2), (j1, j2)] = A [i1, j1]B [i2, j2]
C = A⊙B (m1, n) (m2, n) (m1m2, n) C [(i1, i2), j] = A [i1, j]B [i2, j]

A.3 Further Comparison to Prior Work478

In this section, we provide a more detailed comparison of our sampling algorithm with the one479

proposed by Woodruff and Zandieh [27]. Their work introduces a ridge leverage-score sampling480

algorithm for Khatri-Rao products with the attractive property that the sketch can be formed in481

input-sparsity time. For constant failure probability δ, the runtime to produce a (1± ϵ) ℓ2-subspace482

embedding for A = U1 ⊙ ... ⊙ UN is given in Appendix B of their work (proof of Theorem 2.7).483

Adapted to our notation, their runtime is484

O

(
log4 R logN

N∑
i=1

nnz(Ui) +
N7s2λR

ε4
log5 R logN

)

where sλ =
∑R

i=1
λi

λi+λ , λ1, ..., λR are the eigenvalues of the Gram matrix G of matrix A, and λ ≥ 0485

is a regularization parameter. For comparison, our runtime for constant failure probability is486

O

(
R

N∑
i=1

nnz(Ui) +
R3

ε
log

(
N∏
i=1

|Ii|

))
.

Woodruff and Zandieh’s method provides a significant advantage for large column count R or high487

regularization parameter λ. As a result, it is well-suited to the problem of regularized low-rank488

approximation when the column count R is given by the number of data points in a dataset. On the489

other hand, the algorithm has poor dependence on the matrix count N and error parameter ε. For490

12

tensor decomposition, R is typically no larger than a few hundred, while high accuracy (ϵ ≈ 10−3) is491

required for certain tensors to achieve a fit competitive with non-randomized methods (see section492

4.3, Figures 4 and 5). When λ is small, we have sλ ≈ R. Here, Woodruff and Zandieh’s runtime has493

an O(R3) dependence similar to ours. When R ≤ log4 R logN , our sampler has faster construction494

time as well.495

Finally, we note that our sampling data structure can be constructed using highly cache-efficient,496

parallelizable symmetric rank-R updates (BLAS3 operation dSYRK). As a result, the quadratic497

dependence on R in our algorithm can be mitigated by dense linear algebra accelerators, such as498

GPUs or TPUs.499

A.4 Proof of Theorem 3.1500

Theorem 3.1 appeared in a modified form as Lemma 10 in the work by Malik [15]. This original501

version used the definition G̃>k = Φ⊛⊛N
a=k+1 Gk in place of G>k defined in Equation (4), where502

Φ was a sketched approximation of G+. Woodruff and Zandieh [27] exhibit a version of the theorem503

with similar modifications. We prove the version stated in our work below.504

Proof of Theorem 3.1. We rely on the assumption that the Khatri-Rao product A is a nonzero matrix505

(but it may be rank-deficient). We begin by simplying the expression for the leverage score of a row506

of A corresponding to multi-index (i1, ..., iN). Beginning with Equation (2), we derive507

ℓi1,...,iN = A [(i1, ..., iN), :]G+A [(i1, ..., iN), :]
⊤

= ⟨A [(i1, ..., iN), :]
⊤
A [(i1, ..., iN), :] , G+⟩

= ⟨

(
N

⊛
a=1

Ua [ia, :]

)⊤(N

⊛
a=1

Ua [ia, :]

)
, G+⟩

= ⟨
N

⊛
a=1

Ua [ia, :]
⊤
Ua [ia, :] , G

+⟩

= ⟨
k−1

⊛
a=1

Ua [ia, :]
⊤
Ua [ia, :] , Uk [ik, :]

⊤
Uk [ik, :]⊛

N

⊛
a=k+1

Ua [ia, :]
⊤
Ua [ia, :] , G

+⟩

= ⟨
k−1

⊛
a=1

Ua [ia, :]
⊤
Ua [ia, :] , Uk [ik, :]

⊤
Uk [ik, :] , G

+ ⊛
N

⊛
a=k+1

Ua [ia, :]
⊤
Ua [ia, :]⟩.

(12)
We proceed to the main proof of the theorem. To compute p(ŝk = sk | ŝ<k = s<k), we marginalize508

over random variables ŝk+1...ŝN . Recalling the definition of h<k from Equation (3), we have509

p(ŝk = sk | ŝ<k = s<k) ∝
∑

ik+1,...,iN

p

(
(ŝ<k = s<k) ∧ (ŝk = sk) ∧

N∧
u=k+1

(ŝu = iu)

)
∝

∑
ik+1,...,iN

ℓs1,...,sk,ik+1,...,iN .

(13)

The first line above follows by marginalizing over ŝk+1, ..., ŝN . The second line follows because the510

joint random variable (ŝ1, ..., ŝN) follows the distribution of statistical leverage scores on the rows of511

13

A. We now plug in Equation (12) to get512 ∑
ik+1,...,iN

ℓs1,...,sk,ik+1,...,iN

=
∑

ik+1,...,iN

⟨
k−1

⊛
a=1

Ua [sa, :]
⊤
Ua [sa, :] , Uk [sk, :]

⊤
Uk [sk, :] , G

+ ⊛
N

⊛
a=k+1

Ua [ia, :]
⊤
Ua [ia, :]⟩

=
∑

ik+1,...,iN

⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G

+ ⊛
N

⊛
a=k+1

Ua [ia, :]
⊤
Ua [ia, :]⟩

= ⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G

+ ⊛
N

⊛
a=k+1

|Ia|∑
ia=1

Ua [ia, :]
⊤
Ua [ia, :]⟩

= ⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G

+ ⊛
N

⊛
a=k+1

Ga⟩

= ⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G>k⟩.

(14)
We now compute the normalization constant C for the distribution by summing the last line of513

Equation (14) over all possible values for ŝk:514

C =

|Ik|∑
sk=1

⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G>k⟩

= ⟨h<kh
⊤
<k,

|Ik|∑
sk=1

Uk [sk, :]
⊤
Uk [sk, :] , G>k⟩

= ⟨h<kh
⊤
<k, Gk, G>k⟩.

(15)

For k = 1, we have h<k = [1, ..., 1]
⊤, so C = ⟨Gk, G>k⟩. Then C is the sum of all leverage515

scores, which is known to be the rank of A [28]. Since A was assumed nonzero, C ̸= 0. For k > 1,516

assume that the conditioning event ŝ<k = s<k occurs with nonzero probability. This is a reasonable517

assumption, since our sampling algorithm will never select prior values ŝ1, ..., ŝk−1 that have 0518

probability of occurrence. Let C̃ be the normalization constant for the conditional distribution on519

ŝk−1. Then we have520

0 < p(ŝk−1 = sk−1 | ŝ<k−1 = s<k−1)

= C̃−1⟨h<k−1h
⊤
<k−1, Uk−1 [sk−1, :]

⊤
Uk−1 [sk−1, :] , G>k−1⟩

= C̃−1⟨h<kh
⊤
<k, G>k−1⟩

= C̃−1⟨h<kh
⊤
<k, Gk ⊛G>k⟩

= C̃−1⟨h<kh
⊤
<k, Gk, G>k⟩

= C̃−1C

(16)

Since C̃ > 0, we must have C > 0.521

A.5 Proof of Lemma 3.2522

We detail the construction procedure, sampling procedure, and correctness of our proposed data523

structure. Recall that TI,F denotes the collection of nodes in a full, complete binary tree with ⌈I/F ⌉524

leaves. Each leaf v ∈ TI,F holds a segment S(v) = {S0(v)..S1(v)} ⊆ {1..I}, with |S(v)| ≤ F and525

S(u)∩S(v) = ∅ for distinct leaves u, v. For each internal node v, S(v) = S(L(v))∪S(R(v)), where526

L(v) and R(v) denote the left and right children of node v. The root node r satisfies S(r) = {1..I}.527

Construction: Algorithm 3 gives the procedure to build the data structure. We initialize a segment528

tree TI,F and compute Gv for all leaf nodes v ∈ TI,F as a sum of outer products of rows from U529

14

(lines 1-3). Starting at the level above the leaves, we then compute Gv for each internal node as530

the sum of GL(v) and GR(v), the partial Gram matrices of its two children. Runtime O(IR2) is531

required to compute I outer products across all iterations of the loop on line 3. Our segment tree has532

⌈I/F ⌉ − 1 internal nodes, and the addition in line 6 contributes runtime O(R2) for each internal533

node. This adds complexity O(R2(⌈I/F ⌉ − 1)) ≤ O(IR2), for total construction time O(IR2).534

To analyze the space complexity, observe that we store a matrix Gv ∈ RR×R at all 2⌈I/F ⌉−1 nodes535

of the segment tree, for asymptotic space usage O(⌈I/F ⌉R2). We can cut the space usage in half by536

only storing Gv when v is either the root or a left child in our tree, since the sampling procedure in537

Algorithm 4 only accesses the partial Gram matrix stored by left children. We can cut the space usage538

in half again by only storing the upper triangle of each symmetric matrix Gv . Finally, in the special539

case that I < F , the segment tree has depth 1 and the initial binary search can be eliminated entirely.540

As a result, the data structure has O(1) space overhead, since we can avoid storing any partial Gram541

matrices Gv . This proves the complexity claims in point 1 of Lemma 3.2.542

Algorithm 3 BuildSampler(U ∈ RI×R, F , Y)

1: Build tree TI,F with depth d = ⌈log⌈I/F ⌉⌉
2: for v ∈ leaves(TI,F) do
3: Gv :=

∑
i∈S(v) U [i, :]

⊤
U [i, :]

4: for u = d− 2...0 do
5: for v ∈ level(TI,F , u) do
6: Gv := GL(v) +GR(v)

Sampling: Algorithm 4 gives the procedure to draw a sample from our proposed data structure.543

It is easy to verify that the normalization constant C for qh,U,Y is ⟨hh⊤, Groot(TI,F), Y ⟩, since544

Groot(TI,F) = U⊤U . Lines 8 and 9 initialize a pair of templated procedures m̃ and q̃, each of which545

accepts a node from the segment tree. The former is used to compute the branching threshold at546

each internal node, and the latter returns the probability vector qh,U,Y [S0(v) : S1(v)] for the segment547

{S0(v)..S1(v)} maintained by a leaf node. To see this last fact, observe for i ∈ {0, ..., I} that548

q̃(v) [i− S0(v)]

= C−1U [i, :] · (hh⊤ ⊛ Y) · U [i, :]
⊤

= C−1⟨hh⊤, U [i, :]
⊤
U [i, :] , Y ⟩

= qh,U,Y [i] .

(17)

The loop on line 12 performs the binary search using the two templated procedures. Line 18 uses the549

procedure q̃ to scan through at most F bin endpoints after the binary search finishes early.550

The depth of segment tree TI,F is log⌈I/F ⌉. As a result, the runtime of the sampling procedure is551

dominated by log⌈I/F ⌉ evaluations of m̃ and a single evaluation of q̃ during the binary search. Each552

execution of procedure m̃ requires time O(R2), relying on the partial Gram matrices Gv computed553

during the construction phase. When Y is a general p.s.d. matrix, the runtime of q̃ is O(FR2). This554

complexity is dominated by the matrix multiplication W · (hh⊤ ⊛ Y) on line 5. In this case, the555

runtime of the “RowSampler" procedure to draw one sample is O(R2 log⌈I/F ⌉+ FR2), satisfying556

the complexity claims in point 2 of the lemma.557

Now supppose Y is a rank-1 matrix with Y = uu⊤ for some vector u. We have hh⊤ ⊛ Y =558

(h⊛ u)(h⊛ u)⊤. This gives559

q̃p(h,C, v) = diag(W · (hh⊤ ⊛ uu⊤) ·W) = (W · (h⊛ u))2

where the square is elementwise. The runtime of the procedure q̃ is now dominated by a matrix-vector560

multiplication that costs time O(FR). In this case, we have per-sample complexity O(R2 log⌈I/F ⌉+561

FR), matching the complexity claim in point 3 of the lemma.562

Correctness: Recall that the inversion sampling procedure partitions the interval [0, 1] into I bins,563

the i’th bin having width qh,U,Y [i]. The goal of our procedure is to find the bin that contains the564

uniform random draw d. Since procedure m̃ correctly returns the branching threshold (up to the offset565

“low”) given by equation (7), the loop on line 12 correctly implements a binary search on the list of566

15

Algorithm 4 Row Sampling Procedure

Require: Matrices U, Y saved from construction, partial Gram matrices {Gv | v ∈ TI,F }.
1: procedure mp(h,C, v)
2: return C−1⟨hh⊤, Gv, Y ⟩
3: procedure qp(h,C, v)
4: W := U [S(v), :]
5: return C−1diag(W · (hh⊤ ⊛ Y) ·W⊤)
6: procedure RowSample(h)
7: C := ⟨hh⊤, Groot(TI,F), Y ⟩
8: m̃(·) := mp(h,C, ·)
9: q̃(·) := qp(h,C, ·)

10: c := root(TI,F), low = 0.0, high = 1.0
11: Sample d ∼ Uniform(0.0, 1.0)
12: while c /∈ leaves(TI,F) do
13: cutoff := low + m̃(L(c))
14: if cutoff ≥ d then
15: c := L(c), high := cutoff
16: else
17: c := R(c), low := cutoff
18: return S0(v) + argmini≥0

(
low +

∑i
j=1 q̃(c) [j] < d

)

bin endpoints specified by the vector qh,U,Y . At the end of the loop, c is a leaf node that maintains a567

collection S(c) of bins, one of which contains the random draw d. Since the procedure q̃ correctly568

returns probabilities qh,U,Y [i] for i ∈ S(c) for leaf node c, (see equation (17)), line 18 finds the bin569

that contains the random draw d. The correctness of the procedure follows from the correctness of570

inversion sampling [20].571

A.6 Cohesive Proof of Theorem 1.1572

In this proof, we fully explain Algorithms 1 and 2 in the context of the sampling procedure outlined573

in section 3.2. We verify the complexity claims first and then prove correctness.574

Construction and Update: For each matrix Uj , Algorithm 1 builds an efficient row sampling data575

structure Zj as specified by Lemma 3.2. We let the p.s.d. matrix Y that parameterizes each sampler576

be a matrix of ones, and we set F = R. From Lemma 3.2, the time to construct sampler Zj is577

O(|Ij |R2). The space used by sampler Zj is O(⌈|Ij | /F ⌉R2) = O(|Ij |R), since F = R. In case578

|Ij | < R, we use the special case described in Appendix A.5 to get a space overhead O(1), avoiding579

a term O(R2) in the space complexity.580

Summing the time and space complexities over all j proves part 1 of the theorem. To update the data581

structure if matrix Uj changes, we only need to rebuild sampler Zj for a cost of O(|Ij |R2). The582

construction phase also computes and stores the Gram matrix Gj for each matrix Uj . We defer the583

update procedure in case a single entry of matrix Uj changes to Appendix A.7.584

Sampling: For all indices k (except possibly j), lines 1-5 from Algorithm 2 compute G>k and585

its eigendecomposition. Only a single pass over the Gram matrices Gk is needed, so these steps586

cost O(R3) for each index k. Line 5 builds an efficient row sampler Ek for the matrix of scaled587

eigenvectors
√
Λk · Vk. For sampler k, we set Y = Gk with cutoff parameter F = 1. From Lemma588

3.2, the construction cost is O(R3) for each index k, and the space required by each sampler is589

O(R3). Summing these quantities over all k ̸= j gives asymptotic runtime O(NR3) for lines 2-5.590

The loop spanning lines 6-12 draws J row indices from the Khatri-Rao product U ̸=j . For each591

sample, we maintain a “history vector” h to write the variables h<k from Equation (3). For each592

index k ̸= j, we draw random variable ûk using the row sampler Ek. This random draw indexes a593

scaled eigenvector of G>k. We then use the history vector h multiplied by the eigenvector to sample594

a row index t̂k using data structure Zk. The history vector h is updated, and we proceed to draw the595

next index t̂k.596

16

As written, lines 2-5 also incur scratch space usage O(NR3). The scratch space can be reduced to597

O(R3) by exchanging the order of loops on line 6 and line 8 and allocating J separate history vectors598

h, once for each draw. Under this reordering, we perform all J draws for each variable ûk and t̂k599

before moving to ûk+1 and t̂k+1. In this case, only a single data structure Ek is required at each600

iteration of the outer loop, and we can avoid building all the structures in advance on line 5. We keep601

the algorithm in the form written for simplicity, but we implemented the memory-saving approach in602

our code.603

From Lemma 3.2, lines 9 and 10 cost O(R2 logR) and O
(
R2 log⌈|Ik| /R⌉

)
, respectively. Line 11604

costs O(R) and contributes a lower-order term. Summing over all k ̸= j, the runtime to draw a single605

sample is606

O

∑
k ̸=j

(R2 log⌈|Ik| /R⌉+R2 logR)

 = O

∑
k ̸=j

R2 logmax (|Ik| , R)

 .

Adding the runtime for all J samples to the runtime of the loop spanning lines 2-6 gives runtime607

O
(
NR3 + J

∑
k ̸=j R

2 logmax (|Ik| , R)
)

, and the complexity claims have been proven.608

Correctness: We show correctness for the case where j = −1 and we sample from the Khatri-Rao609

product of all matrices Uk, since the proof for any other value of j requires a simple reindexing of610

matrices. To show that our sampler is correct, it is enough to prove the condition that for 1 ≤ k ≤ N ,611

p(t̂k = tk | h<k) = qh<k,Uk,G>k
[tk] , (18)

since, by Theorem 3.1, p(ŝk = sk | ŝ<k = s<k) = qh<k,Uk,G>k
[sk]. This would imply that the joint612

random variable (t̂1, ..., tN) has the same probability distribution as (ŝ1, ..., ŝN), which by definition613

follows the leverage score distribution on U1 ⊙ ...⊙ UN . To prove the condition in Equation (18),614

we apply Equations (9) and (11) derived earlier:615

p(t̂k = tk | h<k)

=

R∑
uk=1

p(t̂k = tk | ûk = uk, h<k)p(ûk = uk | h<k) (Bayes’ Rule)

=

R∑
uk=1

w [uk]
W [tk, uk]

∥W [:, uk]∥1
(Equations (9) and (11), in reverse)

= qh<k,Uk,G>k
[tk] .

(19)
616

A.7 Efficient Single-Element Updates617

Applications such as CP decomposition typically change all entries of a single matrix Uj between618

iterations, incurring an update cost O(|Ij |R2) for our data structure from Theorem 1.1. In case only619

a single element of Uj changes, our data structure can be updated in time O (R log |Ij |).620

Proof. Algorithm 5 gives the procedure when the update Uj [r, c] := û is performed. The matrices621

Gv refer to the partial Gram matrices maintained by each node v of the segment trees in our data622

structure, and the matrix Ũj refers to the matrix Uj before the update operation.623

Let T|Ij |,R be the segment tree corresponding to matrix Uj in the data structure, and let v ∈ T|Ij |,R624

be the leaf whose segment contains r. Lines 3-5 of the algorithm update the row and column indexed625

by c in the partial Gram matrix held by the leaf node.626

The only other nodes requiring an update are ancestors of v, each holding a partial Gram matrix627

that is the sum of its two children. Starting from the direct parent A(v), the loop on line 6 performs628

these ancestor updates. The addition on line 8 only requires time O(R), since only row and column c629

change between the old value of Gv and its updated version. Thus, the runtime of this procedure is630

O(R log⌈Ij/R⌉) from multiplying the cost to update a single node by the depth of the tree.631

17

Algorithm 5 UpdateSampler(j, r, c, û)

1: Let u = Ũj [r, c]
2: Locate v such that r ∈ S(v)

3: Update Gv [c, :] += (û− u)Ũj [r, :]

4: Update Gv [:, c] += (û− u)Ũj [r, :]
⊤

5: Update Gv [c, c] += (û− u)2

6: while v ̸= root(T|Ij |,R) do
7: vprev := v, v := A(v)

8: Update Gv := Gsibling(vprev) +Gvprev

A.8 Extension to Sparse Input Matrices632

Our data structure is designed to sample from Khatri-Rao products U1 ⊙ ...⊙ UN where the input633

matrices U1, ..., UN are dense, a typical situation in tensor decomposition. Slight modifications to634

the construction procedure permit our data structure to handle sparse matrices efficiently as well. The635

following corollary states the result as a modification to Theorem 1.1.636

Corollary A.1 (Sparse Input Modification). When input matrices U1, ..., UN are sparse, point 1637

of Theorem 1.1 can be modified so that the proposed data structure has O
(
R
∑N

j=1 nnz(Uj)
)

638

construction time and O
(∑N

j=1 nnz(Uj)
)

storage space. The sampling time and scratch space639

usage in point 2 of Theorem 1.1 does not change. The single-element update time in point 1 is likewise640

unchanged.641

Proof. We will modify the data structure in Lemma 3.2. The changes to its construction and storage642

costs will propagate to our Khatri-Rao product sampler, which maintains one of these data structures643

for each input matrix.644

Let us restrict ourselves to the case F = R, Y = [1] in relation to the data structure in Lemma645

3.2. These choices for F and Y are used in the construction phase given by Algorithm 1. The646

proof in Appendix A.5 constrains each leaf v of a segment tree TI,F to hold a contiguous segment647

S(v) ⊆ {1..I} of cardinality at most F . Instead, choose each segment S(v) = {S0(v)..S1(v)}648

so that U [S0(v) : S1(v), :] has at most R2 nonzeros, and the leaf count of the tree is at most649

⌈nnz(U)/R2⌉+ 1 for input matrix U ∈ RI×R. Assuming the nonzeros of U are sorted in row-major650

order, we can construct such a partition of {1..I} into segments in time O(nnz(U)) by iterating in651

order through the nonzero rows and adding each of them to a “current” segment. We shift to a new652

segment when the current segment cannot hold any more nonzeros.653

This completes the modification to the data structure in Lemma 3.2, and we now analyze its updated654

time / space complexity.655

Updated Construction / Update Complexity of Lemma 3.2, F = R, Y = [1]: Algorithm 3656

constructs the partial Gram matrix for each leaf node v in the segment tree. Each nonzero in the657

segment U [S0(v) : S1(v), :] contributes time O(R) during line 3 of Algorithm 3 to update a single658

row and column of Gv. Summed over all leaves, the cost of line 3 is O(nnz(U)R). The remainder659

of the construction procedure updates the partial Gram matrices of all internal nodes. Since there660

are at most O
(
⌈nnz(U)/R2⌉

)
internal nodes and the addition on line 6 costs O(R2) per node, the661

remaining steps of the construction procedure cost O(nnz(U)), a lower-order term. The construction662

time is therefore O(nnz(U)R).663

Since we store a single partial Gram matrix of size R2 at each of O
(
⌈nnz(U)/R2⌉

)
internal nodes,664

the space complexity of our modified data structure is O(nnz(U)).665

Finally, the data structure update time in case a single element of U is modified does not change from666

Theorem 1.1. Since the depth of the segment tree ⌈nnz(U)/R2⌉+1 is upper-bounded by ⌈I/R⌉+1,667

the runtime of the update procedure in Algorithm 5 stays the same.668

Updated Sampling Complexity of Lemma 3.2, F = R, Y = [1]: The procedure “RowSample”669

in Algorithm 4 now conducts a traversal of a tree of depth O(⌈nnz(U)/R2⌉). As a result, we670

18

can still upper-bound the number of calls to procedure m̃ as ⌈I/F ⌉. The runtime of procedure671

m̃ is unchanged. The runtime of procedure q̃ for leaf node c is dominated by the matrix-vector672

multiplication U [S0(c) : S1(c), :] · h. This runtime is O (nnz (U [S0(c) : S1(c), :])) ≤ O
(
R2
)
.673

Putting these facts together, the sampling complexity of the data structure in Lemma 3.2 does not674

change under our proposed modifications for F = R, Y = [1].675

Updated Construction Complexity of Theorem 1.1: Algorithm 1 now requires676

O
(
R
∑N

j=1 nnz(Uj)
)

construction time and O
(∑N

j=1 nnz(Uj)
)

storage space, summing677

the costs for the updated structure from Lemma 3.2 over all matrices U1, ..., UN . The sampling678

complexity of these data structures is unaffected by the modifications, which completes the proof of679

the corollary.680

A.9 Alternating Least Squares CP Decomposition681

CP Decomposition. CP decomposition represents an N -dimensional T̃ ∈ R|I1|×...×|IN | as a682

weighted sum of generalized outer products. Formally, let U1, ..., UN with Uj ∈ R|Ij |×R be factor683

matrices with each column having unit norm, and let σ ∈ RR be a nonnegative coefficient vector.684

We call R the rank of the decomposition. The tensor T̃ that the decomposition represents is given685

elementwise by686

T̃ [i1, ..., iN] := ⟨σ⊤, U1 [i1, :] , ..., UN [iN , :]⟩ =
R∑

r=1

σ [r]U1[i1, r] · · ·UN [iN , r],

which is a generalized inner product between σ⊤ and rows Uj [ij , :] for 1 ≤ j ≤ N . Given an687

input tensor T and a target rank R, the goal of approximate CP decomposition is to find a rank-R688

representation T̃ that minimizes the Frobenius norm
∥∥∥T − T̃

∥∥∥
F

.689

Definition of Matricization. The matricization mat(T , j) flattens tensor T ∈ R|I1|×...×|IN | into690

a matrix and isolates mode j along the row axis of the output. The output of matricization has691

dimensions |Ij | ×
∏

k ̸=j |Ik|. We take the formal definition below from a survey by Kolda and Bader692

[11]. The tensor entry T [i1, ..., iN] is equal to the matricization entry mat(T , j) [iN , u], where693

u = 1 +

N∑
k=1
k ̸=j

(ik − 1)

k−1∏
m=1
m ̸=j

|Im| .

Details about Alternating Least Squares. Let U1, ..., UN be factor matrices of a low-rank CP694

decomposition, Uk ∈ R|Ik|×R. We use U̸=j to denote
⊙k=1

k=N,k ̸=j Uk. Note the inversion of order695

here to match indexing in the definition of matricization above. Algorithm 6 gives the non-randomized696

alternating least squares algorithm CP-ALS that produces a decomposition of target rank R given697

input tensor T ∈ R|I1|×...×|IN | in general format. The random initialization on line 1 of the algorithm698

can be implemented by drawing each entry of the factor matrices Uj according to a standard normal699

distribution, or via a randomized range finder [9]. The vector σ stores the generalized singular values700

of the decomposition. At iteration j within a round, ALS holds all factor matrices except Uj constant701

and solves a linear-least squares problem on line 6 for a new value for Uj . In between least squares702

solves, the algorithm renormalizes the columns of each matrix Uj to unit norm and stores their703

original norms in the vector σ. Appendix A.11 contains more details about the randomized range704

finder and the convergence criteria used to halt iteration.705

We obtain a randomized algorithm for sparse tensor CP decomposition by replacing the exact least706

squares solve on line 6 with a randomized method according to theorem 2.1. Below, we prove707

corollary 3.3, which derives the complexity of the randomized CP decomposition algorithm.708

Proof of Corollary 3.3. The design matrix U̸=j for optimization problem j within a round of ALS709

has dimensions
∏

k ̸=j |Ik|×R. The observation matrix mat(T , j)⊤ has dimensions
∏

k ̸=j |Ik|× |Ij |.710

To achieve error threshold 1+ ε with probability 1− δ on each solve, we draw J = O (R/(εδ)) rows711

from both the design and observation matrices and solve the downsampled problem (Theorem 2.1).712

19

Algorithm 6 CP-ALS(T , R)

1: Initialize Uj ∈ R|Ij |×R randomly for 1 ≤ j ≤ N .
2: Renormalize Uj [:, i] /= ∥Uj [:, i]∥2, 1 ≤ j ≤ N, 1 ≤ i ≤ R.
3: Initialize σ ∈ RR to [1].
4: while not converged do
5: for j = 1..N do
6: Uj := argminX

∥∥U ̸=j ·X⊤ − mat(T , j)⊤
∥∥
F

7: σ [i] = ∥Uj [:, i]∥2, 1 ≤ i ≤ R
8: Renormalize Uj [:, i] /= ∥Uj [:, i]∥2, 1 ≤ i ≤ R.
9: return [σ;U1, ..., UN].

These rows are sampled according to the leverage score distribution on the rows of U̸=j , for which we713

use the data structure in Theorem 1.1. After a one-time initialization cost O(
∑N

j=1 |Ij |R2)) before714

the ALS iteration begins, the complexity to draw J samples (assuming |Ij | ≥ R) is715

O

NR3 + J
∑
k ̸=j

R2 log |Ik|

 = O

NR3 +
R

εδ

∑
k ̸=j

R2 log |Ik|

 .

The cost to assemble the corresponding subset of the observation matrix is O(J |Ij |) =716

O(R |Ij | /(εδ)). The cost to solve the downsampled least squares problem is O(JR2) =717

O(|Ij |R2/(εδ)), which dominates the cost of forming the subset of the observation matrix. Fi-718

nally, we require additional time O(|Ij |R2) to update the sampling data structure (Theorem 1.1 part719

1). Adding these terms together and summing over 1 ≤ j ≤ N gives720

O

 1

εδ
·

N∑
j=1

|Ij |R2 +
∑
k ̸=j

R3 log |Ik|

= O

 1

εδ
·

N∑
j=1

[
|Ij |R2 + (N − 1)R3 log |Ij |

] .

(20)

Rounding N − 1 to N and multiplying by the number of iterations gives the desired complexity.721

When |Ij | < R for any j, the complexity changes in Theorem 1.1 propagate to the equation722

above. The column renormalization on line 8 of the CP-ALS algorithm contributes additional time723

O
(∑N

j=1 |Ij |R
)

per round, a lower-order term.724

725

A.10 Experimental Platform and Sampler Parallelism726

We provide two implementations of our sampler. The first is a slow reference implementation written727

entirely in Python, which closely mimics our pseudocode and can be used to test correctness. The728

second is an efficient implementation written in C++, parallelized in shared memory with OpenMP729

and Intel Thread Building Blocks.730

Each Perlmutter CPU node (our experimental platform) is equipped with two sockets, each containing731

an AMD EPYC 7763 processor with 64 cores. All benchmarks were conducted with our efficient732

C++ implementation using 128 OpenMP threads. We linked our code against Intel Thread Building733

blocks to call a multithreaded sort function when decomposing sparse tensors. We use OpenBLAS734

0.3.21 to handle linear algebra with OpenMP parallelism enabled, but our code links against any735

linear algebra library implementing the CBLAS and LAPACKE interfaces.736

Our proposed data structure samples from the exact distribution of leverage scores of the Khatri-Rao737

product, thereby enjoying better sample efficiency than alternative approaches such as CP-ARLS-LEV738

[12]. The cost to draw each sample, however, is O(R2 logH), where H is the number of rows in the739

Khatri-Rao product. Methods such as row-norm-squared sampling or CP-ARLS-LEV can draw each740

20

sample in time O(logH) after appropriate preprocessing. Therefore, efficient parallelization of our741

sampling procedure is required for competitive performance, and we present two strategies below.742

1. Asynchronous Thread Parallelism: The KRPSampleDraw procedure in Algorithm 2 can743

be called by multiple threads concurrently without data races. The simplest parallelization744

strategy divides the J samples equally among the threads in a team, each of which makes745

calls to KRPSampleDraw asynchronously. This strategy works well on a CPU, but is less746

attractive on a SIMT processor like a GPU where instruction streams cannot diverge without747

significant performance penalties.748

2. Synchronous Batch Parallelism As an alternative to the asynchronous strategy, suppose749

for the moment that all leaves have the same depth in each segment tree. Then for every750

sample, STSample makes an sequence of calls to m̃, each updating the current node by751

branching left or right in the tree. The length of this sequence is the depth of the tree, and it752

is followed by a single call to the function q̃. Observe that procedure m̃ in Algorithm 4 can753

be computed with a matrix-vector multiplication followed by a dot product. The procedure754

q̃ of Algorithm 4 requires the same two operations if F = 1 or Y = [1]. Thus, we can755

create a batched version of our sampling procedure that makes a fixed length sequence of756

calls to batched gemv and dot routines. All processors march in lock-step down the levels757

of each segment tree, each of them tracking the branching path of a single sample. The758

MAGMA linear algebra library provides a batched version of gemv [8], while a batched dot759

product can be implemented with an ad hoc kernel. MAGMA also offers a batched version760

of the symmetric rank-k update routine syrk, which is helpful to parallelize row sampler761

construction (Algorithm 3). When all leaves in the tree are not at the same level, the the762

bottom level of the tree can be handled with a special sequence of instructions making the763

required additional calls to m̃.764

Our CPU code follows the batch synchronous design pattern. To avoid dependency on GPU-based765

MAGMA routines in our CPU prototype, however, portions of the code that should be batched BLAS766

calls are standard BLAS calls wrapped in a for loop. These sections can be easily replaced when the767

appropriate batched routines are available.768

A.11 Sparse Tensor CP Experimental Configuration769

Table 3: Sparse Tensors from FROSTT collection.

TENSOR DIMENSIONS NONZEROS PREP. INIT.

UBER PICKUPS 183 × 24 × 1,140 × 1,717 3,309,490 NONE IID
ENRON EMAILS 6,066 × 5,699 × 244,268 × 1,176 54,202,099 LOG RRF
NELL-2 12,092 × 9,184 × 28,818 76,879,419 LOG IID
AMAZON REVIEWS 4,821,207 × 1,774,269 × 1,805,187 1,741,809,018 NONE IID
REDDIT-2015 8,211,298 × 176,962 × 8,116,559 4,687,474,081 LOG IID

Table 3 lists the nonzero counts and dimensions of sparse tensors in our experiments [23]. We took770

the log of all values in the Enron, NELL-2, and Reddit-2015 tensors. Consistent with established771

practice, this operation damps the effect of a few high magnitude tensor entries on the fit metric [12].772

The factor matrices for the Uber, Amazon, NELL-2, and Reddit experiments were initialized with773

i.i.d. entries from the standard normal distribution. As suggested by Larsen and Kolda [12], the774

Enron tensor’s factors were initialized with a randomized range finder [9]. The range finder algorithm775

initializes each factor matrix Uj as mat(T , j)S, a sketch applied to the mode-j matricization of T776

with S ∈ R
∏

k ̸=j |Ik|×R. Larsen and Kolda chose S as a sparse sampling matrix to select a random777

subset of fibers along each mode. We instead used an i.i.d. Gaussian sketching matrix that was778

not materialized explicitly. Instead, we exploited the sparsity of T and noted that at most nnz (T)779

columns of mat(T , j) were nonzero. Thus, we computed at most nnz (T) rows of the random780

sketching matrix S, which were lazily generated and discarded during the matrix multiplication781

without incurring excessive memory overhead.782

ALS was run for a maximum of 40 rounds on all tensors except for Reddit, which was run for 80783

rounds. The exact fit was computed every 5 rounds (defined as 1 epoch), and we used an early784

21

stopping condition to terminate runs before the maximum round count. The algorithm was terminated785

at epoch T if the maximum fit in the last 3 epochs did not exceed the maximum fit from epoch 1786

through epoch T − 3 by tolerance 10−4.787

Hybrid CP-ARLS-LEV deterministically includes rows from the Khatri-Rao product whose probabil-788

ities exceed a threshold τ . The ostensible goal of this procedure is to improve diversity in sample789

selection, as CP-ARLS-LEV may suffer from many repeat draws of high probability rows. We790

replicated the conditions proposed in the original work by selecting τ = 1/J [12].791

Individual trials of non-randomized (exact) ALS on the Amazon and Reddit tensors required several792

hours on a single Perlmutter CPU node. To speed up our experiments, accuracy measurements for793

exact ALS in Figure 3 were carried out using multi-node SPLATT, The Surprisingly ParalleL spArse794

Tensor Toolkit [22], on four Perlmutter CPU nodes. The fits computed by SPLATT agree with those795

computed by our own non-randomized ALS implementation. As a result, Figure 3 verifies that our796

randomized algorithm STS-CP produces tensor decompositions with accuracy comparable to those797

by highly-optimized, state-of-the-art CP decomposition software. We leave a distributed-memory798

implementation of our randomized algorithms to future work.799

A.12 Supplementary Results800

A.12.1 Probability Distribution Comparison801

Figure 7 provides confirmation on a small test problem that our sampler works as expected. For the802

Khatri-Rao product of three matrices A = U1 ⊙ U2 ⊙ U3, it plots the true distribution of leverage803

scores against a normalized histogram of 50,000 draws from the data structure in Theorem 1.1. We804

choose U1, U2, U3 ∈ R8×8 initialized i.i.d. from a standard normal distribution with 1% of all entries805

multiplied by 10. We observe excellent agreement between the histogram and the true distribution.806

0 100 200 300 400 500
Row Index from KRP

0.000

0.005

0.010

0.015

0.020

0.025

D
en

si
ty

True Leverage Score Distribution
Histogram of Draws from Our Sampler

Figure 7: Comparison of true leverage score distribution with histogram of 50,000 samples drawn
from U1 ⊙ U2 ⊙ U3.

A.12.2 Fits Achieved for J = 216807

Table 4 gives the fits achieved for sparse tensor decomposition for varying rank and algorithm808

(presented graphically in Figure 4). Uncertainties are one standard deviation across 8 runs of ALS.809

0 200 400 600 800
Time (s)

0.365

0.370

0.375

0.380

0.385

0.390

Fi
t

STS-CP (ours), J=65,536
CP-ARLS-LEV, J=196,608
CP-ARLS-LEV, J=163,840
CP-ARLS-LEV, J=131,072
CP-ARLS-LEV, J=98,304
CP-ARLS-LEV, J=65,536

(a) Amazon

0 20 40 60 80 100 120
Time (s)

0.0600

0.0625

0.0650

0.0675

0.0700

0.0725

0.0750

0.0775

0.0800

Fi
t

STS-CP (ours), J=65,536
CP-ARLS-LEV, J=196,608
CP-ARLS-LEV, J=163,840
CP-ARLS-LEV, J=131,072
CP-ARLS-LEV, J=98,304
CP-ARLS-LEV, J=65,536

(b) NELL-2

Figure 8: Fit as a function of time, R = 100.

22

Table 4: Fits Achieved by Randomized Algorithms for Sparse Tensor Decomposition, J = 216, and
non-randomized ALS. The best result among randomized algorithms is bolded. “CP-ARLS-LEV-H”
refers to the hybrid version of CP-ARLS-LEV and “Exact” refers to non-randomized ALS.

TENSOR R CP-ARLS-LEV CP-ARLS-LEV-H STS-CP (OURS) EXACT

UBER

25 .187 ± 2.30E-03 .188 ± 2.11E-03 .189 ± 1.52E-03 .190 ± 1.41E-03
50 .211 ± 1.72E-03 .212 ± 1.27E-03 .216 ± 1.18E-03 .218 ± 1.61E-03
75 .218 ± 1.76E-03 .218 ± 2.05E-03 .230 ± 9.24E-04 .232 ± 9.29E-04
100 .217 ± 3.15E-03 .217 ± 1.69E-03 .237 ± 2.12E-03 .241 ± 1.00E-03
125 .213 ± 1.96E-03 .213 ± 2.47E-03 .243 ± 1.78E-03 .247 ± 1.52E-03

ENRON

25 .0881 ± 1.02E-02 .0882 ± 9.01E-03 .0955 ± 1.19E-02 .0978 ± 8.50E-03
50 .0883 ± 1.72E-02 .0920 ± 6.32E-03 .125 ± 1.03E-02 .132 ± 1.51E-02
75 .0899 ± 6.10E-03 .0885 ± 6.39E-03 .149 ± 1.25E-02 .157 ± 4.87E-03
100 .0809 ± 1.26E-02 .0787 ± 1.00E-02 .164 ± 5.90E-03 .176 ± 4.12E-03
125 .0625 ± 1.52E-02 .0652 ± 1.00E-02 .182 ± 1.04E-02 .190 ± 4.35E-03

NELL-2

25 .0465 ± 9.52E-04 .0467 ± 4.61E-04 .0470 ± 4.69E-04 .0478 ± 7.20E-04
50 .0590 ± 5.33E-04 .0593 ± 4.34E-04 .0608 ± 5.44E-04 .0618 ± 4.21E-04
75 .0658 ± 6.84E-04 .0660 ± 3.95E-04 .0694 ± 2.96E-04 .0708 ± 3.11E-04
100 .0700 ± 4.91E-04 .0704 ± 4.48E-04 .0760 ± 6.52E-04 .0779 ± 5.09E-04
125 .0729 ± 8.56E-04 .0733 ± 7.22E-04 .0814 ± 5.03E-04 .0839 ± 8.47E-04

AMAZON

25 .338 ± 6.63E-04 .339 ± 6.99E-04 .340 ± 6.61E-04 .340 ± 5.78E-04
50 .359 ± 1.09E-03 .360 ± 8.04E-04 .366 ± 7.22E-04 .366 ± 1.01E-03
75 .367 ± 1.82E-03 .370 ± 1.74E-03 .382 ± 9.13E-04 .382 ± 5.90E-04
100 .366 ± 3.05E-03 .371 ± 2.53E-03 .392 ± 6.67E-04 .393 ± 5.62E-04
125 .358 ± 6.51E-03 .364 ± 4.22E-03 .400 ± 3.67E-04 .401 ± 3.58E-04

REDDIT

25 .0581 ± 1.02E-03 .0583 ± 2.78E-04 .0592 ± 3.07E-04 .0596 ± 4.27E-04
50 .0746 ± 1.03E-03 .0738 ± 4.85E-03 .0774 ± 7.88E-04 .0783 ± 2.60E-04
75 .0845 ± 1.64E-03 .0849 ± 8.96E-04 .0909 ± 5.49E-04 .0922 ± 3.69E-04
100 .0904 ± 1.35E-03 .0911 ± 1.59E-03 .101 ± 6.25E-04 .103 ± 7.14E-04
125 .0946 ± 2.13E-03 .0945 ± 3.17E-03 .109 ± 7.71E-04 .111 ± 7.98E-04

A.12.3 Fit as a Function of Time810

Figures 8a and 8b shows the fit as a function of time for the Amazon Reviews and NELL2 tensors.811

The hybrid version of CP-ARLS-LEV was used for comparison in both experiments. As in section812

4.3, thick lines are averages of the running max fit across 4 ALS trials, shown by the thin dotted lines.813

For Amazon, the STS-CP algorithm makes faster progress than CP-ARLS-LEV at all tested sample814

counts.815

For the NELL-2 tensor, STS-CP makes slower progress than CP-ARLS-LEV for sample counts816

up to J = 163, 840. On average, these trials with CP-ARLS-LEV do not achieve the same final817

fit as STS-CP. CP-ARLS-LEV finally achieves a comparable fit to STS-CP when the former uses818

J = 196, 608 samples, compared to J = 65, 536 for our method.819

A.12.4 Speedup of STS-CP and Practical Usage Guide820

Timing Comparisons. For each tensor, we now compare hybrid CP-ARLS-LEV and STS-CP on821

the time required to achieve a fixed fraction of the fit achieved by non-randomized ALS. For each822

tensor and rank in the set {25, 50, 75, 100, 125}, we ran both algorithms using a range of sample823

counts. We tested STS-CP on values of J from the set {215x | 1 ≤ x ≤ 4} for all tensors. CP-824

ARLS-LEV required a sample count that varied significantly between datasets to hit the required825

thresholds, and we report the sample counts that we tested in Table 5. Because CP-ARLS-LEV has826

poorer sample complexity than STS-CP, we tested a wider range of sample counts for the former827

algorithm.828

23

Table 5: Tested Sample Counts for hybrid CP-ARLS-LEV

TENSOR VALUES OF J TESTED

UBER {215x | x ∈ {1..13}}
ENRON {215x | x ∈ {1..7} ∪ {10, 12, 14, 16, 18, 20, 22, 26, 30, 34, 38, 42, 46, 50, 54}}
NELL-2 {215x | x ∈ {1..7}}
AMAZON {215x | x ∈ {1..7}}
REDDIT {215x | x ∈ {1..12}}

For each configuration of tensor, target rank R, sampling algorithm, and sample count J , we ran 4829

trials using the configuration and stopping criteria in Appendix A.11. The result of each trial was a830

set of (time,fit) pairs. For each configuration, we linearly interpolated the pairs for each trial and831

averaged the resulting continuous functions over all trials. The result for each configuration was832

a function fT ,R,A,J : R+ → [0, 1]. The value fT ,R,A,J(t) is the average fit at time t achieved by833

algorithm A to decompose tensor T with target rank R using J samples per least squares solve.834

Finally, let835

SpeedupT ,R,M :=
minJ argmint≥0 [fT ,R,CP-ARLS-LEV-H,J(t) > P]

minJ argmint≥0 [fT ,R,STS-CP,J(t) > P]

be the speedup of STS-CP to over CP-ARLS-LEV (hybrid) to achieve a threshold fit P on tensor T836

with target rank R. We let the threshold P for each tensor T be a fixed fraction of the fit achieved by837

non-randomized ALS (see Table 4).838

Figure 9 reports the speedup of STS-CP over hybrid CP-ARLS-LEV for P = 0.95 on all tensors839

except Enron. For large tensors with over one billion nonzeros, we report a significant speedup840

anywhere from 1.4x to 2.0x for all tested ranks. For smaller tensors with less than 100 million841

nonzeros, the lower cost of each least squares solve lessens the impact of the expensive, more accurate842

sample selection phase of STS-CP. Despite this, STS-CP performs comparably to CP-ARLS-LEV at843

most ranks, with significant slowdown only at rank 25 on the smallest tensor Uber.844

25 50 75 100 125
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ov
er

 L
K

 to
 a

tt
ai

n
95

%
 o

f E
xa

ct

Amazon

25 50 75 100 125

Reddit

(a) Large Tensors

25 50 75 100 125
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ee

du
p

ov
er

 L
K

 to
 a

tt
ai

n
95

%
 o

f E
xa

ct

Uber

25 50 75 100 125

NELL-2

(b) Small Tensors

Figure 9: Speedup of STS-CP over CP-ARLS-LEV hybrid (LK) to reach 95% of the fit achieved by
non-randomized ALS. Large tensors have more than 1 billion nonzero entries.

On the Enron tensor, hybrid CP-ARLS-LEV could not achieve the 95% accuracy threshold for any845

rank above 25 for the sample counts tested in Table 5. STS-CP achieved the threshold accuracy for846

all ranks tested. Instead, Figure 10 reports the speedup to achieve 85% of the fit of non-randomized847

ALS on the Enron. Beyond rank 25, our method consistently exhibits more than 2x speedup to reach848

the threshold.849

Guide to Sampler Selection. Based on the performance comparisons in this section, we offer the850

following guide to CP decomposition algorithm selection. Our experiments demonstrate that STS-CP851

offers the most benefit on sparse tensors with billions of nonzeros (Amazon and Reddit) at852

high target decomposition rank. Here, the runtime of our more expensive sampling procedure is853

offset by reductions in the least squares solve time. For smaller tensors, our sampler may still offer854

significant performance benefits (Enron). In other cases (Uber, NELL-2), CP-ARLS-LEV exhibits855

better performance, but by small margins for rank beyond 50.856

24

25 50 75 100 125
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p

ov
er

 L
K

 to
 a

tt
ai

n
85

%
 o

f E
xa

ct

Enron

Figure 10: Speedup of STS-CP over CP-ARLS-LEV hybrid (LK) to reach 85% of the fit achieved by
non-randomized ALS on the Enron Tensor.

STS-CP reduces the cost of each least squares solve through a sample selection process that relies on857

dense linear algebra primitives (see Algorithms 3 and 4). Because these operations can be expressed858

as standard BLAS calls and can be carried out in parallel (see Appendix A.10, we hypothesize that859

STS-CP is favorable when GPUs or other dense linear algebra accelerators are available.860

Because our target tensor is sparse, the least squares solve during each ALS iteration requires a sparse861

matricized-tensor times Khatri-Rao product (spMTTKRP) operation. After sampling, this primitive862

can reduced to sparse-matrix dense-matrix multiplication (SpMM). Development of accelerators863

for these primitives is an active area of research [26, 24]. When such accelerators are available, the864

lower cost of the spMTTKRP operation reduces the relative benefit provided by the STS-CP sample865

selection method. We hypothesize that CP-ARLS-LEV, with its faster sample selection process866

but lower sample efficiency, may retain its benefit in this case. We leave verification of these two867

hypotheses as future work.868

25

	Introduction
	Preliminaries and Related Work
	Sketched Linear Least Squares
	Prior Work

	An Efficient Khatri-Rao Leverage Sampler
	Efficient Sampling from qh, U, Y
	Sampling from the Khatri-Rao Product
	Application to Tensor Decomposition

	Experiments
	Runtime Benchmark
	Least Squares Accuracy Comparison
	Sparse Tensor Decomposition

	Discussion and Future Work
	Appendix
	Details about Table 1
	Definitions of Matrix Products
	Further Comparison to Prior Work
	Proof of Theorem 3.1
	Proof of Lemma 3.2
	Cohesive Proof of Theorem 1.1
	Efficient Single-Element Updates
	Extension to Sparse Input Matrices
	Alternating Least Squares CP Decomposition
	Experimental Platform and Sampler Parallelism
	Sparse Tensor CP Experimental Configuration
	Supplementary Results
	Probability Distribution Comparison
	Fits Achieved for J=216
	Fit as a Function of Time
	Speedup of STS-CP and Practical Usage Guide

