
On the Minimax Regret for Online Learning
with Feedback Graphs

Khaled Eldowa∗
Università degli Studi di Milano, Milan, Italy

khaled.eldowa@unimi.it

Emmanuel Esposito∗
Università degli Studi di Milano, Milan, Italy
& Istituto Italiano di Tecnologia, Genoa, Italy

emmanuel@emmanuelesposito.it

Tommaso Cesari
University of Ottawa, Ottawa, Canada

tcesari@uottawa.ca

Nicolò Cesa-Bianchi
Università degli Studi di Milano, Milan, Italy

& Politecnico di Milano, Milan, Italy
nicolo.cesa-bianchi@unimi.it

Abstract

In this work, we improve on the upper and lower bounds for the regret of online
learning with strongly observable undirected feedback graphs. The best known
upper bound for this problem is O

(√
αT lnK

)
, where K is the number of actions,

α is the independence number of the graph, and T is the time horizon. The
√
lnK

factor is known to be necessary when α = 1 (the experts case). On the other
hand, when α = K (the bandits case), the minimax rate is known to be Θ

(√
KT

)
,

and a lower bound Ω
(√
αT
)

is known to hold for any α. Our improved upper
boundO

(√
αT (1 + ln(K/α))

)
holds for any α and matches the lower bounds for

bandits and experts, while interpolating intermediate cases. To prove this result,
we use FTRL with q-Tsallis entropy for a carefully chosen value of q ∈ [1/2, 1)
that varies with α. The analysis of this algorithm requires a new bound on the
variance term in the regret. We also show how to extend our techniques to time-
varying graphs, without requiring prior knowledge of their independence numbers.
Our upper bound is complemented by an improved Ω

(√
αT (lnK)/(lnα)

)
lower

bound for all α > 1, whose analysis relies on a novel reduction to multitask
learning. This shows that a logarithmic factor is necessary as soon as α < K.

1 Introduction

Feedback graphs [29] provide an elegant interpolation between two popular online learning models:
multiarmed bandits and prediction with expert advice. When learning with an undirected feedback
graph G over K actions, the online algorithm observes not only the loss of the action chosen in each
round, but also the loss of the actions that are adjacent to it in the graph. Two important special cases
of this setting are: prediction with expert advice (when G is a clique) and K-armed bandits (when
G has no edges). When losses are generated adversarially, the regret in the feedback graph setting
with strong observability has been shown to scale with the independence number α of G. Intuitively,
denser graphs, which correspond to smaller independence numbers, provide more feedback to the
learner, thus enabling a better control on regret. More specifically, the best known upper and lower
bounds on the regret after T rounds are O

(√
αT logK

)
and Ω

(√
αT
)

[3, 4]. It has been known
for three decades that this upper bound is tight for α = 1 (the experts case, [9, 10]). When α = K
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(the bandits case), the lower bound Ω
(√
KT

)
—which has also been known for nearly three decades

[7, 8]—was matched by a corresponding upper bound O
(√
KT

)
only in 2009 [5]. These results

show that in feedback graphs, the logarithmic factor
√
logK is necessary (at least) for the α = 1

case, while it must vanish from the minimax regret as α grows from 1 to K, but the current bounds
fail to capture this fact. In this work, we prove new upper and lower regret bounds that for the first
time account for this vanishing logarithmic factor.

To prove our new upper bound, we use the standard FTRL algorithm run with the q-Tsallis entropy
regularizer (q-FTRL for short). It is well-known [1] that for q = 1

2 this algorithm (run with appropriate
loss estimates) achieves regret O

(√
KT

)
when α = K (bandits case), while for q → 1− the same

algorithm (without loss estimates) recovers the bound O
(√
T logK

)
when α = 1 (experts case).

When G contains all self-loops, we show in Theorem 1 that, if q is chosen as a certain function
q(α,K), then q(α,K)-FTRL, run with standard importance-weighted loss estimates, achieves regret
O
(√

αT (1 + log(K/α))
)
. This is a strict improvement over the previous bound, and matches the

lower bounds for bandits and experts while interpolating the intermediate cases. This interpolation is
reflected by our choice of q, which goes from 1

2 to 1 as α ranges from 1 to K. The main technical
hurdle in proving this result is an extension to arbitrary values of q ∈

[
1
2 , 1
)

of a standard result—
see, e.g., [29, Lemma 3]—that bounds in terms of α the variance term in the regret of q-FTRL.
In Theorem 2, using a modified loss estimate, this result is extended to any strongly observable
undirected graph [2], a class of feedback graphs in which some of the actions do not reveal their loss
when played. In Theorem 3, we show via a doubling trick that our new upper bound can also be
obtained (up to constant factors) without the need of knowing (or computing) α. As the resulting
algorithm is oblivious to α, our analysis also applies to arbitrary sequences of graphs Gt, where K is
constant but the independence number αt of Gt can change over time, and the algorithm observes
Gt only after choosing an action (the so-called uninformed case). In this setting, the analysis of the
doubling trick is complicated by the non-trivial dependence of the regret on the sequence of αt.

We also improve on the Ω
(√
αT
)

lower bound by proving a new Ω
(√

αT logαK
)

lower bound for
all α > 1. This is the first result showing the necessity—outside the experts case—of a logarithmic
factor in the minimax regret for all α < K. Our proof uses a stochastic adversary generating both
losses and feedback graphs via i.i.d. draws from a joint distribution. This sequence of losses and
feedback graphs can be used to define a hard instance of the multi-task bandits problem, a variant
of the combinatorial bandits framework [12]. We then prove our result by adapting known lower
bounding techniques for multi-task bandits [6]. Note that for values of α bounded away from 2
and K, the logarithmic factor logαK in the lower bound is smaller than the corresponding factor
1 + log(K/α) in the upper bound. Closing this gap remains an open problem.

1.1 Additional related work

Several previous works have used the q-Tsallis regularizer with q tuned to specific values other
than 1

2 and 1. For example, in [35, Section 4], q is chosen as a function of K to prove a regret
bound of O

(√
αT (logK)3

)
for any strongly observable directed feedback graph, which shaves off

a log T factor compared to previous works. This bound is worse than the corresponding bounds for
undirected graphs because the directed setting is harder. Specific choices of q have been considered
to improve the regret in settings of online learning with standard bandit feedback. For example,
the choice q = 2

3 was used in [31] to improve the analysis of regret in bandits with decoupled
exploration and exploitation. Regret bounds for arbitrary choices of q are derived in [36, 23] for a
best-of-both-worlds analysis of bandits, though q = 1

2 remains the optimal choice. The 1
2 -Tsallis

entropy and the Shannon entropy (q = 1) regularizers have been combined before in different ways
to obtain best-of-both-worlds guarantees for the graph feedback problem [18, 22]. The idea of using
values of q ∈ ( 12 , 1) for feedback graphs is quite natural and has been brought up before, e.g., in [32],
but achieving an improved dependence on the graph structure by picking a suitable value of q has
not been, to the best of our knowledge, successfully pursued before. On the other hand, an approach
based on a similar use of the q-Tsallis regularizer has been employed by [26] for the problem of
multiarmed bandits with sparse losses to achieve a O

(√
sT ln(K/s)

)
regret bound, where s is the

maximum number of nonzero losses at any round.

Our lower bound is reminiscent of the Ω
(√

KT logK N
)

lower bound proved in [33] for the problem
of bandits with expert advice (with N ≥ K being the number of experts); see also [17] and [34]. In
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that problem, at each time step, experts suggest distributions over actions to the learner, whose regret
is computed against the best expert in hindsight. Although the two settings are different, the variant
of the multitask bandit problem that our lower bound construction simulates is the same as the one
used in the proof of [17, Theorem 7].

2 Problem Setting

For any integer n ≥ 1, let [n] = {1, . . . , n}. We consider the following game played over T rounds
between a learner with action set V = [K] and the environment. At the beginning of the game, the
environment secretly selects a sequence of losses (ℓt)t∈[T ], where ℓt : V → [0, 1],2 and a sequence
of undirected graphs (Gt)t∈[T ] over the set of actions V , that is, Gt = (V,Et). At any time t, the
learner selects an arm It (possibly at random), then pays loss ℓt(It) and observes the feedback graph
Gt and all losses ℓt(i) of neighbouring actions i ∈ NGt

(It), where NGt
(i) = {j ∈ V : (i, j) ∈ Et}

(see Online Protocol 1). In this work, we only focus on strongly observable graphs [2]. An undirected
graph G is strongly observable if for every i ∈ V , at least one of the following holds: i ∈ NG(i) or
i ∈ NG(j) for all j ̸= i.

The performance of the learner is measured by the regret

RT = E

[
T∑
t=1

ℓt(It)

]
− min
i∈[K]

T∑
t=1

ℓt(i) .

where the expectation is over the learner’s internal randomization.

Online Protocol 1 Online learning with feedback graphs
environment: (hidden) losses ℓt : V → [0, 1] and graphs Gt = (V,Et), for all t = 1, . . . , T
for t = 1, . . . , T do

The learner picks an action It ∈ V (possibly at random)
The learner incurs loss ℓt(It)
The learner observes losses

{(
i, ℓt(i)

)
: i ∈ NGt

(It)
}

and graph Gt
end for

We denote by ∆K the simplex
{
p ∈ [0, 1]K : ∥p∥1 = 1

}
. For any graph G, we define its

independence number as the cardinality of the largest set of nodes such that no two nodes are
neighbors, and denote it by α(G). For simplicity, we use Nt to denote the neighbourhood NGt

in the
graph Gt and we use αt to denote the independence number α(Gt) of Gt at time t.

3 FTRL with Tsallis Entropy for Undirected Feedback Graphs

As a building block, in this section, we focus on the case when all the feedback graphs G1, . . . , GT
have the same independence number α1 = · · · = αT = α, whereas the general case is treated in the
next section. For simplicity, we start with the assumption that all nodes have self-loops: (i, i) ∈ Et
for all i ∈ V and all t. We later lift this requirement and show that the regret guarantees that we
provide can be extended to general strongly observable undirected feedback graphs, only at the cost
of a constant multiplicative factor.

The algorithm we analyze is q-FTRL (described in Algorithm 1), which is an instance of the follow
the regularized leader (FTRL) framework—see, e.g., [30, Chapter 7]—with the (negative) q-Tsallis
entropy

ψq(x) =
1

1− q

(
1−

∑
i∈V

x(i)q

)
∀x ∈ ∆K ,

as the regularizer, whose parameter q ∈ (0, 1) can be tuned according to our needs. Since we do not
observe all the losses in a given round, the algorithm makes use of unbiased estimates for the losses.
When all self-loops are present, we define the estimated losses in the following standard manner. Let

2For notational convenience, we will sometimes treat the loss functions ℓt : V → [0, 1] as vectors with
components ℓt(1), . . . , ℓt(K).
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It be the action picked at round t, which is drawn from the distribution pt ∈ ∆K maintained by the
algorithm, the loss estimate for an action i ∈ V at round t is given by

ℓ̂t(i) =
ℓt(i)

Pt(i)
I{It ∈ Nt(i)} , (1)

where Pt(i) = P
(
It ∈ Nt(i)

)
=
∑
j∈Nt(i)

pt(j). This estimate is unbiased in the sense that

Et
[
ℓ̂t(i)

]
= ℓt(i) for all t ∈ [T ] and all i ∈ V , where we denote Et [·] = E [· | I1, . . . , It−1].

Algorithm 1 q-FTRL for undirected feedback graphs
input: q ∈ (0, 1), η > 0
initialization: p1(i)← 1/K for all i = 1, . . . ,K
for t = 1, . . . , T do

Select action It ∼ pt and incur loss ℓt(It)
Observe losses

{(
i, ℓt(i)

)
: i ∈ Nt(It)

}
and graph Gt

Construct a loss estimate ℓ̂t for ℓt ▷ e.g., (1) or (6)
Let pt+1 ← argminp∈∆K

η
〈∑t

s=1 ℓ̂s, p
〉
+ ψq(p)

end for

A key part of the standard regret analysis of q-FTRL (see, e.g., the proof of Lemma 3 in Appendix A)
is handling the variance term, which, with the choice of estimator given in (1), takes the following
form

Bt(q) =
∑
i∈V

pt(i)
2−q

Pt(i)
. (2)

By Hölder’s inequality, this term can be immediately upper bounded by

Bt(q) ≤
∑
i∈V

pt(i)
1−q ≤

(∑
i∈V

pt(i)

)1−q(∑
i∈V

11/q

)q
= Kq ,

while previous results on the regret analysis of multiarmed bandits with graph feedback [29, 3] would
give

Bt(q) ≤
∑
i∈V

pt(i)

Pt(i)
≤ α .

However, the former result would only recover a O(
√
KT ) regret bound (regardless of α) with the

best choice of q = 1/2, which could be trivially achieved by ignoring side-observations of the losses,
whereas the latter bound would only manage to achieve a O(

√
αT lnK) regret bound, incurring the

extra
√
lnK factor for all values of α. Other results in the literature (e.g., see [2, 4, 16, 19, 22, 25, 32,

35]) do not bring an improvement in this setting when bounding the Bt(q) term and, hence, do not
suffice for achieving the desired regret bound. The following lemma provides a novel and improved
bound on quantities of the same form as Bt(q) in terms of the independence number αt = α of the
undirected graph Gt.

Lemma 1. LetG = (V,E) be any undirected graph with |V | = K vertices and independence number
α(G) = α. Let b ∈ [0, 1], p ∈ ∆K and consider any nonempty subset U ⊆ {v ∈ V : v ∈ NG(v)}.
Then, ∑

v∈U

p(v)1+b∑
u∈NG(v) p(u)

≤ α1−b .

Proof. First of all, observe that we can restrict ourselves to the subgraph G[U ] induced by U , i.e.,
the graph G[U ] = (U,E ∩ (U × U)). This is because the neighbourhoods in this graph are such
that NG[U ](v) ⊆ NG(v) for all v ∈ U , and its independence number is α(G[U ]) ≤ α(G). Hence, it
suffices to prove the claimed inequality for any undirected graph G = (V,E) with all self-loops, any
p ∈ [0, 1]K such that ∥p∥1 ≤ 1, and the choice U = V . We assume this in what follows without loss
of generality.
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For any subgraph H ⊆ G with vertices V (H) ⊆ V , denote the quantity we want to upper bound by

Q(H) =
∑

v∈V (H)

p(v)1+b∑
u∈NG(v) p(u)

.

Our aim is thus to provide an upper bound to Q(G).

Consider a greedy algorithm that incrementally constructs a subset of vertices in the following way: at
each step, it selects a vertex v that maximizes p(v)b/

(∑
u∈NG(v) p(u)

)
, it adds v to the solution, and

it removes v from G together with its neighbourhood NG(v). This step is iterated on the remaining
graph until no vertex is left.

Let S = {v1, . . . , vs} ⊆ V be the solution returned by the above greedy algorithm on G. Also let
G1, . . . , Gs+1 be the sequence of graphs induced by the operations of the algorithm, where G1 = G
and Gs+1 is the empty graph, and let Nr(v) = NGr

(v) for v ∈ V (Gr). At every step r ∈ [s] of the
greedy algorithm, the contribution to Q(G) of the removed vertices Nr(vr) amounts to

Q(Gr)−Q(Gr+1) =
∑

v∈Nr(vr)

p(v)1+b∑
u∈N1(v)

p(u)
≤

∑
v∈Nr(vr)

p(v)
p(vr)

b∑
u∈N1(vr)

p(u)

≤
∑
v∈N1(vr)

p(v)∑
u∈N1(vr)

p(u)
p(vr)

b = p(vr)
b ,

where the last inequality is due to the fact that Ni(v) ⊆ Nj(v) for all i ≥ j and v ∈ Vi. Therefore,
we can observe that

Q(G) =

s∑
r=1

(
Q(Gr)−Q(Gr+1)

)
≤
∑
v∈S

p(v)b .

The solution S is an independent set of G by construction. Consider now any independent set A ⊆ V
of G. We have that∑

v∈A
p(v)b ≤ max

x∈∆K

∑
v∈A

x(v)b = |A| max
x∈∆K

∑
v∈A

x(v)b

|A|

≤ |A| max
x∈∆K

(
1

|A|
∑
v∈A

x(v)

)b
≤ |A|1−b ≤ α1−b , (3)

where the second inequality follows by Jensen’s inequality and the fact that b ∈ [0, 1].

Observe that this upper bound is tight for general probability distributions p ∈ ∆K over the vertices
V of any strongly observable undirected graph G (containing at least one self-loop), as it is exactly
achieved by the distribution p⋆ ∈ ∆K defined as p⋆(i) = 1

|S| I {i ∈ S} for some maximum indepen-
dent set S ⊆ V of G. Using this lemma, the following theorem provides our improved upper bound
under the simplifying assumptions we made thus far.
Theorem 1. Let G1, . . . , GT be a sequence of undirected feedback graphs, where each Gt contains
all self-loops and has independence number αt = α for some common value α ∈ [K]. If Algorithm 1
is run with input

q =
1

2

(
1 +

ln(K/α)√
ln(K/α)2 + 4 + 2

)
∈ [1/2, 1) and η =

√
2qK1−q

T (1− q)αq
,

and loss estimates (1), then its regret satisfies RT ≤ 2
√
eαT (2 + ln(K/α)).

Proof. One can verify that for any i ∈ V , the loss estimate ℓ̂t(i) defined in (1) satisfies Et
[
ℓ̂t(i)

2
]
≤

1/Pt(i). Hence, using also that Et
[
ℓ̂t(i)

]
= ℓt(i), Lemma 2 in Appendix A implies that

RT ≤
K1−q

η(1− q)
+

η

2q

T∑
t=1

E

[∑
i∈V

pt(i)
2−q

Pt(i)

]
(4)

≤ K1−q

η(1− q)
+

η

2q
αqT , (5)
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where the second inequality follows by Lemma 1 with b = 1− q since all actions i ∈ V are such that
i ∈ NG(i). Our choices for q and η allow us to further upper bound the right-hand side of (5) by√

2K1−qαq

q(1− q)
T =

√
2T exp

(
1 +

1

2
ln(αK)− 1

2

√
ln (K/α)

2
+ 4

)(
2 +

√
ln (K/α)

2
+ 4

)

≤

√
2eαT

(
2 +

√
ln (K/α)

2
+ 4

)
≤ 2

√
eαT

√
ln (K/α)

2
+ 4

≤ 2
√
eαT (2 + ln(K/α)) .

The regret bound achieved in the above theorem achieves the optimal regret bound for the experts
setting (i.e., α = 1) and the bandits setting (i.e., α = K) simultaneously. Moreover, it interpolates
the intermediate cases for α ranging between 1 and K, introducing the multiplicative logarithmic
factor only for graphs with independence number strictly smaller than K. We remark that the chosen
values of q and η do in fact minimize the right-hand side of (5). Note that we relied on the knowledge
of α to tune the parameter q. This is undesirable in general. We will show how to lift this requirement
in Section 4. The same comment applies to Theorem 2, below.

We now show how to achieve the improved regret bound of Theorem 1 in the case of strongly
observable undirected feedback graphs where some self-loops may be missing; i.e., there may be
actions i ∈ V such that i /∈ NG(i). Using the loss estimator defined in (1) may lead to a large
variance term due to the presence of actions without self-loops. One approach to deal with this—see,
e.g., [35] or [28]—is to suitably alter the loss estimates of these actions.

Define St = {i ∈ V : i /∈ Nt(i)} as the subset of actions without self-loops in the feedback graph
Gt at each time step t ∈ [T ]. The idea is that we need to carefully handle some action i ∈ St only in
the case when the probability pt(i) of choosing i at round t is sufficiently large, say, larger than 1/2.
Define the set of such actions as Jt = {i ∈ St : pt(i) > 1/2} and observe that |Jt| ≤ 1. Similarly to
[35], define new loss estimates

ℓ̂t(i) =


ℓt(i)
Pt(i)

I {It ∈ Nt(i)} if i ∈ V \ Jt
ℓt(i)−1
Pt(i)

I {It ∈ Nt(i)}+ 1 if i ∈ Jt
(6)

for which it still holds that Et
[
ℓ̂t
]
= ℓt and that Et

[
ℓ̂t(i)

2
]
≤ 1/Pt(i) for all i /∈ Jt. This change,

along with the use of Lemma 1 for the actions in V \ St, suffices in order to prove the following
regret bound (see Appendix B for the proof) when the feedback graphs do not necessarily contain
self-loops for all actions.
Theorem 2. Let G1, . . . , GT be a sequence of strongly observable undirected feedback graphs,
where each Gt has independence number αt = α for some common value α ∈ [K]. If Algorithm 1 is
run with input

q =
1

2

(
1 +

ln(K/α)√
ln(K/α)2 + 4 + 2

)
∈ [1/2, 1) and η =

1

3

√
2qK1−q

T (1− q)αq
,

and loss estimates (6), then its regret satisfies RT ≤ 6
√
eαT (2 + ln(K/α)).

4 Adapting to Arbitrary Sequences of Graphs

In the previous section, we assumed for simplicity that all the graphs have the same independence
number. This independence number was then used to tune q, the parameter of the Tsallis entropy
regularizer used by the algorithm. In this section, we show how to extend our approach to the case
when the independence numbers of the graphs are neither the same nor known a-priori by the learner.
Had these independence numbers been known a-priori, one approach is to set q as in Theorem 2 but
using the average independence number

αT =
1

T

T∑
t=1

αt .

6



Doing so would allow us to achieve a O
(√∑T

t=1 αt(1 + ln(K/αT ))
)

regret bound. We now show
that we can still recover a bound of the same order without prior knowledge of αT . For round t and
any fixed q ∈ [0, 1], define

Ht(q) =
∑

i∈V \St

pt(i)
2−q

Pt(i)
.

We know from Lemma 1 that Ht(q) ≤ αqt . Thus, we can leverage these observations and use a
doubling trick (similar in principle to [3]) to guess the value of αT . This approach is outlined in
Algorithm 2. Starting with r = 0 and Tr = 1, the idea is to instantiate Algorithm 1 at time-step Tr
with q and η set as in Theorem 2 but with 2r replacing the independence number. Then, at t ≥ Tr,
we increment r and restart Algorithm 1 only if

1

T

t∑
s=Tr

Hs(qr)
1/qr > 2r+1,

since (again thanks to Lemma 1) the left-hand side of the above inequality is always upper bounded
by αT . The following theorem shows that this approach essentially enjoys the same regret bound of
Theorem 2 up to an additive log2 αT term.

Algorithm 2 q-FTRL for an arbitrary sequence of strongly observable undirected graphs
input: Time horizon T
define: For each r ∈ {0, . . . , ⌊log2K⌋},

qr =
1

2

(
1 +

ln(K/2r)√
ln(K/2r)2 + 4 + 2

)
and ηr =

√
2qrK1−qr

11T (1− qr) (2r)qr

initialization: T0 ← 1, r ← 0, instantiate Algorithm 1 with q = q0, η = η0, and loss estimates (6)
for t = 1, . . . , T do

Perform one step of the current instance of Algorithm 1
if 1
T

∑t
s=Tr

Hs(qr)
1/qr > 2r+1 then

r ← r + 1
Tr ← t+ 1
Restart Algorithm 1 with q = qr, η = ηr, and loss estimates (6)

end if
end for

Theorem 3. Let C = 4
√
6e

√
π+

√
4−2 ln 2

ln 2 . Then, the regret of Algorithm 2 satisfies

RT ≤ C

√√√√ T∑
t=1

αt

(
2 + ln

(
K

αT

))
+ log2 αT .

Proof sketch. For simplicity, we sketch here the proof for the case when in every round t, all the
nodes have self-loops; hence, Ht(q) = Bt(q). See the full proof in Appendix C, which treats the
general case in a similar manner. Let n =

⌈
log2 αT

⌉
and assume without loss of generality that

αT > 1. Since Lemma 1 implies that for any r and t, Bt(qr) ≤ αqrt , we have as a consequence that
for any t ≥ Tr,

1

T

t∑
s=Tr

Bs(qr)
1/qr ≤ 1

T

t∑
s=Tr

αs ≤ αT ≤ 2n .

Hence, the maximum value of r that the algorithm can reach is n− 1. In doing so, we will execute n
instances of Algorithm 1, each corresponding to a value of r ∈ {0, . . . , n − 1}. For every such r,
we upper bound the instantaneous regret at step Tr+1 − 1 (the step when the restarting condition is
satisfied) by 1, hence the added log2 αT term in the regret bound. For the rest of the interval; namely,
for t ∈ [Tr, Tr+1 − 2], we have via (4) that the regret of Algorithm 1 is bounded by

K1−qr

ηr(1− qr)
+

ηr
2qr

E
Tr+1−2∑
t=Tr

Bt(qr) . (7)

7



Define Tr:r+1 = Tr+1 − Tr − 1, and notice that

Tr+1−2∑
t=Tr

Bt(qr) ≤ Tr:r+1

(
1

Tr:r+1

Tr+1−2∑
t=Tr

Bt(qr)
1/qr

)qr
≤ Tr:r+1

(
T

Tr:r+1
2r+1

)qr
≤ 2T

(
2r
)qr

,

where the first inequality follows due to Jensen’s inequality since qr ∈ (0, 1), and the second follows
from the restarting condition of Algorithm 2. After, plugging this back into (7), we can simply use
the definitions of ηr and qr and bound the resulting expression in a similar manner to the proof of
Theorem 1. Overall, we get that

RT ≤ 4
√
3eT

n−1∑
r=0

√
2r ln

(
e2K2−r

)
+ log2 αT ,

from which the theorem follows by using Lemma 4 in Appendix A, which shows, roughly speaking,
that the sum on the right-hand side is of the same order as its last term.

Although Algorithm 2 requires knowledge of the time horizon, this can be dealt with by applying a
standard doubling trick on T at the cost of a larger constant factor. It is also noteworthy that the bound
we obtained is of the form

√
TαT (1 + ln(K/αT )) and not

√∑
t αt(1 + ln(K/αt)). Although both

coincide with the bound of Theorem 2 when αt is the same for all time steps, the latter is smaller via
the concavity of x(1 + ln(K/x)) in x. It is not clear, however, whether there is a tuning of q ∈ (0, 1)
that can achieve the second bound (even with prior knowledge of the entire sequence α1, . . . , αT of
independence numbers).

5 An Improved Lower Bound via Multitask Learning

In this section we provide a new lower bound on the minimax regret showing that, apart from the
bandits case, a logarithmic factor is indeed necessary in general. When the graph is fixed over time,
it is known that a lower bound of order

√
αT holds for any value of α [3, 29]. Whereas for the

experts case (α = 1), the minimax regret is of order3
√
T lnK [9]. The following theorem provides,

for the first time, a lower bound that interpolates between the two aforementioned bounds for the
intermediate values of α.
Theorem 4. Pick any K ≥ 2 and any α such that 2 ≤ α ≤ K. Then, for any algorithm and for
all T ≥ α logαK

4 log(4/3) , there exists a sequence of losses and feedback graphs G1, . . . , GT such that
α(Gt) = α for all t = 1, . . . , T and

RT ≥
1

18
√
2

√
αT logαK.

In essence, the proof of this theorem (see Appendix D) constructs a sequence of feedback graphs and
losses that is equivalent to a hard instance of the multitask bandit problem (MTB) [12], an important
special case of combinatorial bandits with a convenient structure for proving lower bounds [6, 15, 21].
We consider a variant of MTB in which, at the beginning of each round, the decision-maker selects
an arm to play in each one of M stochastic bandit games. Subsequently, the decision-maker only
observes (and suffers) the loss of the arm played in a single randomly selected game. For proving the
lower bound, we use a class of stationary stochastic adversaries (i.e., environments), each generating
graphs and losses in a manner that simulates an MTB instance.

Fix 2 ≤ α ≤ K = |V | and assume for simplicity that M = logαK is an integer. We now construct
an instance of online learning with time-varying feedback graphs Gt = (V,Et) with α(Gt) = α
that is equivalent to an MTB instance with M bandit games each containing α “base actions”. Since
K = αM , we can uniquely identify each action in V with a vector a =

(
a(1), . . . , a(M)

)
in

3As a lower bound, this is known to hold asymptotically as K and T grow. However, it can also be shown to
hold non-asymptotically (though with worse leading constants); see [20, Theorem 3.22] or [11, Theorem 3.6].
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(2, 1,1)

(2, 2,1)

C3,1

(1, 1,2)
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(2, 2,2)
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Figure 1: This figure shows an example of the multi-task bandit construction used to prove the lower
bound. Here, K = 8 and α = 2; thus, the number of games is M = 3. Each action is identified by a
tuple of three numbers, each corresponding to a choice of one out of a pair of “base actions” in each
game. Each of the three graphs in the figure corresponds to a game, such that two actions share an
edge if and only if they choose the same base action in the corresponding game. At every round, a
graph is randomly drawn, and all actions belonging to the same clique suffer the same loss.

[α]M . The action at ∈ V chosen by the learner at round t is equivalent to a choice of base actions
at(1), . . . , at(M) in the M games. The feedback graph at every round is sampled uniformly at
random from a set of M undirected graphs {Gi}Mi=1, where Gi = (V,Ei) is such that (a, a′) ∈ Ei
if and only if a(i) = a′(i). This means (see Figure 1) that each graph Gi consists of α isolated
cliques {Ci,j}αj=1 such that an action a belongs to clique Ci,j if and only if a(i) = j. Clearly, the
independence number of any such graph is α. Drawing feedback graph Gt = Gi corresponds to the
activation of game i in the MTB instance. Hence, choosing at ∈ V with feedback graph Gt = Gi is
equivalent to playing base action at(i) in game i in the MTB. As for the losses, we enforce that, given
a feedback graph Gt, all actions that belong to the same clique of the feedback graph are assigned the
same loss. Namely, if Gt = Gi and a(i) = a′(i) = j, then ℓt(a) = ℓt(a

′), which can be seen as the
loss ℓt(j) assigned to base action j in game Gi. To choose the distribution of the losses for the base
actions, we apply the classic needle-in-a-haystack approach of [7] over the M games. More precisely,
we construct a different environment for each action a ∈ V in such a way that the distribution of
the losses in each MTB game slightly favors (with a difference of a small ε > 0) the base action
corresponding to a in that game. The proof then proceeds similarly to, for example, the proof of
Theorem 5 in [6] or Theorem 7 in [17].

While both our upper and lower bounds achieve the desired goal of interpolating between the minimax
rates of experts and bandits, the logarithmic factors in the two bounds are not exactly matching.
In particular, if we compare 1 + log2(K/α) and logαK, we can see that although they coincide
at α = 2 and α = K, the former is larger for intermediate values. It is reasonable to believe that
the upper bound is of the correct order, seeing as it arose naturally as a result of choosing the best
parameter for the Tsallis entropy regularizer, whereas achieving the extra logarithmic term in the
lower bound required a somewhat contrived construction.

6 Conclusions and Future Work

In this work, we have shown that a proper tuning of the q-FTRL algorithm allows one to achieve
a O
(√

αT (1 + ln(K/α))
)

regret for the problem of online learning with undirected strongly ob-
servable feedback graphs. Our bound interpolates between the minimax regret rates of the bandits
and the experts problems, the two extremes of the strongly observable graph feedback spectrum.
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Furthermore, we have shown that an analogous bound can be achieved when the graphs vary over
time, and without requiring any prior knowledge on the graphs. These results are complemented by
our new lower bound of Ω

(√
αT (lnK)/(lnα)

)
, which holds for α ≥ 2 and shows the necessity of

a logarithmic factor in the minimax regret except for the bandits case. While our results provide the
tightest characterization to date of the minimax rate for this setting, closing the small remaining gap
(likely on the lower bound side) is an interesting problem. After the submission of this manuscript, a
subsequent work [14] showed a lower bound for fixed feedback graphs composed of disjoint cliques
that would imply worst-case optimality (up to constant factors) of our proposed algorithm for each
pair of K and α—see Appendix E for a more detailed comparison with results therein. Extending
our results to the case of directed strongly observable feedback graphs is a considerably harder
task—see Appendix F for a preliminary discussion. Better understanding this more general setting is
an interesting future direction.
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A Auxiliary Results

Lemma 2. If Algorithm 1 is run with q ∈ (0, 1), learning rate η > 0, and non-negative loss estimates
that satisfy Et

[
ℓ̂t
]
= ℓt for all t = 1, . . . , T , then its regret satisfies

RT ≤
K1−q

(1− q)η
+

η

2q

T∑
t=1

E

[∑
i∈V

pt(i)
2−q ℓ̂t(i)

2

]
.

Proof. Let i∗ ∈ argmini∈V
∑T
t=1 ℓt(i) be an action that minimizes the cumulative loss, and let

ei∗ ∈ RK be an indicator vector for i∗. Recall that for t ∈ [T ], Et[·] = E[· | I1, . . . , It−1], and notice
that pt is measurable with respect to the σ-algebra generated by I1, . . . , It−1. Hence, using that

Et
[
ℓt(It)

]
=
∑
i∈V

pt(i)ℓt(i) and Et
[
ℓ̂t
]
= ℓt ,

we have, via the tower rule and the linearity of expectation, that

RT = E

[
T∑
t=1

ℓt(It)

]
−

T∑
t=1

ℓt(i
∗) = E

[
T∑
t=1

⟨pt − ei∗ , ℓt⟩

]
= E

[
T∑
t=1

⟨pt − ei∗ , ℓ̂t⟩

]
,

from which we can obtain the desired result by using Lemma 3 (which holds even if the loss ℓ̂t at
each round t ∈ [T ] depends on the prediction pt made at that round).

Lemma 3. Let q ∈ (0, 1), η > 0, and (yt)
T
t=1 be an arbitrary sequence of non-negative loss vectors

in RK . Let (pt)T+1
t=1 be the predictions of FTRL with decision set ∆K and the q-Tsallis regularizer ψq

over this sequence of losses. That is, p1 = argminp∈∆K
ψq(p), and for t ∈ [T ],

pt+1 = argmin
p∈∆K

η

t∑
s=1

〈
ys, p

〉
+ ψq(p) .

Then for any u ∈ ∆K ,

T∑
t=1

⟨pt − u, yt⟩ ≤
K1−q

(1− q)η
+

η

2q

T∑
t=1

∑
i∈V

pt(i)
2−q yt(i)

2 .

Proof. By Theorem 28.5 in [27], we have that

T∑
t=1

⟨pt − u, yt⟩ ≤
ψq(u)− ψq(p1)

η
+

T∑
t=1

(
⟨pt − pt+1, yt⟩ −

1

η
Dψq

(pt+1, pt)

)

=
K1−q − 1

(1− q)η
+

T∑
t=1

(
⟨pt − pt+1, yt⟩ −

1

η
Dψq

(pt+1, pt)

)

≤ K1−q

(1− q)η
+

T∑
t=1

(
⟨pt − pt+1, yt⟩ −

1

η
Dψq

(pt+1, pt)

)
,

where Dψq
(·, ·) is the Bregman divergence based on ψq . For bounding each summand in the second

term, we follow a similar argument to that used in Theorem 30.2 in [27]. Namely, for each i ∈ V and
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round t ∈ [T ], define yt(i) = I{pt+1(i) ≤ pt(i)}yt(i). We then have that

⟨pt − pt+1,yt⟩ −
1

η
Dψq (pt+1, pt)

≤ ⟨pt − pt+1, yt⟩ −
1

η
Dψq

(pt+1, pt)

=
1

η
⟨pt − pt+1, ηyt⟩ −

1

2η

∥∥pt+1 − pt
∥∥2
∇2ψq(zt)

≤ η

2

∥∥yt∥∥2(∇2ψq(zt))−1

=
η

2q

∑
i∈V

zt(i)
2−q yt(i)

2

=
η

2q

∑
i∈V

(
γtpt+1(i) + (1− γt)pt(i)

)2−q
yt(i)

2

≤ η

2q

∑
i∈V

pt(i)
2−q yt(i)

2 + γt
η

2q

∑
i∈V

(
pt+1(i)

2−q − pt(i)2−q
)
yt(i)

2

≤ η

2q

∑
i∈V

pt(i)
2−q yt(i)

2

≤ η

2q

∑
i∈V

pt(i)
2−q yt(i)

2 ,

where zt = γtpt+1 + (1 − γt)pt for some γt ∈ [0, 1]; the first inequality holds due to the non-
negativity of the losses, the second inequality is an application of the Fenchel-Young inequality, the
second equality holds since the Hessian of ψq is a diagonal matrix with (∇2ψq(x))i,i = qx(i)q−2,
the third inequality is an application of Jensen’s inequality (since q ∈ (0, 1)), and the fourth inequality
holds since yt(i) = 0 for any i such that pt+1(i)

2−q > pt(i)
2−q .

Lemma 4. Let a and b be positive integers such that 2 ≤ a ≤ b, and let n =
⌈
log2 a

⌉
. Then,

n−1∑
r=0

√
2r ln

(
e2b2−r

)
≤
√
2π + 2

√
2− ln 2

ln 2

√
a ln

(
e2b

a

)
.

Proof. Since n ≤ log2(2b) and 2r ln
(
e2b2−r

)
is monotonically increasing in r for r ∈ [0, log2(eb)],

we can bound the sum by an integral:

n−1∑
r=0

√
2r ln

(
e2b2−r

)
≤
∫ n

0

√
2r ln

(
e2b2−r

)
dr .

We proceed via a change of variable; let x = e2b2−r, and note that dr = − dx
x ln 2 . We then have that∫ n

0

√
2r ln

(
e2b2−r

)
dr =

√
e2b

∫ n

0

√
2r

e2b
ln
(
e2b2−r

)
dr

= −e
√
b

ln 2

∫ e2b2−n

e2b

√
lnx

x3
dx =

e
√
b

ln 2

∫ e2b

e2b2−n

√
lnx

x3
dx

=
e
√
b

ln 2

[
−
√
2π · erfc

(√
(lnx)/2

)
− 2
√

(lnx)/x
]e2b
e2b2−n

≤ e
√
b

ln 2

(
√
2π · erfc

(√
ln(e2b2−n)/2

)
+ 2

√
2n ln(e2b2−n)

e2b

)
,
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where erfc(x) = 1− 2√
π

∫ x
0
exp(−z2) dz is the complementary Gaussian error function, which is

always positive. By [13, Theorem 1], we have that erfc(x) ≤ exp(−x2). Consequently,∫ n

0

√
2r ln

(
e2b2−r

)
dr ≤ e

√
b

ln 2

(
√
2π

√
2n

e2b
+ 2

√
2n ln(e2b2−n)

e2b

)

=

√
2n

ln 2

(√
2π + 2

√
ln(e2b2−n)

)
≤
√
2a

ln 2

(
√
2π + 2

√
ln

(
e2b

2a

))

≤
√
2π + 2

√
2− ln 2

ln 2

√
a ln

(
e2b

a

)
,

where in the second inequality we used once again the fact that 2r ln
(
e2b2−r

)
is monotonically

increasing in r for r ∈ [0, log2(eb)] to replace n with log2(a) + 1, and the last inequality holds since
b/a ≥ 1.

B Proofs of Section 3

In this section, we provide the proof of Theorem 2, which is restated below.
Theorem 2. Let G1, . . . , GT be a sequence of strongly observable undirected feedback graphs,
where each Gt has independence number αt = α for some common value α ∈ [K]. If Algorithm 1 is
run with input

q =
1

2

(
1 +

ln(K/α)√
ln(K/α)2 + 4 + 2

)
∈ [1/2, 1) and η =

1

3

√
2qK1−q

T (1− q)αq
,

and loss estimates (6), then its regret satisfies RT ≤ 6
√
eαT (2 + ln(K/α)).

Proof. Let i∗ ∈ argmini∈V
∑T
t=1 ℓt(i) and ei∗ ∈ RK be its indicator vector. Whenever

Jt is nonempty, let jt ∈ V be the only action such that Jt = {jt}. Similarly to [35], let
zt = I {Jt ̸= ∅} I {It ∈ Nt(jt)} 1−ℓt(jt)

1−pt(jt) and define new losses ℓ̃t(i) = ℓ̂t(i) + zt for each time

step t ∈ [T ] and each action i ∈ V . Since pt, ei∗ ∈ ∆K , we have that ⟨pt − ei∗ , ℓ̂t⟩ = ⟨pt − ei∗ , ℓ̃t⟩
for every t ∈ [T ]. Then, using the fact that Et

[
ℓ̂t
]
= ℓt, we get that

RT = E

[
T∑
t=1

⟨pt − ei∗ , ℓ̂t⟩

]
= E

[
T∑
t=1

⟨pt − ei∗ , ℓ̃t⟩

]
,

where the first equality holds via the same arguments made in the proof of Lemma 2. If we consider
the optimization step of Algorithm 1, computing the same inner product over the new losses ℓ̃1, . . . , ℓ̃T
for some p ∈ ∆K gives 〈 t∑

s=1

ℓ̃s, p
〉
=

t∑
s=1

zs +
〈 t∑
s=1

ℓ̂s, p
〉
,

where the sum
∑t
s=1 zs is constant with respect to p. This implies that the objective functions in

terms of either (ℓ̂t)t∈[T ] and (ℓ̃t)t∈[T ], respectively, are minimized by the same probability distribu-
tions. However, notice that, unlike (ℓ̂t)t∈[T ], the loss vectors in (ℓ̃t)t∈[T ] are always non-negative.
Consequently, similar to the proof of Lemma 2, we may apply Lemma 3 to upper bound the regret of
Algorithm 1 in terms of the losses (ℓ̃t)t∈[T ]. Doing so gives

E

[
T∑
t=1

⟨pt − ei∗ , ℓ̃t⟩

]
≤ K1−q

η(1− q)
+

η

2q

T∑
t=1

E

[∑
i∈V

pt(i)
2−q Et

[
ℓ̃t(i)

2
]]

. (8)
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We can bound the second term by observing that ℓ̃t(jt) = 1 whenever Jt ̸= ∅. Therefore,∑
i∈V

pt(i)
2−q Et

[
ℓ̃t(i)

2
]
≤ 2

∑
i∈V \Jt

pt(i)
2−q Et

[
ℓ̂t(i)

2
]
+ 2Et

[
z2t
] ∑
i∈V \Jt

pt(i)
2−q + 1

≤ 2
∑

i∈V \Jt

pt(i)
2−q

Pt(i)
+ 2Et

[
z2t
] ∑
i∈V \Jt

pt(i)
2−q + 1

≤ 2
∑

i∈V \Jt

pt(i)
2−q

Pt(i)
+ 3 ,

where the second inequality holds because Et
[
ℓ̂t(i)

2
]
≤ 1/Pt(i) for all i /∈ Jt, and the third

inequality follows from the fact that

Et
[
z2t
] ∑
i∈V \Jt

pt(i)
2−q = I {Jt ̸= ∅}

(
1− ℓt(jt)

)2
1− pt(jt)

∑
i∈V \Jt

pt(i)
2−q ≤ 1 .

We can handle the remaining sum by separating it over nodes i ∈ St, which satisfy Pt(i) = 1− pt(i)
because of strong observability, and those in St = V \ St. In the first case, any node i ∈ St \ Jt has
pt(i) ≤ 1/2 and thus∑

i∈St\Jt

pt(i)
2−q

Pt(i)
=

∑
i∈St\Jt

pt(i)
2−q

1− pt(i)
≤ 2

∑
i∈St\Jt

pt(i)
2−q ≤ 2 .

while in the second case we have that
∑
i∈St

pt(i)
2−q/Pt(i) ≤ αq by Lemma 1 with U = St and

b = 1− q. Overall, we have shown that∑
i∈V

pt(i)
2−q Et

[
ℓ̃t(i)

2
]
≤ 2

∑
i∈St

pt(i)
2−q

Pt(i)
+ 7 ≤ 2αq + 7 ≤ 9αq . (9)

Plugging back into (8), we obtain that

RT ≤
K1−q

η(1− q)
+

9η

2q
αqT

= 3

√
2K1−qαq

q(1− q)
T

≤ 6
√
eαT (2 + ln(K/α)) ,

where the equality is due to our choice of η, and the last inequality follows as in the proof of
Theorem 1 together with our choice of q.

C Proofs of Section 4

In this section, we provide the proof of Theorem 3, which is restated below.

Theorem 3. Let C = 4
√
6e

√
π+

√
4−2 ln 2

ln 2 . Then, the regret of Algorithm 2 satisfies

RT ≤ C

√√√√ T∑
t=1

αt

(
2 + ln

(
K

αT

))
+ log2 αT .

Proof. Notice that if αT = 1, the initial guess is correct and the algorithm will never restart. Moreover,
since in this case we have that αt = 1 for all t, the theorem follows trivially from the regret bound of
Theorem 2. Hence, we can assume for what follows that αT > 1. Let i∗ ∈ argmini∈[K]

∑T
t=1 ℓt(i)

and n =
⌈
log2 αT

⌉
. Note that the maximum value of r that the algorithm can reach is n − 1. To
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see this, observe that Lemma 1 implies that for any r and t, Ht(qr) ≤ αqrt . Consequently, for any
t ≥ Tr,

1

T

t∑
s=Tr

Hs(qr)
1/qr ≤ 1

T

t∑
s=Tr

αs ≤ αT ≤ 2n .

For t ∈ [T ], let rt be the value of r at round t. Without loss of generality, we assume that r takes
each value in {0, . . . , n − 1} for at least two rounds. Additionally, we define Tn = T + 2 for
convenience. We start by decomposing the regret over the n intervals (each corresponding to a value
of r in {0, . . . , n− 1}) and bounding the instantaneous regret with 1 for each step in which we restart
(i.e., at the last step of each but the last interval):

RT = E

[
T∑
t=1

(
ℓt(It)− ℓt(i∗)

)]

≤ E

[
n−1∑
r=0

Tr+1−2∑
t=Tr

(
ℓt(It)− ℓt(i∗)

)]
+ n− 1

≤ E

[
n−1∑
r=0

Tr+1−2∑
t=Tr

(
ℓt(It)− ℓt(i∗)

)]
+ log2 αT . (10)

For what follows, let ei∗ ∈ RK be an indicator vector for i∗ and let ℓ̃t be as defined in the proof of
Theorem 2. Fix r ∈ {0, . . . , n− 1}, we proceed by bounding the regret in the interval [Tr, Tr+1− 2]:

E

[
Tr+1−2∑
t=Tr

(
ℓt(It)− ℓt(i∗)

)]

= E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=Trt

Hs(qrt)
1/qrt ≤ 2rt+1

}(
ℓt(It)− ℓt(i∗)

)]

(a)
= E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=Trt

Hs(qrt)
1/qrt ≤ 2rt+1

}
⟨pt − ei∗ , ℓ̂t⟩

]

(b)
= E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=Trt

Hs(qrt)
1/qrt ≤ 2rt+1

}
⟨pt − ei∗ , ℓ̃t⟩

]

= E

[
Tr+1−2∑
t=Tr

⟨pt − ei∗ , ℓ̃t⟩

]
(c)

≤ K1−qr

ηr(1− qr)
+

ηr
2qr

E

[
Tr+1−2∑
t=Tr

∑
i∈V

pt(i)
2−qr ℓ̃t(i)

2

]

(d)
=

K1−qr

ηr(1− qr)
+

ηr
2qr

E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=Trt

Hs(qrt)
1/qrt ≤ 2rt+1

}
Et
[∑
i∈V

pt(i)
2−qr ℓ̃t(i)

2

]]
(e)

≤ K1−qr

ηr(1− qr)
+

ηr
2qr

E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=Trt

Hs(qrt)
1/qrt ≤ 2rt+1

}
(2Ht(qr) + 7)

]

=
K1−qr

ηr(1− qr)
+

ηr
2qr

E

[
Tr+1−2∑
t=Tr

(2Ht(qr) + 7)

]
, (11)

where (a) follows since Et
[
ℓt(It)

]
=
∑
i∈V pt(i)ℓt(i), Et

[
ℓ̂t
]
= ℓt, and the indicator at round t

is measurable with respect to σ(I1, . . . , It−1), that is, the σ-algebra generated by I1, . . . , It−1;
(b) follows since ⟨pt − ei∗ , ℓ̂t⟩ = ⟨pt − ei∗ , ℓ̃t⟩ holds by the definition of ℓ̃t; (c) is an application of
Lemma 3, justifiable with the same argument leading to (8) in the proof of Theorem 2; (d) uses once
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again that the indicator at round t is measurable with respect to σ(I1, . . . , It−1); finally, (e) follows
via (9). Define Tr:r+1 = Tr+1 − Tr − 1, and notice that

Tr+1−2∑
t=Tr

Ht(qr) =
Tr:r+1

Tr:r+1

Tr+1−2∑
t=Tr

(
Ht(qr)

1/qr
)qr

≤ Tr:r+1

(
1

Tr:r+1

Tr+1−2∑
t=Tr

Ht(qr)
1/qr

)qr
≤ Tr:r+1

(
T

Tr:r+1
2r+1

)qr
≤ 2T

(
2r
)qr

,

where the first inequality follows due to Jensen’s inequality since qr ∈ (0, 1), and the second follows
from the restarting condition of Algorithm 2. Next, we plug this inequality back into (11), and
then, similar to the proof of Theorem 2, we use the definitions of ηr and qr and bound the resulting
expression to get that

E

[
Tr+1−2∑
t=Tr

(
ℓt(It)− ℓt(i∗)

)]
≤ K1−qr

ηr(1− qr)
+

11ηr
2qr

T (2r)
qr

≤ 2

√
11eT2r

(
2 + ln

(
K2−r

))
≤ 4
√
3eT2r ln

(
e2K2−r

)
.

We then sum this quantity over r and use Lemma 4 to get that

E

[
n−1∑
r=0

Tr+1−2∑
t=Tr

(
ℓt(It)− ℓt(i∗)

)]
≤ 4
√
3eT

n−1∑
r=0

√
2r ln

(
e2K2−r

)
≤ 4
√
6e

√
π +
√
4− 2 ln 2

ln 2

√
αTT

(
2 + ln (K/αT )

)
,

which, together with (10), concludes the proof.

D Proof of the Lower Bound

In this section, we prove the lower bound provided in Section 5, which we restate below. As remarked
before, our proof makes use of known techniques for proving lower bounds for the multitask bandit
problem. In particular, parts of the proof are adapted from the proof of Theorem 7 in [17].
Theorem 4. Pick any K ≥ 2 and any α such that 2 ≤ α ≤ K. Then, for any algorithm and for
all T ≥ α logαK

4 log(4/3) , there exists a sequence of losses and feedback graphs G1, . . . , GT such that
α(Gt) = α for all t = 1, . . . , T and

RT ≥
1

18
√
2

√
αT logαK.

Proof. Once again, we define M = logαK, which we assume for now to be an integer; we discuss
in the end how to extend the proof to the case when it is not. The proof will be divided into five parts
I–V. We begin by formalizing the class of environments described in Section 5 and stating two useful
lemmas.

I. Preliminaries

We remind the reader that we identify each action in V with a vector a =
(
a(1), . . . , a(M)

)
∈ [α]M .

We will focus on a set of M undirected graphs G = {Gi}Mi=1, where Gi consists of α isolated cliques
(with self-loops) {Ci,j}αj=1 such that an action a belongs to clique Ci,j if and only if a(i) = j. As
remarked before, all these graphs have independence number α. For convenience, we also use actions
in V as functions from G to [α], with a(Gi) = a(i).
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An environment is identified by a function µ : [α] × G → [0, 1] such that at every round t, after
having drawn a graph Gt from the uniform distribution over G (denoted with UG), the environment
latently draws for each j ∈ [α] and G ∈ G, a Bernoulli random variable γt(j;G) with mean µ(j;Gt).
Subsequently, for defining the loss of action a ∈ V at round t, we simply set ℓt(a) = γt(a(Gt);Gt),
whose expectation, conditioned on Gt, is µ(a(Gt);Gt). To simplify the notation, we use µ(a;G)
as shorthand for µ(a(G);G) and γt(a;G) as shorthand for γt(a(G);G). Denote by At the action
picked by the player at round t, which is chosen prior to observingGt. We will focus on the following
notion of stochastic regret, which we define for environment µ as:

RT (µ) = max
a∈V

Eµ
[ T∑
t=1

(ℓt(At)− ℓt(a))
]
,

where Eµ[·] denotes the expectation with respect to the sequence of losses and graphs generated by
environment µ, as well as the randomness in the choices of the player. We can use the tower rule to
rewrite this expression as

RT (µ) = max
a∈V

T∑
t=1

Eµ
[
Eµ
[
Eµ
[
ℓt(At)− ℓt(a)

∣∣∣∣Gt, At] ∣∣∣∣At]]

= max
a∈V

T∑
t=1

Eµ
[
Eµ
[
µ(At;Gt)− µ(a;Gt)

∣∣∣∣At]]

= max
a∈V

T∑
t=1

Eµ
[ M∑
i=1

UG(G
i)(µ(At;G

i)− µ(a;Gi))
]

= max
a∈V

1

M

M∑
i=1

Eµ
[ T∑
t=1

(µ(At;G
i)− µ(a;Gi))

]
. (12)

For a fixed algorithm, one can show via standard arguments that

sup
(ℓt)Tt=1,(Gt)Tt=1

RT ≥ sup
µ
RT (µ) .

Hence, it suffices for our purposes to prove a lower bound for the right-hand side of this inequality.

In the following, we will have to be more precise about the probability measure with respect to which
the expectation in (12) is defined. Let λt ∈ {0, 1}K/α denote the vector of losses observed by the
player at round t, which corresponds to the losses of the actions connected to At assuming that a
systematic ordering of the actions makes it clear which coordinate of λt belongs to which action. Let
1K/α and 0K/α be the K/α dimensional4 vectors of all ones and all zeros respectively. Clearly, we
have that λt = γt(At;Gt)1K/α = ℓt(At)1K/α, which is a binary random variable taking values in
{0K/α,1K/α}. Let Pλµ be the probability distribution of λt in environment µ. Notice then that we
have that

Pλµ(γt = 1K/α |Gt = G,At = a) = µ(a;G) . (13)

Let Ht = (A1, G1,λ1, . . . , At, Gt,λt) ∈ (V × G × {0, 1}K/α)t be the interaction trajectory after
t steps. The policy π adopted by the player can be modelled as a sequence of probability kernels
{πt}Tt=1 each mapping the trajectory so far to a distribution over the actions, i.e., At is sampled from
πt(· |Ht−1). An environment µ and a policy π (implicit in the notation, and fixed throughout the rest
of the proof) together define a distribution Pµ over the set of possible trajectories of T steps such that:

Pµ(HT ) =

T∏
t=1

πt(At |Ht−1)UG(Gt)Pλµ(λt |Gt, At) .

If P and Q are two distributions defined on the same space, let DKL(P ∥Q) and δ(P,Q) be the KL-
divergence and the total variation distance respectively between P and Q. Furthermore, let d(p ∥ q)
be the KL-divergence between two Bernoulli random variables with means p and q. The following
lemma provides an expression for the KL-divergence between two the probability distributions
associated to two environments.

4Note that K/α = αM−1 is an integer since M(≥ 1) was assumed to be an integer.
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Lemma 5. For a fixed policy, let µ and µ′ be two environments as described above. Then,

DKL(Pµ ∥Pµ′) =
1

M

M∑
i=1

∑
a∈V

Nµ(a;T )d
(
µ(a;Gi)

∥∥µ′(a;Gi)
)
,

where Nµ(a;T ) = Eµ
[∑T

t=1 I{At = a}
]
.

Proof. The proof is similar to that of Lemma 15.1 in [27]. Namely, we have in our case that

DKL(Pµ ∥Pµ′) = Eµ
[
ln

Pµ(HT )

Pµ′(HT )

]
= Eµ

[
ln

∏T
t=1 πt(At |Ht−1)UG(Gt)Pλµ(λt |Gt, At)∏T
t=1 πt(At |Ht−1)UG(Gt)Pλµ′(λt |Gt, At)

]

=

T∑
t=1

Eµ
[
ln

Pλµ(λt |Gt, At)
Pλµ′(λt |Gt, At)

]

=

T∑
t=1

Eµ
[
Eµ
[
Eµ
[
ln

Pλµ(λt |Gt, At)
Pλµ′(λt |Gt, At)

∣∣∣∣Gt, At] ∣∣∣∣At]]

=

T∑
t=1

Eµ
[
Eµ
[
DKL(Pλµ(· |Gt, At) ∥Pλµ′(· |Gt, At))

∣∣∣∣At]]

=

T∑
t=1

Eµ
[ M∑
i=1

UG(G
i)DKL(Pλµ(· |Gi, At) ∥Pλµ′(· |Gi, At))

]

=
1

M

M∑
i=1

T∑
t=1

Eµ
[
DKL(Pλµ(· |Gi, At) ∥Pλµ′(· |Gi, At))

]

=
1

M

M∑
i=1

∑
a∈V

Nµ(a;T )DKL(Pλµ(· |Gi, a) ∥Pλµ′(· |Gi, a))

=
1

M

M∑
i=1

∑
a∈V

Nµ(a;T )d
(
µ(a;Gi)

∥∥µ′(a;Gi)
)
,

where the last equality holds via (13).

The following standard lemma, adapted from [27], will be used in the sequel.

Lemma 6. Let P and Q be probability measures on the same measurable space (Ω,F). Let a < b
and X : Ω −→ [a, b] be an F-measurable random variable. Then,∣∣∣∣∫

Ω

X(ω)dP (ω)−
∫
Ω

X(ω)dQ(ω)

∣∣∣∣ ≤ (b− a)
√

1

2
DKL(P ∥Q) .

Proof. We have, by Exercise 14.4 in [27], that∣∣∣∣∫
Ω

X(ω)dP (ω)−
∫
Ω

X(ω)dQ(ω)

∣∣∣∣ ≤ (b− a)δ(P,Q) ,

from which the lemma follows by applying Pinsker’s inequality.

II. Choosing the environments

We will construct a collection of environments {µa}a∈V , each associated to an action, such that for
any i ∈ [M ] and j ∈ [α],

µa(j;G
i) =

1

2
− εI{a(i) = j} ,
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where 0 < ε ≤ 1
4 will be tuned later. In words, for a fixed graph, environment µa gives a slight

advantage to actions that are connected to a in that graph, and thus agree with a in the corresponding
game. Additionally, for every a ∈ V and i ∈ [M ], we define environment µ−i

a to be such that for any
s ∈ [M ] and j ∈ [α],

µ−i
a (j;Gs) =

{
1
2 , if s = i

µa(j;G
s), otherwise.

Similar to [17], we will define, for every i ∈ [M ], an equivalence relation ∼i on the arms such that

a ∼i a′ ⇐⇒ ∀s ∈ [M ] \ {i}, a′(s) = a(s) ,

for any a, a′ ∈ V . This means that two arms are equivalent according to∼i if and only if their choices
of base actions coincide in all games that are different from i. Let V/ ∼i be the set of equivalence
classes of ∼i. It is easy to see that V/ ∼i contains exactly αM−1 equivalence classes, and that each
class consists of α actions, each corresponding to a different choice of base action in game i. Notice
then that for an equivalence class W ∈ V/ ∼i, all environments µ−i

a with a ∈ V are indeed identical.
In the sequel, this environment will also be referred to as µ−i

W .

III. Lower-bounding the regret of a single environment

Note that in environment µa, we have that a = argmina′∈V
∑M
i=1 µa(a

′;Gi). Consequently, starting
from (12) we get that

RT (µa) =

M∑
i=1

1

M
Eµa

[ T∑
t=1

(µa(At;G
i)− µa(a;Gi))

]

=

M∑
i=1

1

M
Eµa

[ T∑
t=1

(
1

2
− εI{At(i) = a(i)} −

(
1

2
− ε
))]

=
ε

M

M∑
i=1

Eµa

[ T∑
t=1

(1− I{At(i) = a(i)})
]

=
ε

M

M∑
i=1

(
T −Nµa

(i, a;T )
)
,

where for environment µ, action a, and game i, Nµ(i, a;T ) = Eµ
[∑T

t=1 I{At(i) = a(i)}
]

is the
expected number of times in environment µ that the action chosen by the policy agrees with action a
in game i. Next, we use Lemma 6 to obtain that

RT (µa) ≥
ε

M

M∑
i=1

(
T −Nµ−i

a
(i, a;T )− T

√
1

2
DKL

(
Pµ−i

a

∥∥Pµa

))
. (14)
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For bounding the KL-divergence term, we start from Lemma 5:

DKL

(
Pµ−i

a

∥∥Pµa

)
=

1

M

M∑
s=1

∑
a′∈V

Nµ−i
a
(a′;T )d

(
µ−i
a (a′;Gs)

∥∥µa(a′;Gs))
=

1

M

∑
a′∈V

Nµ−i
a
(a′;T )d

(
µ−i
a (a′;Gi)

∥∥µa(a′;Gi))
=

1

M

∑
a′∈V

Nµ−i
a
(a′;T )d

(
1/2

∥∥ 1/2− εI{a′(i) = a(i)}
)

=
1

M

∑
a′∈V

I{a′(i) = a(i)}Nµ−i
a
(a′;T )d

(
1/2

∥∥ 1/2− ε)
≤ cε2

M

∑
a′∈V

I{a′(i) = a(i)}Nµ−i
a
(a′;T )

=
cε2

M

∑
a′∈V

I{a′(i) = a(i)}Eµ−i
a

T∑
t=1

I{At = a′}

=
cε2

M
Eµ−i

a

T∑
t=1

I{At(i) = a(i)}

=
cε2

M
Nµ−i

a
(i, a;T ) ,

where the second equality holds since the two environments only differ in Gi, and the inequality
holds for ε ≤ 1

4 with c = 8 log 4
3 . Plugging back into (14) gets us that

RT (µa) ≥
ε

M

M∑
i=1

(
T −Nµ−i

a
(i, a;T )− εT

√
c

2M
Nµ−i

a
(i, a;T )

)
. (15)

IV. Summing up

Fix i ∈ [M ]. Notice that for W ∈ V/ ∼i,

∑
a∈W

I{At(i) = a(i)} = 1

since each action in W corresponds to a different choice of base action in game i. Hence,

1

αM

∑
a∈V

Nµ−i
a
(i, a;T ) =

1

αM

∑
W∈V/∼i

∑
a∈W

Nµ−i
a
(i, a;T )

=
1

αM

∑
W∈V/∼i

∑
a∈W

Nµ−i
W
(i, a;T )

=
1

αM

∑
W∈V/∼i

Eµ−i
W

[
T∑
t=1

∑
a∈W

I{At(i) = a(i)}

]

=
1

αM
αM−1T =

T

α
.
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Using this together with (15) allows us to conclude that

sup
µ
RT (µ) ≥

1

αM

∑
a∈V

RT (µa)

≥ 1

αM

∑
a∈V

ε

M

M∑
i=1

(
T −Nµ−i

a
(i, a;T )− εT

√
c

2M
Nµ−i

a
(i, a;T )

)

≥ ε

M

M∑
i=1

(
T − 1

αM

∑
a∈V

Nµ−i
a
(i, a;T )− εT

√
c

2MαM

∑
a∈V

Nµ−i
a
(i, a;T )

)

=
ε

M

M∑
i=1

(
T − T

α
− εT

√
cT

2Mα

)

= εT

(
1− 1

α
− ε
√

cT

2Mα

)
≥ εT

(
1

2
− ε
√

cT

2Mα

)
,

where the third inequality holds due to the concavity of the square root, and the last inequality holds

by our assumption that α ≥ 2. Setting ε = 1
4

√
2Mα
cT yields that

sup
µ
RT (µ) ≥

1

16

√
2

c
·
√
αTM ≥ 1

18

√
αTM =

1

18

√
αT logαK ,

whereas it holds that ε ≤ 1
4 thanks to the assumption made on T in the statement of the theorem.

V. The case when logαK is not an integer

If M is not an integer,5 we can use the same construction as before for the first α⌊M⌋ actions and
force the remaining actions to behave identically to some action in the construction. That is, we can
designate a certain action such that, in all environments, all the excess actions receive the same loss
as this action and are connected to it, to each other, and to every action that happens to share an edge
with this designated action in a given graph (in other words, we are expanding the designated action
into a clique). This way, the independence number of all the graphs in the construction is still α, and
the excess actions do not provide any extra utility to the learner; playing one of them is exactly like
playing the designated action, and the construction does not hide this from the player. We can then
obtain the same bound as before but in terms of ⌊M⌋, thus costing us an extra 1/

√
2 factor to recover

the desired bound (using that ⌊M⌋ ≥M/2).

E Comparison with [14]

In [14], the authors consider a special case of the undirected feedback graph problem where the graph
(fixed and known) is composed of α disjoint cliques with self-loops. For j ∈ [α], let mj denote
the number of actions in the j-th clique, implying that

∑α
j=1mj = K (the number of arms). For

this problem, [14, Theorem 4] provides a lower bound of order
√
T
∑α
j=1 ln(mj + 1). In particular,

if the cliques are balanced (i.e., m1 = · · · = mα = K/α), the lower bound becomes of order√
αT ln(1 +K/α), thus matching the regret bound of Algorithm 1. This means that, for any value

of 1 ≤ α ≤ K, there are feedback graphs on K nodes with independence number α such that no
other algorithm can achieve a better minimax regret guarantee than that of our proposed algorithm.

We emphasize that this does not imply graph-specific minimax optimality. Indeed, as shown in [14],
when the cliques are unbalanced, the regret guarantee of our algorithm can be inferior to that of
the algorithm they proposed, which matches the

√
T
∑α
j=1 ln(mj + 1) bound. However, beyond

5Note that M is never smaller than 1 since α ≤ K.
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the disjoint cliques case, their algorithm requires computing a minimum clique cover for the given
feedback graph G, which is known to be NP-hard [24]. More importantly, their reliance on a clique
cover leads to a dependence of the regret on the clique cover number θ(G) instead of the independence
number α(G). One can argue that the ratio between θ(G) and α(G) can be Ω(K/(lnK)2) for most
graphs on a sufficiently large number K of vertices (e.g., see [29, Section 6]). Finally, it is not clear
how to generalize their approach to time-varying feedback graphs (informed or uninformed). Hence,
despite the contributions of our work and those of [14], the problem of characterizing the minimax
regret rate at a graph-based granularity still calls for further investigation.

F Directed Strongly Observable Feedback Graphs

In this section, we consider the case of directed strongly observable graphs. For a directed graph
G = (V,E), let N in

G (i) = {j ∈ V : (j, i) ∈ E} be the in-neighbourhood of node i ∈ V in G,
and let Nout

G (i) = {j ∈ V : (i, j) ∈ E} be its out-neighbourhood. A directed graph G is strongly
observable if for every i ∈ V , at least one of the following holds: i ∈ N in

G (i) or j ∈ N in
G (i) for all

j ̸= i. The independence number α(G) is still defined in the same manner as before; that is, the
cardinality of the largest set of nodes such that no two nodes share an edge, regardless of orientation.
The interaction protocol is the same as in the undirected case, except that, in each round t ∈ [T ], the
learner only observes the losses of the actions in Nout

Gt
(It), which is the out-neighbourhood in graph

Gt of the action It picked by the learner. As before, we will useN in
t (i) andNout

t (i) to denoteN in
Gt

(i)

and Nout
Gt

(i) respectively. For this setting, a bound of O
(√
αT · ln(KT )

)
was proven in [2] for the

EXP3.G algorithm. Later, [35] proved a bound of O
(√

αT (lnK)3
)

for OSMD with a variant of
the q-Tsallis entropy regularizer where q was chosen as 1− 1/(lnK).

To use Algorithm 1 in the directed case, one can define loss estimates analogous to (6) by using
the in-neighbourhood in place of the neighbourhood in the relevant quantities. Namely, let St ={
i ∈ V : i /∈ N in

t (i)
}

, Jt = {i ∈ St : pt(i) > 1/2}, and Pt(i) =
∑
j∈N in

t (i) pt(j). The loss
estimates (again due to [35]) can then be given by

ℓ̂t(i) =


ℓt(i)
Pt(i)

I
{
It ∈ N in

t (i)
}

if i ∈ V \ Jt
ℓt(i)−1
Pt(i)

I
{
It ∈ N in

t (i)
}
+ 1 if i ∈ Jt .

Algorithm 1 with these loss estimates can be analyzed in a similar manner to the proof of Theorem 2,
with the major difference being the way that the variance term is handled for actions with self-loops.
Namely, the relevant term is ∑

i∈V :i∈N in
t (i)

pt(i)
2−q∑

j∈N in
t (i) pt(j)

,

on which we elaborate more in the following.

Let p ∈ ∆K and β ∈ (0, 1/2) be such that mini∈V p(i) ≥ β. We first consider the variance term
given by the negative Shannon entropy regularizer. It is known [2] that such a variance term, restricted
to nodes with a self-loop in the strongly observable feedback graph G = (V,E), has an upper bound
of the form ∑

i∈V :i∈N in
G (i)

p(i)∑
j∈N in

G (i) p(j)
≤ 4α(G) ln

(
4K

α(G)β

)
. (16)

In addition to the fact that this variance bound has a linear dependence on the independence number
α(G) of G, we observe that there is a logarithmic factor in K/α and 1/β given by the fact that we
now consider directed graphs. The main problem is that, in general, we cannot hope to improve
upon the above logarithmic factor as it can be shown to be unavoidable unless we manage to restrict
the probability distributions we consider. Indeed, it is possible to show [3, Fact 4] that there exist
probability distributions p ∈ ∆K and directed strongly observable graphs G for which α(G) = 1 and∑

i∈V :i∈N in
G (i)

p(i)∑
j∈N in

G (i) p(j)
=
K + 1

2
=

1

2
log2

(
4

mini p(i)

)
= α(G) logω(1)

(
K

α(G)

)
.

A usual way to avoid this is to introduce some explicit exploration to the probability distributions in
order to force a lower bound on the probabilities of all nodes, e.g., as in EXP3.G [2]. This would bring
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the linear dependence on K down to α in the above bad case, while, on the other hand, introducing a
ln(KT ) factor which then worsens the overall dependence on the time horizon T .

Consider now the variance term given by the analysis of the q-FTRL algorithm. As already argued in
Section 3, we can reuse the variance bound in (16) for the case of negative Shannon entropy because∑

i∈V :i∈N in
G (i)

p(i)2−q∑
j∈N in

G (i) p(j)
≤

∑
i∈V :i∈N in

G (i)

p(i)∑
j∈N in

G (i) p(j)

for any q ∈ (0, 1), and such a bound is the best known so far for the general case of directed strongly
observable graphs. However, we can be more clever in the way we utilize it. Similarly to the proof of
[35, Theorem 14], we can gain an advantage from the adoption of q-FTRL by splitting the sum in the
variance term into two sums according to some adequately chosen threshold β on the probabilities of
the individual nodes. More precisely, by choosing β ≈ exp

(
− ln(K/α) lnK

)
and q = 1−1/(lnK),

we can prove that ∑
i∈V :i∈N in

G (i)

p(i)2−q∑
j∈N in

G (i) p(j)
= O

(
α lnK

(
1 + ln

K

α

))
.

We can further argue that, by following a similar analysis as in the proofs of Theorems 1 and 2, this

variance bound would allow to show that the regret of q-FTRL is O
(√

αT
(
1 + ln(K/α)

)
· lnK

)
,

where there is an additional lnK factor when compared to our regret bound in the undirected case
(Theorem 2).

The presence of extra logarithmic factors is to be expected in the directed case, as many edges between
distinct nodes might reduce the independence number of the graph, while providing information
in one direction only. However, the undirected graph G′ obtained from any directed strongly
observable graph G by reciprocating edges between distinct nodes has the same independence
number α(G′) = α(G) but the regret guarantee given by the more general analysis of q-FTRL would
introduce a spurious lnK multiplicative factor. We remark that all the currently available upper
bounds on the variance term (either with negative Shannon entropy or negative q-Tsallis entropy
regularizers) do not exactly reflect the phenomenon of a gradually disappearing logarithmic factor
when the graph is closer to being undirected (i.e., has fewer unreciprocated edges).

Taking these observations into account, we believe that it should be possible to achieve tighter
guarantees that match our intuition, by improving the currently available tools. The bound on the
variance term, for instance, is one part of the analysis that might be improvable. We might want
to have a similar bound as (16) but with a sublinear dependence on α that varies according to the
parameter q of the negative q-Tsallis entropy; e.g., ignoring logarithmic factors, we could expect it
to become of order αq as we managed to prove for the undirected case (Lemma 1). Doing so could
allow a better tuning of q that might lead to improved logarithmic factors in the regret.
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