
A High-Resolution Dataset for Instance Detection with
Multi-View Instance Capture

Qianqian Shen1,∗ Yunhan Zhao2,∗ Nahyun Kwon3 Jeeeun Kim3 Yanan Li1,† Shu Kong3,4,5,†
1Zhejiang Lab 2UC-Irvine 3Texas A&M University

4Institute of Collaborative Innovation 5University of Macau
shenqq@zhejianglab.com, yunhaz5@ics.uci.edu, {nahyunkwon, jeeeun.kim, shu}@tamu.edu,

liyn@zhejianglab.com, skong@um.edu.mo

Dataset and open-source code

Abstract

Instance detection (InsDet) is a long-lasting problem in robotics and computer
vision, aiming to detect object instances (predefined by some visual examples) in a
cluttered scene. Despite its practical significance, its advancement is overshadowed
by Object Detection, which aims to detect objects belonging to some predefined
classes. One major reason is that current InsDet datasets are too small in scale
by today’s standards. For example, the popular InsDet dataset GMU (published
in 2016) has only 23 instances, far less than COCO (80 classes), a well-known
object detection dataset published in 2014. We are motivated to introduce a new
InsDet dataset and protocol. First, we define a realistic setup for InsDet: training
data consists of multi-view instance captures, along with diverse scene images
allowing synthesizing training images by pasting instance images on them with
free box annotations. Second, we release a real-world database, which contains
multi-view capture of 100 object instances, and high-resolution (6k×8k) testing
images. Third, we extensively study baseline methods for InsDet on our dataset,
analyze their performance and suggest future work. Somewhat surprisingly, using
the off-the-shelf class-agnostic segmentation model (Segment Anything Model,
SAM) and the self-supervised feature representation DINOv2 performs the best,
achieving >10 AP better than end-to-end trained InsDet models that repurpose
object detectors (e.g., FasterRCNN and RetinaNet).

1 Introduction

Instance detection (InsDet) requires detecting specific object instances (defined by some visual
examples) from a scene image [12]. It is practically important in robotics, e.g., elderly-assistant
robots need to fetch specific items (my-cup vs. your-cup) from a cluttered kitchen [40], micro-
fulfillment robots for the retail need to pick items from mixed boxes or shelves [4].

Motivation. InsDet receives much less attention than the related problem of Object Detection
(ObjDet), which aims to detect all objects belonging to some predefined classes [28, 37, 29, 48].
Fig. 1 compares the two problems. One major reason is that there are not large-enough InsDet
datasets by today’s standards. For example, the popular InsDet dataset GMU (published in 2016) [15]
has only 23 object instances while the popular ObjDet dataset COCO has 80 object classes (published
in 2014) [28]. Moreover, there are no unified protocols in the literature of InsDet. The current InsDet
literature mixes multiple datasets to simulate training images and testing scenarios [12]. Note that the

∗Equal contributions; †Corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://github.com/insdet/instance-detection


coffee-beanbottle

coffee-bean
coffee-bean

coffee-bean
bottle

geo-coffee-bean (mocha)

Illy-coffee-beanthermos-flask (white small)

geo-coffee-bean (dark-roast)

coffee-bean, 

bottle, 

cup,

...

Instance Detection (InsDet): detecting instances with 

these visual examples:

Object detection (ObjDet): detecting objects belonging to 

these classes:

Figure 1: Object detection (ObjDet) vs. instance detection (InsDet). ObjDet aims to detect all objects
belonging to some predefined classes, whereas InsDet requires detecting specific object instances defined by
some visual examples. Loosely speaking, InsDet treats a single object instance as a class compared to ObjDet.
Please refer to Fig. 2-right for the challenge of InsDet, which is the focus of our work.

training protocol of InsDet does not follow that of ObjDet, which has training images annotated with
bounding boxes. Differently, for InsDet2, its setup should have profile images of instances (cf. right
in Fig. 1) and optionally diverse background images not containing such instances [12]. We release a
new dataset and present a unified protocol to foster the InsDet research.

Overview of our dataset is presented in Fig. 2. In our dataset, profile images (3072x3072) of object
instances and testing images (6144x8192) are high-resolution captured by a Leica camera (commonly
used in today’s cellphones). This inexpensive camera is deployable in current or future robot devices.
Hence, our dataset simulates real-world scenarios, e.g., robotic navigation in indoor scenes. Even
with high-resolution images, objects in testing images appear small, taking only a tiny region in the
high-res images. This demonstrates a clear challenge of InsDet in our dataset. Therefore, our dataset
allows studying InsDet methods towards real-time operation on high-res (as future work).

Preview of technical insights. On our dataset, we revisit existing InsDet methods [26, 12, 16].
Perhaps the only InsDet framework is cut-paste-learn [12], which cuts instances from their profile
images, pastes them on random background images (so being able to derive “free” bounding boxes
annotations), and trains InsDet detectors on such data by following that of ObjDet (e.g., Faster-
RCNN [37]). We study this framework, train different detectors, and confirm that the state-of-the-art
transformer-based detector DINO [48] performs the best, achieving 27.99 AP, significantly better
than CNN-based detector FasterRCNN (19.52 AP). Further, we present a non-learned method that
runs off-the-shelf proposal detectors (SAM [23] in our work) to generate object proposals and use
self-supervised learned features (DINOf [8]3 and DINOv2f [33]) to find matched proposals to in-
stances’ profile images. Surprisingly, this non-learned method resoundingly outperforms end-to-end
learning methods, i.e., SAM+DINOv2f achieves 41.61 AP, much better than DINO (27.99 AP) [48].

Contributions. We make three major contributions.

1. We formulate the InsDet problem with a unified protocol and release a challenging dataset
consisting of both high-resolution profile images and high-res testing images.

2. We conduct extensive experiments on our dataset and benchmark representative methods
following the cut-paste-learn framework [12], showing that stronger detectors perform better.

3. We present a non-learned method that uses an off-the-shelf proposal detector (i.e., SAM [23])
to produce proposals, and self-supervised learned features (e.g., DINOv2f [33]) to find
instances (which are well matched to their profile images). This simple method significantly
outperforms the end-to-end InsDet models.

2 Related Work

Instance detection (InsDet) is a long-lasting problem in computer vision and robotics [49, 12, 32, 3,
15, 21, 4], referring to detecting specific object instances in a scene image. Traditional InsDet methods
use keypoint matching [34] or template matching [19]; more recent ones train deep neural networks
to approach InsDet [32]. Some others focus on obtaining more training samples by rendering realistic
instance examples [22, 21], data augmentation [12], and synthesizing training images by cutting

2In real-world applications (e.g., robot learning), it is infeasible to place objects in diverse scenes, take scene
photos, then annotate instances using boxes towards training images (cf. training data in object detection).

3We add subscript f to indicate that DINOf [8] is the self-supervised learned feature extractor; distinguishing
it from a well-known object detector DINO [48].

2



Figure 2:Overview of our instance detection dataset. Left : It contains 100 distinct object instances. For
each of them, we capture 24 pro�le photos from multiple views. We paste QR code images beneath objects
to allow relative camera estimation (e.g., by COLMAP [41]), just like other existing datasets [20, 5]. Middle:
We take photos in random scenes (which do not contain any of the 100 instances) as background images. The
background images can be optionally used to synthesize training data, e.g., pasting the foreground instances on
them towards box-annotated training images [26, 12, 16] as used in the object detection literature [28]. Right:
high-resolution (6k� 8k) testing images of clutter scenes contain diverse instances, including some of the 100
prede�ned instances and other uninterested ones. The goal of InsDet is to detect the prede�ned instances in these
testing images. From the zoom-in regions, we see the scene clutters make InsDet a rather challenging problem.

instances as foregrounds and pasting them to background images [26, 12, 16]. Speaking of InsDet
datasets, [15] collects scene images from 9 kitchen scenes with RGB-D cameras and de�nes 23
instances of interest to annotate with 2D boxes on scene images; [21] creates 3D models of 29
instances from 6 indoor scenes, and uses them to synthesize training and testing data; [4] creates 3D
mesh models of 100 grocery store objects, renders 80 views of images for each instance, and uses
them to synthesize training data.

As for benchmarking protocol of InsDet, [12] synthesizes training data from BigBird [43] and
UW Scenes [25] and tests on the GMU dataset [15]; [21] trains on their in-house data and test on
LM-O [5] and Rutgers APC [38] datasets. Moreover, some works require hardware-demanding
setups [4], some synthesize both training and testing data [21, 26], while others mix existing datasets
for benchmarking [12]. Given that the modern literature on InsDet lacks a uni�ed benchmarking
protocol (till now!), we introduce a more realistic uni�ed protocol along with our InsDet dataset,
allowing fairly benchmarking methods and fostering research of InsDet.

Object detection (ObjDet) is a fundamental computer vision problem [13, 28, 37], requiring
detecting all objects belonging to some prede�ned categories. The prevalent ObjDet detectors adopt
convolutional neural networks (CNNs) as a backbone and a detector-head for proposal detection and
classi�cation, typically using bounding box regression and a softmax-classi�er. Approaches can be
grouped into two categories: one-stage detectors [36, 30, 35, 46] and two-stage detectors [17, 6].
One-stage detectors predict candidate detection proposals using bounding boxes and labels at regular
spatial positions over feature maps; two-stage detectors �rst produce detection proposals, then
perform classi�cation and bounding box regression for each proposal. Recently, the transformer-
based detectors transcend CNN-based detectors [7, 51, 48], yielding much better performance on
various ObjDet benchmarks. Different from ObjDet, InsDet requires distinguishing individual object
instances within a class. Nevertheless, to approach InsDet, the common practice is to repurpose
ObjDet detectors by treating unique instances as individual classes. We follow this practice and
benchmark various ObjDet methods on our InsDet dataset.

Pretrained models. Pretraining is an effective way to learn features from diverse data. For example,
training on the large-scale ImageNet dataset for image classi�cation [10], a neural network can
serve as a powerful feature extractor for various vision tasks [11, 42]. Object detectors trained on
the COCO dataset [28] can serve as a backbone allowing �netuning on a target domain to improve
detection performance [27]. Such pretraining requires human annotations which can be costly.
Therefore, self-supervised pretraining has attracted increasing attention and achieved remarkable
progress [9, 18, 8, 33]. Moreover, the recent literature shows that pretraining on much larger-scale
data can serve as a foundation model for being able to perform well across domains and tasks.
For example, the Segment Anything Model (SAM) pretrains a class-agnostic proposal detector on
web-scale data and shows an impressive ability to detect and segment diverse objects in the wild [23].
In this work, with our high-res InsDet dataset, we explore a non-learned method by using publicly
available pretrained models. We show that such a simple method signi�cantly outperforms end-to-end
learned InsDet detectors.

3



3 Instance Detection: Protocol and Dataset

In this section, we formulate a realistic uni�ed InsDet protocol and introduce the new dataset. We
release our dataset under the MIT License, hoping to contribute to the broader research community.

3.1 The Protocol

Our InsDet protocol is motivated by real-world indoor robotic applications. In particular, we consider
the scenario that assistive robots must locate and recognize instances to fetch them in a cluttered
indoor scene [40], where InsDet is a crucial component. Realistically, for a given object instance,
the robots should see it only from a few views (at the training stage), and then accurately detect it
in a distancein anyscenes (at the testing stage). Therefore, we suggest the protocol specifying the
training and testing setups below. We refer the readers to Fig. 2 for an illustration of this protocol.

• Training . There are pro�le images of each instance captured at different views and diverse
background images. The background images can be used to synthesize training images with
free 2D-box annotations, as done by the cut-paste-learn methods [26, 12, 16].

• Testing. InsDet algorithms are required to precisely detect all prede�ned instances from
real-world images of cluttered scenes.

Evaluation metrics. The InsDet literature commonly uses average precision (AP) at IoU=0.5 [12, 2,
32]; others use different metrics, e.g., AP at IoU=0.75 [21], mean AP [3, 15], and F1 score [4]. As a
single metric appears to be insuf�cient to benchmark methods, we follow the literature of ObjDet
that uses multiple metrics altogether [28].

• AP averages the precision at IoU thresholds from 0.5 to 0.95 with the step size 0.05. It is
theprimary metricin the most well-known COCO Object Detection dataset [28].

• AP50 andAP75 are the precision averaged over all instances with IoU threshold as 0.5 and
0.75, respectively. In particular,AP50 is the widely used metric in the literature of InsDet.

• AR (average recall) averages the proposal recall at IoU threshold from 0.5 to 1.0 with
the step size 0.05, regardless of the classi�cation accuracy. AR measures the localization
performance (excluding classi�cation accuracy) of an InsDet model.

Moreover, we taghard andeasyscenes in the testing images based on the level of clutter and
occlusion, as shown by the right panel of Fig. 2.

3.2 The Dataset

We introduce a challenging real-world dataset of indoor scenes (motivated by indoor assistive robots),
including high-resolution photos of 100 distinct object instances, and high-resolution testing images
captured from 14 indoor scenes where there are such 100 instances de�ned for InsDet. Table 1
summarizes the statistics compared with existing datasets, showing that our dataset is larger in scale
and more challenging than existing InsDet datasets. Importantly, object instances are located far from
the camera in cluttered scenes; this is realistic because robots must detect objects in a distance before
approaching them [1]. Perhaps surprisingly, only a few InsDet datasets exist in the literature. Among
them, Grocery [4], which is the latest and has the most instances like our dataset, is not publicly
available.

Our InsDet dataset contains 100 object instances. When capturing photos for each instance, inspired
by prior arts [43, 20, 5], we paste a QR code on the tabletop, which enables pose estimation, e.g.,
using COLMAP [41]. Yet, we note more realistic scenarios can be hand-holding instances for
capturing [24], which we think of as future work. In Fig. 3, we plot the per-instance frequency in the
testing set. Each instance photo is of 3072� 3072 pixel resolution. For each instance, we capture 24
photos from multiple views. The left panel of Fig. 2 shows some random photos for some instances.
For the testing set, we capture high-resolution images (6144� 8192) in cluttered scenes, where some
instances are placed in reasonable locations, as shown in the right panel of Fig. 2. We tag these images
aseasyor hard based on scene clutter and object occlusion levels. When objects are placed sparsely,
we tag the testing images aseasy; otherwise, we tag them ashard. Our InsDet dataset also contains
200 high-res background images of indoor scenes (cf. Fig. 2-middle). These indoor scenes are not
included in testing images. They allow using the cut-paste-learn framework to synthesize training
images [26, 12, 16]. Following this framework, we segment foreground instances using GrabCut [39]

4



Table 1: Comparison of our dataset to existing ones. Several datasets are used in the InsDet literature
although they are designed for different tasks. For example, BigBird and LM are designed to study algorithms of
object recognition and object pose estimation, hence they contain instances that are close to the camera. Naively
repurposing them for InsDet leads to saturated performance, impoverishing the exploration space of InsDet.
Instead, ours is more challenging as instances are placed far from the camera, simulating realistic scenarios
where robots must detect instances at a distance. Importantly, our dataset contains far more instances than other
publicly available InsDet datasets.

for what task publicly available #instances #scenes published year resolution

BigBird [43] recognition 3 100 N/A 2014 1280x1024
RGBD [26] scene label. 3 300 14 2017 N/A
LM [20] 6D pose est. 3 15 1 2012 480x640
LM-O [5] 6D pose est. 3 20 1 2017 480x640
RU-APC [38] 3D pose est. 3 14 1 2016 480x640

GMU [15] InsDet 3 23 9 2016 1080x1920
AVD [1] InsDet 3 33 9 2017 1080x1920
Grocery [4] InsDet 7 100 10 2021 unknown

Ours InsDet 3 100 14 2023 6144x8192

Figure 3:Imbalanced distribution of
instances in test-set. Yet, instances
have the same number of pro�le im-
ages in training and the metrics aver-
age over all instances. So, the evalua-
tion is unbiased.

size bounding box area

small < 2002

medium 2002 - 4002

large > 4002

Table 2: Following the spirit
of COCO dataset, we tag ob-
jects with different sizes by
small , medium, andlarge , re-
spectively.

Figure 4: Distribution of objects
w.r.t their bounding box area in test-
ing images. We split them intosmall ,
medium, andlarge subgroups to al-
low breakdown analysis.

to paste them on background images. It is worth noting that the recent vision foundation model
SAM [23] makes interactive segmentation much more ef�cient. Yet, this work is made public after
we collected our dataset. Following the COCO dataset [28], we further tag testing object instances as
small, medium, andlarge according to their bounding box area, as in Table 2. To determine their size
tags, we plot the distribution of their sizes in Fig. 4, showing an intuitive way to tag them.

4 Methodology

4.1 The Strong Baseline: Cut-Paste-Learn

Cut-Paste-Learnserves as a strong baseline that synthesizes training images with 2D-box anno-
tations [12]. This allows one to train InsDet detectors in the same way as training normal ObjDet
detectors, by simply treating theK unique instances asK distinct classes. It cuts and pastes fore-
ground instances at various aspect ratios and scales on diverse background images, yielding synthetic
training images, as shown in Fig. 5. Cut-paste-learn is model-agnostic, allowing one to adopt any
state-of-the-art detector architecture. In this work, we study �ve popular detectors, covering the two-
stage detector FasterRCNN [37], and one-stage anchor-based detector RetinaNet [29], and one-stage
anchor-free detectors CenterNet [49], and FCOS [45]; and the transformer-based detector DINO [48].
There are multiple factors in the cut-paste-learn framework, such as the number of inserted objects in
each background image, their relative size, the number of generated training images and blending
methods. We conduct comprehensive ablation studies and report results using the best-tuned choices.
We refer interested readers to the supplement for the ablation studies.

5




	Introduction
	Related Work
	Instance Detection: Protocol and Dataset
	The Protocol
	The Dataset

	Methodology
	The Strong Baseline: Cut-Paste-Learn
	The Simple, Non-Learned Method

	Experiments
	Benchmarking Results
	Ablation Study
	Runtime Comparison
	Discussions

	Conclusion

