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Abstract

Many problems in Reinforcement Learning (RL) seek an optimal policy with large
discrete multidimensional yet unordered action spaces; these include problems
in randomized allocation of resources such as placements of multiple security
resources and emergency response units, etc. A challenge in this setting is that
the underlying action space is categorical (discrete and unordered) and large, for
which existing RL methods do not perform well. Moreover, these problems require
validity of the realized action (allocation); this validity constraint is often difficult
to express compactly in a closed mathematical form. The allocation nature of the
problem also prefers stochastic optimal policies, if one exists. In this work, we
address these challenges by (1) applying a (state) conditional normalizing flow
to compactly represent the stochastic policy — the compactness arises due to the
network only producing one sampled action and the corresponding log probability
of the action, which is then used by an actor-critic method; and (2) employing
an invalid action rejection method (via a valid action oracle) to update the base
policy. The action rejection is enabled by a modified policy gradient that we derive.
Finally, we conduct extensive experiments to show the scalability of our approach
compared to prior methods and the ability to enforce arbitrary state-conditional
constraints on the support of the distribution of actions in any state1.

1 Introduction

Adaptive resource allocation problems with multiple resource types (e.g., fire trucks, ambulances,
police vehicles) are ubiquitous in the real world [13, 23, 32]. One example is allocating security
resources and emergency response vehicles to different areas depending on incidents [23]. There are
many other similar problems in aggregation systems for mobility/transportation, logistics etc [13]. In
this paper, we are interested in addressing the multiple difficult challenges present in such adaptive
resource allocation problems: (a) Combinatorial action space, as the number of resource allocations
is combinatorial; (b) Categorical action space, as there is no ordering of resource allocations with
respect to the overall objective (as increasing or decreasing different resource types at different
locations can have different impact on overall objective) ; (c) Constraints on feasible allocations and
switching between allocations; and (d) Finally, uncertainty in demand for resources.

Existing research in RL for constrained action spaces has considered resource allocation problems
with a single type of resource, thereby introducing order in action space [1]. In such ordered action
spaces, actions can be converted into continuous space and this allows for the usage of continuous
action RL methods (e.g., DDPG). In problems of interest in this paper, we are interested in problems
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with multiple resource types (e.g., fire truck, ambulance, police). These problems have a large action
space that is discrete and unordered (categorical) and there are constraints on feasible allocations
(e.g., no two police vehicles can be more than 3 km away, cannot move vehicles too far away from
time step to time step). Furthermore, such constraints are easy to validate by a validity oracle given
any allocation action, but are hard to represent as mathematical constraints on the support of the
distribution of actions (in each state) as they often require exponentially many inequalities [4, 35].
An important consideration in allocation problems is randomized (stochastic) allocation arising from
issues of fair division of indivisible resources so that an allottee is not starved of resources forever [4].
Thus, we aim to output stochastic optimal policies, if one exists.

Towards addressing such resource allocation problems at scale, we propose to employ generative
policies in RL. Specifically, we propose a new approach that incorporates discrete normalizing flow
policy in an actor-critic framework to explore and learn in the aforementioned constrained, categorical
and adaptive resource allocation problems. Prior RL approaches for large discrete multidimensional
action space include ones that assume a factored action space with independent dimensions, which
we call as the factored or marginal approach, since independence implies that any joint distribution
over actions can be represented as the product of marginal distributions over each action dimension.
Other approaches convert the selection of actions in multiple dimensions into a sequential selection
approach. Both these approaches are fundamentally limited in expressivity, which we reveal in detail
in our experiments. Next, we provide a formal description of the problem that we tackle.

Problem Statement: A Markov Decision Process (MDP) is represented by the tuple
hS;A; P; r; 
; b0i, where an agent can be in any state st 2 S at a given time t. The agent takes
an action at 2 A, causing the environment to transition to a new state st+1 with a probability
P : S � A � S 7! [0; 1]. Subsequently, the agent receives a reward r : S � A 7! R. In the
infinite-horizon setting, the discounted factor is 0 < 
 < 1. The distribution of the initial state is b0.

In our work, we focus on a categorical action space, A. Categorical action spaces consist of discrete,
unordered actions with no inherent numerical relationship between them. We assume that for any
state s, there is a set of valid actions, denoted by C(s) � A. There is an oracle to answer whether an
action a 2 C(s), but the complex constraint over categorical space cannot be expressed succinctly
using closed form mathematical formula. Note that the constraint is not the same for every state. Our
objective is to learn a stochastic policy, �(�js), which generates a probability distribution over actions
for state s with support only over the valid actions C(s) in state s. We call the set of such stochastic
policies as valid policies �C given the per state constraint C. We aim to maximize the long-term
expected rewards over valid policies, that is, max�2�C J(�), where J is as follows:

J(�) = Es�b0
[V (s;�)] where V (s;�) = E

hX1

t=0

tr (st; at) js0 = s;�

i
(1)

In addition, we also consider settings with partial observability where the agent observes ot 2 O at
time t where the observation arises from the state st with probability O : O�S 7! [0; 1]. In this case,
the optimal policy is a stochastic policy, �(�jh), where h is the history of observations till current
time. For partial observability, we consider an unconstrained setting, as the lack of knowledge of the
true state results in uncertainty about which constraint to enforce, which diverges from the focus in
this work but is an interesting future research direction to explore. Thus, with partial observability,
we search over stochastic policies � that maximize the long term return, that is, max�2� J(�). J(�)
is the same as stated in Equation 1 but where the expectation is also over the observation probability
distribution in addition to the standard transition and stochastic policy probability distributions.

Contribution: We propose two key innovations to address the problem above. First, we present
a conditional Normalizing Flow-based [26] Policy Network, which leverages Argmax Flow [16]
to create a minimal representation of the policy for policy gradient algorithms. To the best of our
knowledge, this is the first use of discrete normalizing flow in RL. Second, we demonstrate how
to train the flow policies within the A2C framework. In particular, we need an estimate of the log
probability of the action sampled from the stochastic policy but Argmax Flow provides only a biased
lower bound via the evidence lower bound (ELBO). Thus, we design an effective sandwich estimator
for the log probability that is sandwiched between the ELBO lower bound and an upper bound
based on �2 divergence. Third, we propose a policy gradient approach which is able to reject invalid
actions (that do not satisfy constraints) referred to as Invalid Action Rejection Advantage Actor-Critic
(IAR-A2C). IAR-A2C queries the constraint oracle and ensures validity of actions in every state (in
fully observable setting) by rejecting all invalid actions. We derive a new policy gradient estimator
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for IAR-A2C. Figure 1 provides an overview of our architecture. Finally, our extensive experimental
results reveal that our approach outperforms prior baselines in different environments and settings.

2 Background

Normalizing Flows: Normalizing flows are a family of generative models that can provide both
efficient sampling and density estimation. Their main idea is to construct a series of invertible and
differentiable mappings that allow transforming a simple probability distribution into a more complex
one. Given V = Z = Rd with densities pV and pZ respectively, normalizing flows [26] aim to learn
a bijective and differentiable transformation f : Z ! V . This deterministic transformation allows us
to evaluate the density at any point v 2 V based on the density of z 2 Z , as follows:

pV (v) = pZ(z) �
���det

dz

dv

���; v = f(z) (2)

In this context, pZ can be any density, though it is typically chosen as a standard Gaussian and
f is represented by a neural network. Consequently, normalizing flows offer a powerful tractable
framework for learning complex density functions. However, the density estimation presented in
Equation 2 is limited to continuous probability distributions. To enable the learning of probability
mass functions (P ) on categorical discrete data, such as natural language, Argmax Flow [16] proposed
to apply the argmax operation on the output of continuous flows. Let’s consider v 2 RD�M and
x 2 f1; : : : ;MgD. The argmax operation is interpreted as a surjective flow layer v 7! x, which
is deterministic in one direction (xd = arg maxmvd, written compactly as x = arg max v) and
stochastic in the other (v � q(�jx)). With this interpretation, the argmax operation can be considered
a probabilistic right-inverse in the latent variable model expressed by:

P (x) =

Z
P (xjv)p(v)dv; P (xjv) = �(x = argmax(v)) (3)

where argmax is applied in the last dimension of v. In this scenario, the density model p(v) is
modeled using a normalizing flow. The learning process involves introducing a variational distribution
q(vjx), which models the probabilistic right-inverse for the argmax surjection, and optimizing the
evidence lower bound (ELBO), which is the RHS of the following inequality:

logP (x) � Ev�q(�jx)[logP (xjv)+log p(v)� log q(vjx)] = Ev�q(�jx)[log p(v)� log q(vjx)] = L
The last equality holds under the constraint that the support of q(vjx) is enforced to be only over
the region S = fv 2 RD�M : x = arg max vg which ensures that P (xjv) = 1. From standard
variational inference results, logP (x)� L = KL(q(vjx)jjp(vjx)), which also approaches 0 as the
approximate posterior q(vjx) comes closer to the true posterior p(vjx) over the training time.

�2 Upper Bound: Variational inference involves proposing a family of approximating distributions
and finding the family member that is closest to the posterior. Typically, the Kullback-Leibler (KL)
divergence KL(qjjp) is employed to measure closeness, where q(vjx) represents a variational family.
This approach yields ELBO of the evidence logP (x) as described above.

Instead of using KL divergence, the authors in [8] suggest an alternative of �2-divergence to measure
the closeness. As a result, they derived an upper bound of the evidence, known as CUBO: logP (x) �
1
2 log Ev�q(�jx)

��
p(x;v)
q(vjx)

�2
�

. Similar to the ELBO in Argmax Flow, CUBO can be further simplified

under the constraint that the support of q(�jx) is restricted to the region S:

logP (x) � 1

2
log Ev�q(�jx)

"� p(v)

q(vjx)

�2
#

= L�2 (4)

Also, L�2 � logP (x) = 1
2 log(1 +D�2(p(vjx))jjq(vjx))), hence the gap between the ELBO and

CUBO approaches 0 as the approximate posterior q(�jx) becomes closer to the true posterior p(�jx).

3 Flow-based Policy Gradient Algorithm with Invalid Action Rejection

We first present the Flow-based Policy Network, which leverages Argmax Flow to create a minimal
representation of the policy for policy gradient algorithms, and then construct flow policies within
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Figure 1:Our IAR-A2C framework . At each time step, an initial batch of action samples, along
with their log probabilities, are generated using the Flow Policy. Invalid actions from this batch are
rejected using an oracle. A single action is then uniformly sampled from the remaining valid ones,
and executed. This selected action and the valid action set are stored along with the resulting state
and reward. This collective experience is subsequently utilized to update the Flow Policy.

the A2C framework. Our exposition will present policies conditioned on state, but the framework
works for partial observability also by using the sequence of past observations as state. After this, for
the fully observable setting only, we introduce our novel policy gradient algorithm called IAR-A2C
that enforces state dependent constraints.

3.1 Flow-based Policy Network

In policy gradient algorithms for categorical actions, the standard approach is to model the entire
policy, denoted as� (�js), which allows us to sample actions and obtain their corresponding probabili-
ties. The policy is parameterized using a neural network where the network generates logits for each
action, and then converts these logits into probabilities. The size of the output layer matches that of
the action space, which can be prohibitively large for resource allocation problems of interest in this
paper. We posit that we can have a better policy representation, as it is suf�cient to require samples
from the support set of the policy, represented bya( i ) � � (�js) and probability value� (a( i ) js) > 0.

Figure 2: Composition of a conditional �ow
p�;w (zK js) and argmax transformation resulting in
the policy� �;w (ajs). The �ow maps from a base
distributionp� (z0js) by using a bijectionFw . The
diagram is adapted from Hoogeboom et al. [16].

Based on this observation, our �rst contribu-
tion is a compact policy representation using
Argmax Flow [16], which we refer to as the
Flow Policy. Argmax Flow is a state-of-the-
art discrete normalizing �ow model and it has
shown great capability of learning categorical
data such as in sentence generation. In our
context, Flow Policy will output the action (a
sample of the �ow policy) and its probabil-
ity, instead of explicitly outputting the entire
distribution and sampling from it as in prior
work. Once trained, we can sample from the
Argmax Flow and, more importantly, estimate
the probability of the sample. A normaliz-
ing �ow model transforms a base distribution,

given by a random variablez0, to the desired distribution. In our approach, the desired distribution is
the distribution given by policy� . We adapt Argmax Flow approach for learning a stochastic policy.

Before diving into the speci�cs of the Flow Policy, we �rst discuss our rationale for choosing
the normalizing �ow model over other contemporary deep generative models, such as Generative
Adversarial Networks (GANs) [12] and Diffusion Models [15, 29]. GANs, categorized as implicit
generative models, do not allow for an estimation of the data's log probability. While prior research
has successfully devised an approach for exact log probability estimation with Diffusion Models, these
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Algorithm 1: ELBO Optimization

1 Input : Invertible �ow Fw = f w;k � : : : � f w; 1, State encoderE � , Posteriorq , rollout �
2 SampleStates = f (s( i ) )gB

i =1 � �
3 for s 2 States do
4 for j  1 : n_elbo_stepsdo
5 z( j ) = Fw (z( j )

0 ), wherez( j )
0 � E � (s)

6 a( j ) = argmax z( j )

7 for j  1 : n_elbo_stepsdo
8 z

0( jn ) = thresholdT (u( jn ) ), wheref (u( jn ) )gN
n =1 � q (�ja( j ) ; s)

9 z0( jn )
0 = F � 1

w (z0( jn ) )
10 Take a gradient ascending step of ELBO w.r.t.�; w and 

11 L = 1
N

P N
i =1

�
logp� (z

0( jn )
0 js) �

P K
k=1 log

�
�
� det @fw;k

@z0( jn )
k � 1

�
�
� � logq (z

0( jn ) ja( j ) ; s)
�

models encounter the problem of slow sampling and expensive probability estimation, necessitating
the resolution of an ordinary differential equation [29]. In contrast, normalizing �ow has low cost
for sampling and probability evaluation in our case, as we �nd the simple �ow model is suf�cient to
learn a good policy. So normalizing �ow is a natural choice to construct our policy.

We demonstrate how to construct the �ow policy within the A2C framework. An illustration is
provided in Figure 2. To de�ne the policy,� (ajs), we �rst encode the state that is then used to
de�ne the base distributionz0. In accordance with standard practice, we selectz0 as a Gaussian
distribution with parameters�; � de�ned by the state encoder (a state-dependent neural network):
z0 = � � (s) + � � (s) � � where� � N (0; 1). We write this asz0 � E � (s), where� denotes the
weights of the state encoder. We then apply a series of invertible transformations given as functions
f k that de�ne the �ow, followed by the argmax operation (as de�ned in background on Argmax �ow).
Consequently, the �nal sampled action is given bya = argmax ( f K � : : : � f 1 (z0)) . Eachf k is an
invertible neural network [26] and we useFw = f w;K � : : : � f w; 1 to denote the composed function,
wherew; k is the weight of the network representingf k . Thus, sampled actiona = argmax ( Fw (z0))
for z0 � E � (s). We use shorthand� = ( �; w ) when needed. Also, we usezk = f w;k (zk � 1) to
denote the output off w;k andp� (z0js) to denote the probability density ofz0 � N (� � ; � � ).

We use a variational distributionq for the reverse mapping from a discrete action (conditional on
states) to a continuous output ofFw (z0). The corresponding estimate of the log probability of the
sampled actiona, denoted bŷl � , is the evidence lower bound ELBO, computed as follows:

l̂ � (ajs) = L = EzK � q ( �j a;s )

h
logp� (z0js) �

X K

k=1

�
log

�
�
� det

@fk
@zk � 1

�
�
�
�

� logq (zK ja; s)
i

(5)

To ensure that our approximation closely approximates the evidence, we optimize ELBO progressively,
following the training scheme of Argmax �ow, as shown in the subroutine Algorithm 1 used within
the outer A2C framework in Algorithm 2. The target distribution in this subroutine is given by actions
a( j ) sampled from the current policy (line 6); thus, this subroutine aims to update the �ow network
components (�; w ) to make the distribution of overall policy be closer to this target distribution and
to improve the posteriorq estimate (ELBO update in line 11), which gets used in estimating the
log probability of action required by the outer A2C framework (shown later in Algorithm 2). The
various quantities needed for ELBO update are obtained in lines 8, 9 by passinga( j ) back through
the invertible �ow layers (usingq for the discrete to continuous inverse map).

3.2 Policy Gradient with Invalid Action Rejection

We aim to use the �ow-based policy within an A2C framework, illustrated in Figure 1; here we
describe the same along with how to enforce arbitrary state based constraint on actions. We propose a
sandwich estimator which combines ELBO and CUBO to obtain a low-bias estimation oflog � (ajs),
thus improving the convergence of policy gradient learning. Moreover, to tackle the challenge of
aforementioned complex constraints, our algorithm proceeds by sampling a number of actions from
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the �ow-based policy and then utilizing the constraint oracle to �lter the invalid actions. We then
provide theoretical results showing the adaptation of the policy gradient computation accordingly.

Sandwich estimator:The ELBOl̂ � is a biased estimator oflog � (ajs), but it is known in literature [5]
that l̂ � is a consistent estimator (i.e., converges tolog � (ajs) in the limit) and there are generative
methods based on this consistency property, such as [33]. However, we aim to usêl � in the policy
gradient and stochastic gradient descent typically uses an unbiased gradient estimate (but not always,
see [6]). Therefore, we propose to use a new technique which combines ELBO and CUBO to reduce
the bias, improving the convergence of our policy gradient based learning process. In particular, we
estimate an upper bound oflog � (ajs) using the following CUBO:

l̂u
� (ajs) = L � 2 =

1
2

logEzK � q (zK j a;s )

h� p� (z0js)
Q K

k=1

�
� det @fw;k

@zk � 1

�
�q (zK ja; s)

� 2i
(6)

We then use a weighted average of the upper and lower bounds as a low-bias estimate oflog � (ajs),
denoted bydlogp�; = � l̂ � + (1 � � )l̂u

� where� is a hyperparameter. We call this thesandwich
estimatorof log probability. We observed in our experiments that an adaptive� (l̂ � ; l̂u

� ) as a function
of the two bounds provides better results than a static� = 1

2 (see Appendix B.1 for more details).

Constraints: Since the agent only has oracle access to the constraints, existing safe exploration
approaches [20, 24] are not directly applicable to this setting. If the agent queries the validity of all
actions, then it gains complete knowledge of the valid action setC(s). However, querying action
validity for the entire action space at each timestep can be time-consuming, particularly when the
action space is large, e.g., 1000 categories. We demonstrate this issue in our experiments.

To address this challenge of complexstate-dependentconstraints in the full observation setting, we
propose a new policy gradient algorithm called Invalid Action Rejection Advantage Actor-Critic
(IAR-A2C). IAR-A2C operates by sampling a set of actions from the current �ow-based policy
and then leveraging the constraint oracle to reject all invalid actions, enabling the agent to explore
safely with only valid actions. We then derive the policy gradient estimator for this algorithm. Recall
thatC(s) is the set of valid actions in states and letCI (s) be the set of invalid actions. We sample
an action from� � (ajs) (recall � = ( �; w ) when using Flow Policy), rejecting any invalid action
till a valid action is obtained. Clearly, the effective policy� 0 induced by this rejection produces
only valid actions. In fact, by renormalizing we obtain� 0

� (ajs) = � � (ajs)P
a i 2C ( s ) � � (a i j s) for a 2 C(s).

For the purpose of policy gradient, we need to obtain the gradient of the long term reward with� 0:
J (� ) = Es� b0 [V (s; � 0)]. We show that:

Theorem 1 With � 0 de�ned as above,

r � J (� ) = E� 0

"

Q� 0
(s; a)r � log � � (ajs) � Q� 0

(s; a)

P
a2C (s) r � � � (ajs)

P
a2C (s) � � (ajs)

#

(7)

In practice, analogous to standard approach in literature [22] to reduce variance, we use the TD
error (an approximation of advantage) form instead of the Q function in Theorem 1. Then, given
the network� � , the empirical estimate of the �rst gradient term is readily obtainable from trajectory
samples of� 0. To estimate the second term, for every states in the trajectories, we sampleS actions
from � � (ajs) and reject anya 2 CI (s) to getl � S valid actionsa1; :::; al . We then apply Lemma 1:

Lemma 1 1
l

P
j 2 [l ] r � log � � (aj js) and l

S are unbiased estimates of
P

a2C (s) r � � � (ajs) andP
a2C (s) � � (ajs) respectively.

The full approach is shown in Algorithm 2, with the changes from standard A2C highlighted in red.
Recall that,� = ( �; w ) is the parameter of the �ow-based policy network,� is the parameter of the
critic, and is the parameter of the variational distribution networkq for ELBO.

4 Related Work

Large discrete action space.Dulac-Arnold et al.[10] attempt to solve this problem by embedding
discrete actions into a continuous space; however, this approach does not work for our unordered
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Algorithm 2: IAR-A2C

1 Initialize step countt  1, Initialize episode counterE  1
2 repeat
3 Reset gradients:d(�;  )  0, d�  0, Initialize experience set� , tstart = t, get statest
4 repeat
5 Executeat according to policy� 0

� (at jst ) // De�ned in Section 3.2
6 Get a number of valid and sampled actionsl t andSt
7 Receive rewardr t and new statest +1
8 Add new experience�  � [ f st ; at ; st +1 ; r t g, and updatet  t + 1
9 until terminalst or t � tstart = tmax

10 R =
�

0 for terminalst
V� (st ) for non-terminalst // Bootstrap from last state

11 for i 2 f t � 1; :::; tstart g do
12 R  r i + 
R
13 dlogp�; (ai jsi ) = � l̂ � (ai jsi ) + (1 � � )l̂u

� (ai jsi ) // Sandwich estimator
14 Accumulate gradients w.r.t.(�;  ): d(�;  )  

d(�;  ) + ( R � V� (si ))
�

r �; 
dlogp�; (ai jsi ) � Sj

l 2
j

P
j 2 [l ] r �; 

dlogp�; (aij jsi )
�

15 Accumulate gradients w.r.t.� : d�  d� + @(R � V� (si ))2=@�

16 Perform update of� usingd� , of  usingd and of� usingd�
17 Execute ELBO updating by running Algorithm 1 with� as input
18 E  E + 1
19 until E > E max

discrete space as we reveal by thorough comparison in our experiments. Another type of approach
relies on being able to represent a joint probability distribution over multi-dimensional discrete actions
using marginal probability distribution over each dimension (also called factored representation).
Tang and Agrawal[30] apply this approach to discretized continuous control problems to decrease the
learning complexity. Similarly, Delalleau et al.[7] assumes independence among dimensions to model
each dimension independently. However, it is well-known in optimization and randomized allocation
literature [4, 35] that dimension independence or marginal representation is not valid in the presence
of constraints on the support of the probability distribution. Another type of approach [34, 36]
converts the choice of multi-dimensional discrete action into a sequential choice of action across the
dimensions at each time step (using a LSTM based policy network), where the choice of action in
any dimension is conditioned on actions chosen for prior dimensions.

Safe actions.Our approach falls into the �eld of constrained action space in RL. Situated in the
broader safe RL literature [11, 14], these works aim to constrain actions at each step for various
purposes, including safety. Notably, wedo nothave an auxiliary cost that we wish to bound, thus,
frameworks based on Constrained MDP [11] cannot solve our problem. Also, our state dependent
constraints if written as inequalities can be extremely large and hence Lagrangian methods [2] that
pull constraints into the objective are infeasible. Most of the methods that we know for constrained
actions need the constraints to be written as mathematical inequalities and even then cannot handle
state dependent constraints. Although action masking [17] does offer a solution for state-dependent
constraints, it necessitates supplementary information in the form of masks. Thus, they do not
readily apply to our problem [20]. Some of these methods[9, 24] aim at differentiating through an
optimization; these methods are slow due to the presence of optimization in the forward pass and
some approaches to make them faster[27] work only with linear constraints; all these approaches
scale poorly in the number of inequality constraints.

Normalizing �ow policy. The application of normalizing �ows in RL has been an emerging �eld of
study with a focus on complex policy modeling, ef�cient exploration, and control stability [18, 21, 33].
Normalizing �ow was integrated into the Soft Actor-Critic framework to enhance the modelling
expressivity beyond conventional conditional Gaussian policies and achieve more ef�cient exploration
and higher rewards [21, 33]. In robotic manipulation, Khader et al. [18] proposed to improve the
control stability by a novel normalizing-�ow control structure. However, these works primarily focus
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on continuous actions. To the best of our knowledge, ours is the �rst work that has successfully
incorporated a discrete �ow, extending the scope of �ow policies into discrete action spaces.

5 Experiments

Through our experiments, we aim to address two main research questions related to our primary
contributions: (1) Is the �ow-based policy effective in representing categorical actions? (2) Does
IAR-A2C offer advantages in constrained action space with oracle constraints? We address these
two questions in Sections 5.1 and 5.2 accordingly. Following these, we present an ablation study that
examines the effectiveness of various modules in our approach.

Figure 3:Pistonball, goal is to
move the ball to the left border
by operating the pistons.

We �rst describe our set-up. We evaluate IAR-A2C against
prior works across a diverse set of environments, including low-
dimensional discrete control tasks such as CartPole and Acrobot [3],
the visually challenging Pistonball task [31] with high-dimensional
image inputs and an extremely large action space (upto59; 049cat-
egories), and an emergency resource allocation simulator in a city,
referred to as Emergency Resource Allocation (ERA). CartPole and
Acrobot are well-established environments. Pistonball is also a stan-
dard environment where a series of pistons on a line needs to move
(up, down, or stay) to move a ball from right to left (Figure 3). While
the Pistonball environment was originally designed for a multi-agent
setting with each piston controlled by a distinct agent, we recon�g-
ure this as a single-agent control of all pistons. This modi�cation presents a challenging task for the
central controller as the action space is exponentially large. We show results for Acrobot and three
versions of Pistonball: v1 with35, v2 with 38, and v3 with310 actions. Results for CartPole are in
the appendix.

Finally, our custom environment, named ERA, simulates a city that is divided into different districts,
represented by a graph where nodes denote districts and edges signify connectivity between them. An
action is to allocate a limited number of resources to the nodes of the graph. A tuple including graph,
current allocation, and the emergency events is the state of the underlying MDP. The allocations
change every time step but an allocation action is subject toconstraints, namely that a resource can
only move to a neighboring node and resources must be located in proximity (e.g. within 2 hops on
the graph) as they collaborate to perform tasks. Emergency events arise at random on the nodes, and
the decision maker aims to minimize the costs associated with such events by attending to them as
quickly as possible. Moreover, we explore a partially observable scenario (with no constraints) in
which the optimal allocation is randomized, thus, the next node for a resource is sampled from the
probability distribution over neighboring nodes that the stochastic policy represents (see appendix
for set-up details). We show results for �ve versions of ERA: ERA-Partial with 9 actions and partial
observability in unconstrained scenario, while v2 with73 actions, v3 with83 actions, v4 with93

actions, and v5 with103 actions in constrained scenario. The results for ERA-v1 are in Appendix C.

Benchmarks: In the unconstrained setting, we compare our approach to Wol-DDPG [10], A2C [22],
factored representation (Factored, discussed in Section 4), and autoregressive approach (AR, discussed
in Section 4). Wol-DDPG is chosen as it is designed to handle large discrete action spaces without
relying on the dimension independence assumption. In the oracle constraints setting, we compare our
method to action masking (MASK) [17], which determines the action mask by querying all actions
within the action space. As far as we know action masking is currently the only existing approach for
constraining action with oracle constraints, we also include a comparison with IAR-augmented AR
(AR+IAR) which is able to handle the constraints by utilizing our invalid action rejection technique,
as well as a comparison with Wol-DDPG to demonstrate the performance of a method that cannot
enforce the constraints.

5.1 Learning in Categorical Action Space without Constraints

In the Acrobot environments, we use A2C as the benchmark because this task is relatively simple and
A2C can easily learn the optimal policy. For the Pistonball environment, we consider both Wol-DDPG
and A2C as benchmarks. The results are displayed in Figure 4. We also conduct experiments on
CartPole and ERA-v5 with all constraints removed, which can be found in Appendix C.
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Figure 4: Learning curves over time in(a) Acrobot and(b) Pistonball-v[1-3] (without constraints).
All approaches are trained with 5 seeds, except for Wol-DDPG, trained with 3 seeds due to its
expensive training cost on Pistonball.

Figure 5: Learning curves inERA-v[2-5] (with constraints). All settings are trained with 5 seeds.

Figure 6: Learning curves inERA-
Partial . Our approach obtains
higher return than Factored ap-
proach.

The results of Acrobot demonstrate that the �ow-based policy
exhibits comparable performance to the optimal policy (A2C),
which also highlights the effectiveness of our sandwich estima-
tor for log � (ajs). In more challenging environments with high-
dimensional image observations and extremely large action
spaces, our model has comparable performance to Factored and
AR, while signi�cantly outperforming A2C and Wol-DDPG.
Interestingly, we observe that Wol-DDPG struggles to learn
even in the simplest Pistonball environment, despite being de-
signed for large discrete action spaces. We hypothesize that
Wol-DDPG might function properly if the actions are discrete
yet ordered, as demonstrated in the quantized continuous con-
trol task presented in the Wol-DDPG paper [10].

On ERA-Partial, we demonstrate the known fact that the opti-
mal policy in environments with partial observability may be
a stochastic one [28]. We compare with the factored approach
(Figure 6). In this environment, the optimal stochastic policy
is a joint distribution that is not factorizable into a product of independent distributions over each
dimension. Thus, the factored approach cannot effectively represent the joint distribution due to its
independence assumption among dimensions. The experiment results show our approach signi�cantly
outperforms the factored approach. We further present a smaller example in the appendix which
shows that the inability to represent an arbitrary joint distribution makes the factored approach
extremely suboptimal in partial observable settings.

5.2 Learning in Categorical Action Space with State-Dependent Constraints

We now address the second question about constraint enforcement by IAR-A2C. The results are in
Figure 5. We observe that our approach demonstrates better or comparable performance compared to
the benchmarks. AR is known as a strong baseline for environments with large discrete action space,
but surprisingly, it performs poorly. We hypothesize this is due to the case that the autoregressive
model does not have a sense of the constraints of the remaining dimensions when it outputs the
action for the �rst dimension, thereby producing �rst dimension actions that may be optimal without
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constraints but are suboptimal with constraints. Detailed analysis and experimental evidence to
support our hypothesis are provided in Appendix D.

Figure 7: Learning curves for
wall clock time. Our approach
converges much faster than action
masking.

Also, action masking achieves its performance by querying
all actions of the entire action space, whereas our approach
only requires querying a batch of actions, which is substantially
smaller(e.g.,64 versus1; 000for ERA-v5). Thus, while Fig-
ure 5 shows IAR-A2C taking more iteration for convergence,
the same �gure when drawn with the x-axis as wall clock time
in Figure 7 (shown only for v4 here, others are in appendix C)
shows an order of magnitude faster convergence in wall clock
time. Another critical property of our approach is the guar-
anteed absence of constraint violations, similar to the action
masking method. However, while action masking demands
the full knowledge of the validity of all actions, our method
merely requires the validity of the sampled actions within a
batch. Note that Wol-DDPG can and does violate constraints
during the learning process. Further details regarding the action
violation of Wol-DDPG are provided in the appendix C.

5.3 Ablation Study

(a) (b)

Figure 8:(a) Ablation of gradient correction and sandwich
estimator(b) Ablation of posterior type.

We conduct ablation studies of IAR-
A2C on ERA-v4 to investigate the ef-
fect of various choices of modules and
estimators in our approach.

Policy Gradient: We compare the
performance of approaches using the
policy gradient provided by Theo-
rem 1 (gradient correction) and the
original policy gradient of A2C (stan-
dard policy gradient), while still ap-
plying invalid action rejection. We
observe in Figure 8a that the number
of valid actions in the batch decreases
rapidly, and the program may crash if
no valid actions are available.

Sandwich Estimator: We examine
the effects if we use only the ELBO estimator for log probability of action instead of our sandwich
estimator. We �nd that the ELBO estimator is also prone to a reduction in valid actions in Figure 8a
and unstable learning as a consequence, similar to the observation when using the standard policy
gradient.

Posterior Type: The posteriorq(zja; s) can be modeled by a conditional Gaussian or a normalizing
�ow. In our experiments, we discover that modellingq with a �ow posterior is crucial for learning, as
it can approximate the true posterior more effectively than a Gaussian, as seen in Figure 8b.

6 Conclusion and Limitations

We introduced a novel discrete normalizing �ow based architecture and an action rejection approach
to enforce constraints on actions in order to handle categorical action spaces with state dependent
oracle constraints in RL. Our approach shows superior performance compared to available baselines,
and we analyzed the importance of critical modules of our approach. A limitation of our method is in
scenarios where the fraction of valid actions out of all actions is very small, and hence our sampling
based rejection will need a lot of samples to be effective, making training slower. This motivates
future work on improved sampling; further, better estimation of the log probability of actions is also
a promising research direction for improved performance.
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A Proofs and Derivation

A.1 Proof for Theorem 1

The following sequence of equations show that proof, relying on the fact that� 0(ajs) =
� � (ajs)P

a i 2C ( s ) � � (a i j s) . We start with the standard policy gradient for any policy� 0, shown in the �rst

line below, and then replace� 0(ajs) = � � (ajs)P
a i 2C ( s ) � � (a i j s) in the second line, followed by standard

manipulation of the log function.

r � J (� ) = E� 0

h
Q� 0

(s; a)r � log � 0(ajs)
i

(8)

= E� 0

h
Q� 0

(s; a)r � log
� � (ajs)

P
a i 2C (s) � � (ai js)

i
(9)

= E� 0

h
Q� 0

(s; a)r � log � � (ajs) � Q� 0
(s; a)r � log

X

a i 2C (s)

� � (ai js)
i

(10)

= E� 0

h
Q� 0

(s; a)r � log � � (ajs) � Q� 0
(s; a)

P
a i 2C (s) r � � � (ai js)

P
a i 2C (s) � � (ai js)

i
(11)

A.2 Proof for Lemma 1

Fix states and consider a functionF (a) =

(
r � � � (ajs)

� � (ajs) for a 2 C(s)
0 otherwise

. Then,

E� [F (a)] =
X

a2C (s)

r � � � (ajs)

Thus, if we obtain a sample average estimate forE� [F (a)] then it is an unbiased estimate forP
a2C (s) r � � � (ajs). ForS samples from� with l being valid samples, the sample average estimate

for E� [F (a)] is 1
l

P
j 2 [l ] r � log � � (aj js).

Similarly, for the next estimate, consider a functionG(a) =
�

1 for a 2 C(s)
0 otherwise

. Clearly, then

E� [G(a)] =
P

a2C (s) � � (ajs) and a sample avergae estimate ofE� [G(a)] is l
S .

A.3 Soft Threshold Function

In Argmax Flow [16], a threshold function was introduced to enforce the argmax constraints, i.e.
the variational distributionq(v jx ) should have support limited toS(x ) = f v 2 RD � K : x =
arg maxvg. The thresholding-basedq(vjx ) was de�ned by Alg. 3 in Argmax Flow. However, the
formula to evaluatedet dv=du is not given, which is essential when estimating ELBOl̂ � and CUBO
l̂u
� . We derive it here.

Let's follow the notations in Alg. 3 of Argmax Flow. Suppose indexi is the one that we want to be
largest (i is a �xed index). The soft threshold function is given by

vj = ui � log(1 + eu i � u j )

Note that the thresholdT = vx = ux (we cannot usevx to de�ne v itself, soT is ux ). Then,

� if j = i thenvj = ui ;
@vj
@uk

= 1

� if k 6= j or k 6= i then @vj
@uk

= 0

� if k = i then @vj
@uk

= 1 � 1
1+ eu i � u j

� eu i � u j

� if k = j then @vj
@uk

= 1
1+ eu i � u j

� eu i � u j

14



Table A.1: Various Types of Alpha�

Types of� Remark

Static� � is �xed to be 0.5
Trainable� � is a trainable parameter, updated by the policy gradient
Adaptive� (l̂ � ; l̂u

� ) � is conditioned on the ELBO and the CUBO

det dv=du is aK � K determinant, where only the elements on the diagonal and on the columni is
non-zero, other elements are zero. We can unfold the determinant by the i-th row. Finally, we have

det dv=du =
KY

j =1 ;j 6= i

@vj
@uj

=
KY

j =1 ;j 6= i

sigmoid(ui � uj )

B Experimental Details

B.1 Effect of the Sandwich Estimator's Weight�

Figure A.1: Performance with
adaptive� and static� in ERA-
v4.

The value of� plays a crucial role in estimating the log prob-
ability, which in turn impacts the performance of the model.
Various types of� are presented in Table A.1. Through our
experiments, we have observed that an adaptive� yields greater
stability and, in certain environments, leads to improved perfor-
mance. This is illustrated in Figure A.1, where the adaptive�
exhibits superior performance compared to the static value of
� = 0 :5.

B.2 Effect of Invertible Functions Fw

We have explored different types of invertible functionFw
(called latent �ow model) in our study, including af�ne coupling
bijections2, as well as more advanced models such as AR Flow
and Coupling Flow, as described in section B.1 of Argmax
Flow [16]. The AR Flow and Coupling Flow methods offer
enhanced capabilities for modeling complex distributions, and
they have been successfully applied to language modeling tasks within the Argmax Flow framework.
However, through our experiments, we have observed that even a simple latent �ow model is suf�cient
for achieving good performance and exhibits faster convergence. We attribute this �nding to the fact
that the increased parameterization in AR Flow requires a larger amount of training data to effectively
learn.

Table A.2: Optimization details

Environment n_envs lr Optimizer batch size

CartPole 8 3e-4 RMSprop 256
Acrobot 8 3e-4 RMSprop 256
ERA-v5 w/o cstr 64 3e-4 RMSprop 512
Pistonball-v[1-3] w/o cstr 64 3e-4 RMSprop 512
ERA-v[1-5] w/ cstr 64 3e-4 RMSprop 256
Pistonball-v[1-2] w/ cstr 64 3e-4 RMSprop 512

B.3 Optimization Details

The total timesteps of training for each environment are determined based on the convergence of
our model and benchmarks. Typically, we train each setting using 5 different random seeds, unless

2We exploit the implementation from: https://github.com/didriknielsen/survae_�ows
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(a) (b)

Figure A.2:(a) Learning curves inCartPole andERA-v5 (without constraints);(b) Learning curves
in ERA-v1 (with constraints).

Figure A.3: Learning curves inToy-Partial .

otherwise speci�ed. When evaluating the model's performance at a speci�c timestep with a speci�c
seed, we employ a separate set of 10 testing environments and report the mean return over these
environments. Further details can be found in Tables A.2. Note thatn_envs denotes the number of
environments running in parallel,lr denotes the learning rate, andbatch size refers to the batch
size when we execute ELBO updating (Algorithm 1 in the main paper). Furthermore, we will make
the code used to reproduce these results publicly available.

B.4 Range of Considered hyperparameters

We conducted experiments varying the number of samples used for estimatinglog � (ajs), speci�cally
considering the valuesf 1; 2; 4; 8g, as well as the inclusion of reward normalization. We �nd that
using2 or 4 samples generally leads to good performance across most of our experiments.

B.5 Network structure

Our implementation is built on Stable-Baseline3 [25]. In different environments, different state
encoders were exploited. We used MLP encoder for discrete control tasks and CNN encoder for
Pistonball task. In ERA environment, a customized state encoder was applied to handle the graph
state based on the implementation from [19].

B.6 Computational resources

Experiments were run on NVIDIA Quadro RTX 6000 GPUs, CUDA 11.0 with Python version 3.8.13
in Pytorch 1.11.

C Additional Experiment

In this section, we present additional experimental results obtained from our study.
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