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Abstract

Despite the connection established by optimization-induced deep equilibrium
models (OptEqs) between their output and the underlying hidden optimization
problems, the performance of it along with its related works is still not good enough
especially when compared to deep networks. One key factor responsible for this
performance limitation is the use of linear kernels to extract features in these
models. To address this issue, we propose a novel approach by replacing its linear
kernel with a new function that can readily capture nonlinear feature dependencies
in the input data. Drawing inspiration from classical machine learning algorithms,
we introduce Gaussian kernels as the alternative function and then propose our new
equilibrium model, which we refer to as GEQ. By leveraging Gaussian kernels,
GEQ can effectively extract the nonlinear information embedded within the input
features, surpassing the performance of the original OptEqs. Moreover, GEQ
can be perceived as a weight-tied neural network with infinite width and depth.
GEQ also enjoys better theoretical properties and improved overall performance.
Additionally, our GEQ exhibits enhanced stability when confronted with various
samples. We further substantiate the effectiveness and stability of GEQ through a
series of comprehensive experiments.

1 Introduction

Deep Neural Networks (DNNs) show impressive performance in many real-world tasks on various
data like graphs [43], images [41, 20], sequences [8], and others. However, most neural network
structures are constructed by experience or searching on the surrogate datasets [31, 57]. Therefore,
these architectures cannot be interpretable and such a phenomenon hinders further development.
Apart from the current neural network models, traditional machine learning methods like dictionary
learning [46, 33], subspace clustering [54] and other methods [29, 56, 55, 30] can design their whole
procedure by designing optimization problems with specific regularizers customized from their
mathematical modeling and requirements. Thus, these models are easily interpreted. However, the
traditional machine learning algorithms’ whole procedures do not consider the hidden properties of
features and labels. Therefore, they usually perform worse on tasks with more data.

To link two types of models, OptEqs [52] tries to recover the model’s hidden optimization problem
to make their model “mathematically explainable”. They claim that the output features z̃∗ (we also
called the equilibrium state) with respect to input x, which are obtained by solving the fixed-point
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equation in Eqn (1), is the optimal solution for its hidden optimization problem defined in Eqn (2).

z̃∗ = W̃⊤σ(W̃z̃∗ +Ux+ b), ŷ = W̃cz̃
∗ + bc, (1)

min
z̃

G(z̃;x) = min
z̃

[
1⊤f(W̃−1⊤z̃)−

〈
Ux+ b,W̃−1⊤z̃

〉
+

1

2
∥W̃−1⊤z̃∥22 −

1

2
∥z̃∥22

]
, (2)

where σ is the ReLU activation function, U,W̃,b,W̃c,bc are learnable parameters. They are trained
by optimizing loss functions, such as cross-entropy loss, which are calculated based on the final
prediction ŷ derived from z̃∗ as shown in Eqn (1). W̃−1 represents an invertible or pseudo-invertible
matrix for W̃, and the function f is a positive indicator function, which outputs 1 when x ≥ 0 and
outputs ∞ in other cases. By choosing this function, the first-order condition for Eqn 2 will contain a
non-linear ReLU function, which is the activation function in our GEQ. The equivalence between z∗

and the optimal solution for the hidden optimization problem (2) enables researchers to not only gain
insights into OptEqs’ behavior by understanding the underlying hidden optimization problem but
also innovate by designing new models based on different problem formulations tailored to specific
tasks. For instance, OptEqs introduces a module that promotes output sparsity, and Multi-branch
OptEqs (MOptEqs) incorporates fusion modules to enhance the diversity among its branches. Despite
these advancements and the incorporation of various modules inspired by different vision tasks, the
performance of OptEqs and related models still falls short when compared to deep neural networks in
image classification. This discrepancy suggests the existence of crucial components that limit the
performance of equilibrium models.

To identify such a component, we delve into the hidden optimization problem of OptEqs and observe
that it can be decomposed into two distinct parts: the regularizer term for the output features and
the feature extraction term. While the feature extraction term is crucial as it depends on the input
and determines the patterns extracted from the input features, the exploration of the regularizer term
has been largely overlooked, with linear kernel functions being the predominant choice for feature
extraction. Thereby, we believe that the limitations of previous equilibrium models stem from their
feature extraction parts, as linear kernels struggle to capture complex features effectively. Building
upon these insights, we take a step forward by leveraging the widely adopted Gaussian kernel for
feature extraction in the hidden optimization problem.

Then by calculating the stationary condition for the above new hidden optimization problem, we
propose our new type of OptEqs, the Gaussian kernels inspired equilibrium models (GEQ). The model
involves a new attentive module induced by its hidden optimization problem and enjoys much better
performances on classification tasks even compared with deep models. Furthermore, we also prove
that the new model’s outputs are equivalent to the outputs for OptEqs with weight-tied “infinite wide”
mappings. Therefore, an interesting finding is that our model can be regarded as a “double-infinite”
model because the original OptEqs can be regarded as a weight-tied “infinite deep” model. Apart
from the above findings, the utilization of Gaussian kernels also makes our proposed model enjoy
better generalization abilities. Besides the generalization abilities, we also analyze the stability of our
GEQ and find its stability is better on various inputs. We summarize our contributions as follows:

• We first reformulate the OptEqs’ hidden optimization problem with Gaussian kernels and
propose a new equilibrium model called GEQ. It contains a new attention module induced
by its hidden optimization problem and performs better on real-world datasets.

• We find that our GEQ can be regarded as a weight-tied neural network with both infinite
width and depth, and better generalization ability through our analysis. Empirical results
also confirm the superiority of our GEQ.

• We theoretically demonstrate the advantages of the stability of our GEQ compared with
former OptEqs on various inputs. We also conduct experiments to validate such advantages.

2 Related Works

2.1 Implicit Models

Most modern deep learning approaches provide explicit computation graphs for forward propagations
and we call these models “explicit models”. Contrary to these models, recent researchers proposed
some neural architecture with dynamic computation graphs and we call them “implicit models”. A
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notable example of an implicit model is Neural ODEs [7], its architecture is encoded as a differential
system and the implicit ODE solvers they used are equivalent to continuous ResNets that take
infinitesimal steps. By representing the entire structure using differential systems, implicit models tap
into the black box of traditional neural networks while offering increased flexibility and interpretability.
Because of the flexibility and the interpretability of implicit models, the design of implicit models
[15, 17] draws much attention these days. Many kinds of implicit models have been proposed,
including optimization layers [11, 1], differentiable physics engines [40, 9], logical structure learning
[50], differential programming [53, 43], and others [25, 49].

Among the various implicit models, OptEqs [52] and its multi-branch version MOptEqs [28] stand out
as they not only exhibit superior performance compared to other implicit models but also explicitly
establish the relationship between their structure and a well-defined optimization problem. Therefore,
exploring better equilibrium models is a promising direction to achieve more interpretable neural
architectures. However, it is worth noting that while OptEqs and its variants have shown promising
results, their performance is still not entirely satisfactory, particularly when compared to the deep
explicit models. Other works [51, 42] also show the connection between their architectures and
optimization problems, but their performance is also not satisfying. Besides the above general models,
there are many works design equilibrium models from the view of optimization to deal with their
specific tasks, like implicit graph models [6, 26], certified robust models [27] and image denoising
models [5]. However, these models can only work on their specific domains.

2.2 Infinite Wide Models and Kernel Methods in Deep Learning

By employing kernel methods to estimate the outputs of single-layer networks for various samples,
researchers discover that such networks can exhibit characteristics of a Gaussian process (GP) when
their parameters are randomly initialized with a large width limit [35]. Building upon this idea, recent
researchers have extended these findings to neural networks with multiple layers [24, 10] and other
architectures [37, 13]. These studies primarily focus on weakly-trained models, where the network
parameters are randomly initialized and kept fixed throughout the training process except for the last
classification layer [2]. Despite their "weakly-trained" nature, these models still provide valuable
insights applicable to current neural networks. For instance, mean-field theory [4, 16, 19] explains
phenomena such as gradient vanishing and exploding during back-propagation, which are relevant not
only to single-layer networks but also to other structures like convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). Other researchers explore stationary kernels to enhance the
interpretability of neural networks by designing different activation functions [34].

In addition to weakly trained models, recent studies [22, 2] introduce the concept of Neural Tangent
Kernel (NTK) and its variants. These works have demonstrated that the sample kernel of infinitely
wide networks, with appropriate initialization, can converge to a fixed neural tangent kernel when
trained using gradient descent with infinitesimal steps (gradient flow). The NTK model is a theoretical
construct with strict constraints, and its weights are not learned. It is important to note that although
our model can also be seen as an infinitely wide model, there are several key differences between
our approach and the aforementioned models. Firstly, our model utilizes kernel methods to operate
on input features and output features, while the NTK models employ the kernel method on samples.
Secondly, our GEQ model can be viewed as employing a "weight-tied infinite wide" projection that
is parameterized by learnable parameters, allowing for updates during the training process. This
contrasts with NTKs and NTK-DEQ [12](an equilibrium model constructed with vanilla NTK layers),
where the weights are fixed and not learned. Therefore, despite the potential overlap in terminologies
used in our paper and NTK-related works, our GEQ model differs significantly.

3 Gaussian kernel Inspired Equilibrium models

3.1 Formulation and Structure of GEQ

Before starting our analysis, we need to reformulate the original formulations of OptEqs’ equilibrium
equation (1) and hidden optimization problem (2) for convenience. We replace W̃cW̃

⊤ with Wc,
W := W̃⊤, and replace z with W̃−1⊤z̃. Then the original OptEqs’ optimization problem can be
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reformulated as:

min
z

G(z;x) =min
z

[
1⊤f(z) +

1

2
∥z∥22 − ⟨Ux+ b, z⟩ − 1

2
∥Wz∥22

]
. (3)

With the new formulation, we can rewrite the equilibrium equation for OptEqs with input x by
calculating Eqn (3)’s first order stationary condition ∇G = 0 and then reformulate it as follows:

z∗ = σ
(
W⊤Wz∗ +Ux+ b

)
, (4)

where σ is the ReLU activation function, U,W,b are learnable parameters trained by optimizing
loss functions (like cross-entropy loss). From problem Eqn (3), one can see that the GEQ’s outputs
try to extract features by minimizing the similarity term with the input feature Ux+ b through a
linear kernel function with some constraints defined in its regulation terms to prevent the trivial
outputs. Such an explanation can also extend to other DEQs [3, 51] under the symmetric weight
constraints. However, as other traditional machine learning mechanisms show, linear kernel functions
cannot perform well when processing complex inputs. We deem that this term will also restrict the
performance in equilibrium models. We note that the symmetric constraints won’t influence the final
performance much as many works [32, 21] show.

A natural consideration arises as to whether we can utilize alternative kernel functions to extract
input features for the equilibrium state. However, we find that other equilibrium models employing
different kernels with inner products, like the polynomial kernel and sigmoid kernel, lead to a similar
structure to OptEqs with appropriate weight re-parameterization and lead to similar empirical results.
We provide a detailed discussion of the related models in Appendix 4.6. Thereby, we decide to use
the Gaussian kernels, and our new hidden optimization equation is formulated as follows:

min
z

G(z;x) = min
z

[
1⊤f(z) +

1

2
∥z∥22 −

1

2γ
e−γ∥Ux+b−Wz∥2

2

]
, (5)

where γ is the hyperparameter denoting the reciprocal of Gaussian kernels’ variance for scaling.
Calculating ∇G = 0 for new G, we can get the Gaussian kernel inspired Equilibrium models (GEQ)
as the following fixed-point equation:

z∗ = σ
[
e−γ∥Ux+b−Wz∗∥2

2W⊤(−Wz∗ +Ux+ b)
]
. (6)

Compared with linear kernels, Gaussian kernels can easily extract the non-linear relations from
the input features and show more stable and powerful performance in SVM and other machine
learning methods [21, 44]. We also find that the formulation of our GEQ is similar to adding a new
attention module to the original equilibrium models. Therefore, our GEQ is supposed to enjoy more
representative abilities than the original OptEqs. In the following parts of this section, we will analyze
the theoretical advantages of our GEQ against the vanilla OptEqs. And we also empirically evaluate
GEQ’s performance in the following sections.

3.2 GEQ equals to the OptEqs with infinite width

Like other Gaussian-related models, our GEQ model can also be regarded as computing similarities
by mapping them to an infinite-dimensional space. This allows GEQ to extract input features at
the infinite-dimensional level, enabling the capture of non-linear dependencies in the input space.
Essentially, our GEQ can be seen as a specialized version of OptEqs operating within the infinite-
dimensional space after mapping input features x and output embedding z to this expanded domain.
Proposition 1. The output of our GEQ (Eqn (6)) is the same as a special OptEqs’ output whose
hidden optimization problem is defined as follows:

min
z

G(z;x) =min
z

[
1⊤f(z) +

1

2
∥z∥22 − λ

〈
ΦU(x+U−1b),ΦW(z)

〉]
, (7)

where f is the positive indicator function and (1 + ∂f)−1 is the ReLU activation function, λ =

e−γ∥Ux+b∥2
2e−γ∥Wz∥2 , and ΦW(z) = [1,

√
2γΦ

(1)
W (z), ...,

√
(2γ)i/i!Φ

(i)
W(z), ...] ∈ R1×∞ which

maps the inputs to the infinite-dimensional space with Φ
(i)
W : Rn → Rini

defined as follows:

Φ
(i)
W =

 i︷ ︸︸ ︷
(Wx)0(Wx)0...(Wx)0,

i︷ ︸︸ ︷
(Wx)0(Wx)0...(Wx)1, ...,

i︷ ︸︸ ︷
(Wx)j(Wx)k...(Wx)m, ...︸ ︷︷ ︸

ini

 , (8)
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where (Wx)j denotes the j-th element of vector Wx.

Based on the analysis provided above, it becomes evident that the hidden optimization problem
of our GEQ exhibits a similar formulation to a specific OptEqs, whose inputs x and outputs z are
mapped to an infinite-dimensional space using the weight-tied infinite wide mapping ΦW and ΦU.
Given that both GEQ and OptEqs are derived from their respective hidden optimization problems,
the equivalence in these problems implies the existence of the same equilibrium states for both
models. Consequently, our GEQ can be considered an extension of the "infinite-depth" OptEqs to the
"infinite-width" domain. Since wider neural networks are generally expected to perform better on
classification tasks, we can infer that our GEQ outperforms vanilla equilibrium models like OptEqs.
We further support this claim with the theoretical analysis illustrated in the subsequent sections.

3.3 Generalization abilities for our GEQ

Apart from the above empirical intuition, we are going to prove our GEQ’s generalization advan-
tages over OptEqs using the generalization bound under the PAC-Bayesian framework [36]. For
convenience, we use fgeq(x) denotes the equilibrium state z∗ for input x. Then we use the expected
margin loss Lη(f

c
geq) at margin η of our GEQ on the data distribution D for classification, which is

defined as follows,

Lη(f
c
geq) = P(x,y)∼D

[
f c
geq(x)y ≤ η +max

j ̸=y
f c
geq(x)j

]
, (9)

where f c
geq(x) = Wcfgeq(x) + bc stands for GEQ’s final prediction at input x with learnable

parameters Wc and bc, and the index j, y here denote the prediction score for certain class. Then we
can analyze the generalization bound for our GEQ following the former work’s settings [38].

Proposition 2. If input ∥x∥2 is bounded by B, µ := max {∥U∥2, ∥W∥2, ∥Wc∥2, ∥b∥2} < 1, then
we have following results for GEQ and OptEqs with ReLU activation. For ∀δ, η > 0, with probability
at least 1− δ over the training set of size M, we have:

L0(f
c
geq) ≤ L̂η(f

c
geq) +

√
16hln(24h) [βmaxµ4B + (2µβmax + 1)(1− βmaxm)µB + (1− βmaxm)2]

2 BW

η2(1− βmaxm)4M
+

ln(M
√
M

δ )

M
,

L0(f
c
opteq) ≤L̂η(f

c
opteq) +

√
16hln(24h) [µ3B + (1−m)µB + (1−m)2]

2 BW

η2(1−m)4M
+

ln(M
√
M

δ )

M
,

(10)

where L̂η(f
c
geq) denotes the empirical margin loss on the training set, the maximum scaling number is

defined by βmax := max
x∈D

e−γ∥Ux+b−Wz∥2
2 , BW := ∥W⊤W∥2F +∥U∥2F +∥b∥22+∥Wc∥2F +∥bc∥22,

and m = ∥W⊤W∥2 is less than 1 to ensure the convergence of equilibrium models.

Remark 1. If βmax < 0.8 and µ,m > 0.9, we can get βmaxµ
1−βmaxm

< 1
1−m and 2µβmax+1

1−βmaxm
≤ 1

1−m . In
the meanwhile, our GEQ’s generalization bound is tighter than the original OptEq.

In practical experiments, we find that the above conditions for βmax and µ,m are satisfied in most
cases. And the following experiments also support our above theoretical advantages. However, the
above bound is not tight, and how to approximate a much tighter bound for equilibrium models still
needs exploring.

3.4 GEQ enjoys More Stable Performance

Apart from better performance, Gaussian kernel stands out as one of the most extensively employed
kernels in machine learning tasks owing to its stability across various input scenarios. Motivated by
this, we aim to investigate whether incorporating Gaussian kernels into our equilibrium models can
enhance the model’s stability across diverse inputs. Firstly, we are going to estimate output changes
with respect to the input perturbations.

Proposition 3. If norms for the inputs and outputs are bounded by B, the spectral norm for the
weight parameter W,U of equilibrium models with ReLU activation are bounded by µ < 1 to ensure

5



convergence, then we have the conclusions as below:

∥fgeq(x1)− fgeq(x2)∥2 ≤ Lgeq∥x1 − x2∥2 =
βmaxµ

2 +
√
γBµ3

1− βmaxµ2 −√
γBµ3

∥x1 − x2∥2, (11)

∥fopteq(x1)− fopteq(x2)∥2 ≤ Lopteq∥x1 − x2∥2 =
µ

1− µ2
∥x1 − x2∥2, (12)

where x1 and x2 are input samples, fgeq(x·) and fopteq(x·) denotes the equilibrium states for GEQ
and OptEqs given input x·, and βmax := maxx∈D e−γ∥Ux−Wz∥2

2 < 1.
Remark 2. If βmax < 0.8, B < 1, and

√
γ < 0.2, then Lgeq < Lopteq .

In practical experiments, we choose different γ to reach the above condition for βmax and the
condition for input B can also be achieved by normalization layers. Although the above bound is
not tight, we can use it as a rough explanation for our GEQ’s stability, which is demonstrated in the
following experiments. How to approximate a much tighter bound for equilibrium models still needs
exploring.

Besides having stable outputs under perturbations, a stable model should also show large output
differences for different classes to make classification easier. However, the above Lipschitz term can
not constrain outputs’ similarity when samples are far apart, then we need a new metric for analysis.
In line with previous works [18, 34, 10], we assume all weight parameters go to infinite dimensions
and analyze the expected output similarity κ for a model f for inputs x1 and x2 defined below:

κ(x1,x2) = E
[
f(x1)

⊤f(x2)
]
=

∫
R
fu(x1)

⊤fu(x2)p(u)du, (13)

with p(u) is the distribution of weight U’s vectorization. If κ is smaller for samples x1 and x2 when
they belong to different classes, which means they are far away, then the classifier can easily classify
these two samples with different labels. The margin for the classification will also be large and easy
for the classification of difficult samples. The κ’s upper bound for GEQ and OptEqs are listed below:
Proposition 4. If norms for the inputs and outputs are bounded by B, the spectral norm for the
weight parameter W of equilibrium models with ReLU activation are bounded by µ < 1 to ensure
the convergence, and each row in U obeys the spherical Gaussian distributions N (0,E[U2

i ]I). Then
we have the following conclusions for the expectation of the output similarity for GEQ and OptEqs
with respect to input x1,x2 as follows,

κgeq(x1,x2) ≤ κgeq =
µ2De−

γ
4 (σmin(U)2∥x1−x2∥2

2)E[U2
i ]∥x1∥2∥x2∥2 (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2
,

(14)

κopteq(x1,x2) ≤ κopteq =
E[U2

i ]∥x1∥2∥x2∥2 (sin θ0 + (π − θ0) cos θ0)

2π(1− µ2)2
, (15)

where x1 and x2 are input samples, D = eγB∥W∥2
2 , βmax := maxx∈D e−γ∥Ux−Wz∥2

2 , σmin(U) is
U’s minimal singular term, and θ0 = cos−1( ⟨x1,x2⟩

∥x1∥∥x2∥ ) is the angle between the samples.

Remark 3. If ∥x1 − x2∥2 ≥ 2
√
−log(1/D)/σmin(U), then κgeq ≤ κgeq .

Based on the aforementioned analysis, it is evident that our GEQ exhibits a smaller output similarity
for dissimilar samples. As a result, the predictions made by GEQ are primarily based on the most
similar samples, enabling it to successfully classify challenging instances. This claim is further
supported by the results obtained from our carefully designed experiments.

3.5 Patch Splitting in GEQ

Since different parts of images have different impacts on the image classification, calculating the
whole similarity using Gaussian kernels for GEQ is not enough. Inspired by former works [47], we
also split the feature map Ux into patches, and then our optimization problem becomes:

min
z

G(z;x) = min
z

[
1⊤f(z) +

1

2
∥z∥22 −

1

2γ

N∑
i=1

e−γ∥(x̃i−z̃i)Wh∥2
2

]
, (16)
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Figure 1: The sketch map of one layer GEQ’s n-th fixed point iteration. x is the input and z(n−1), z(n)

are the output of (n− 1)-th, n-th iteration, and m̃ is a middle state.

where x̃i ∈ Rcsp
2

is the i-th patch of Ux+ b while z̃i ∈ Rcsp
2

is the i-th patch of Wz and
Wh ∈ Rcsp

2×chid is a linear layer to project patches with different size to the constant dimension. cs
denotes the channel splitting number, p denotes the patch size, and chid denotes the hidden dimension
of patches after projection. We note that the patch-splitting approach is a GEQ’s unique feature,
as incorporating this technique makes no difference in OptEqs due to its linear kernel. Figure 1
provides a sketch for GEQ’s i-th fixed-point iteration. From the figure, it is evident that our GEQ can
be viewed as a special OptEqs with additional attention mechanisms to capture the most important
regions. Thereby, it can achieve enhanced performance. For a more detailed understanding of the
forward procedure in our GEQ, please refer to Appendix A.1.

4 Empirical Results

4.1 Experiment Settings

In our experiments, we employed parallel GEQs with different input scales like MOptEqs and
averaged the output of each branch after average pooling or nearest up-sampling to fuse the branches.
We use weight normalization to ensure the convergence as MOptEqs and MDEQ, and set γ to 0.2/M ,
where M is the minimum ∥x̃· − z̃·Wh∥22 among all patches. For the equilibrium calculation, we
used the Anderson algorithm in the forward procedure, similar to other implicit models [28], and
applied Phantom gradients [14] for back-propagation. All models were trained using SGD with a
step learning rate schedule. We implemented our experiments on the PyTorch platform [39] using
RTX-3090. Further details can be found in the Appendix A.6. To compare the performance of
our GEQ, we used MOptEqs and MDEQ as benchmark implicit models, which have demonstrated
superior performance over OptEqs on image classification tasks. Additionally, we used ResNet-18
and ResNet-50 as benchmark explicit models for comparison.

4.2 Results for Image Classification

Firstly, we finish the experiments on CIFAR-10 and CIFAR-100. They are widely used datasets
for image classification on small images. In the experiment, we parallel 6 branches GEQ with the
input scale is 32, 16, 8, 8, 4, 4 and MOptEqs’ architecture setting is also the same. The details can be
found in the Appendix. As for the comparison, we also conduct experiments of the same training
procedure for MDEQ, MOptEqs, and ResNet. The results are listed in Table 1. From the results, one
can see that our GEQ enjoys clear advantages on CIFAR datasets, which demonstrates the powerful
generalization ability of other models.

Besides small datasets, we also conducted experiments on large-scale image datasets, as presented in
Table 2. The results clearly demonstrate the consistent superiority of our GEQ over other models,
highlighting its clear advantages. Particularly noteworthy is our GEQ achieves a 2% improvement on
ImageNet-100 against deep model ResNet-50 while consuming approximately half the number of
parameters, which emphasizes the effectiveness and efficiency of GEQ on large-scale inputs.
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Model Size Accuracy
ResNet-18 10M 93.5± 0.2%
ResNet-50 23M 95.2± 0.2

MDEQ 10M 94.2± 0.3%
MOptEqs 8M 94.6± 0.2%

GEQ 5M 94.8± 0.1%
GEQ 8M 95.6± 0.2%

(a) CIFAR-10.

Model Size Accuracy
ResNet-18 10M 74.5± 0.2%
ResNet-50 23M 77.9± 0.1%

MDEQ 10M 74.7± 0.3%
MOptEqs 8M 75.6± 0.2%

GEQ 5M 76.4± 0.3%
GEQ 8M 78.2± 0.2%

(b) CIFAR-100.

Table 1: The Empirical results for image classification on CIFAR-10 and CIFAR-100.

Model Size Accuracy
ResNet-18 11M 92.3± 0.1%
ResNet-50 23M 93.0± 0.2%

MDEQ 10M 91.5± 0.2%
MOptEqs 10M 92.4± 0.2%

GEQ 6M 92.9± 0.2%
GEQ 13M 93.2± 0.1%

(a) ImageNette.

Model Size Accuracy
ResNet-18 11M 80.9± 0.3%
ResNet-50 23M 81.7± 0.2%

MDEQ 10M 81.3± 0, 2%
MOptEqs 13M 81.5± 0.4%

GEQ 6M 82.2± 0.2%
GEQ 13M 83.9± 0.3%

(b) ImageNet-100.

Table 2: The Empirical results for image classification on ImageNette and ImageNet-100.

4.3 Validations on the models’ stability

Evaluation on Unseen difficult samples. In order to assess the stability of our GEQ model on
difficult examples, we conducted experiments using CIFAR-100 super-class classification. CIFAR-
100 consists of 20 super classes, each containing five sub-classes 2. We trained our GEQ and MOptEqs
models to predict the super-classes using the first four sub-classes from each super-class for training.
We evaluated the models using both the test set, which includes the first four sub-classes from each
super-class (referred to as "Known Accuracy"), and a separate set of samples from unseen sub-classes
(referred to as "Unknown Accuracy"). The classification of the unseen samples is more difficult as
they are different from the training set. The results of our GEQ and MOptEqs models are presented
in Table 3.

Known Accuracy Unknown Accuracy
MOptEqs 80.1± 0.3% 77.4± 0.5%

GEQ 80.9± 0.2% 80.1± 0.6%

Table 3: Empirical rsults on CIFAR-100’s super-class classification.

The above table clearly demonstrates that our GEQ model surpasses MOptEqs in achieving superior
performance on the challenging task at hand and demonstrates GEQ’s stability. Such advantages
can be attributed to the fact that GEQ exhibits smaller output similarities compared to OptEqs when
input samples are far apart (e.g., samples from different classes). This characteristic can lead to
larger margins between different classes, enabling the classifier to be more easily optimized during
training. Consequently, our GEQ model excels in accurately classifying difficult unseen samples,
further highlighting its stability and superiority over former equilibrium models.

Ablation Studies on corrupted datasets. Apart from difficult samples, we are going to compare the
robustness of our GEQ, MOptEqs, and ResNet on the CIFAR-10 corruption dataset, which contains
19 common corruptions including image transformation, image blurring, weather, and digital noises
on CIFAR’s test datasets. Average results on 5 degrees CIFAR-10 corruption datasets list in Figure 2.

From the result, one can see that our GEQ based on Gaussian kernels is more robust than MOptEqs
and ResNet. In particular, our GEQ can show better performance against structured noise and some
image transformation. The above results also demonstrate the stability of our GEQ structure.

2For example, super class “people” contains five sub classes:“baby”,“girl”,“man”,“man”,“woman”
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Figure 2: The results for different models under different corruptions.

4.4 Ablation Studies on Saliency Map

The saliency maps generated by GradCAM [45] offer valuable insights into the visual attention of
both MOptEqs and GEQ models. These maps highlight the regions of the image that are crucial for
the model’s predictions. Figure 3 presents the saliency maps obtained for an image from the ImageNet
dataset using both models. Upon observation, it becomes evident that GEQ exhibits a higher degree
of focus on the significant regions directly associated with the predicted label "manta". In contrast,
MOptEqs tends to allocate attention to unrelated regions such as the shells. This discrepancy indicates
that the attention-like module induced by the Gaussian kernel in GEQ enhances the concentration of
the model’s attention, resulting in improved performance compared to MOptEqs.

(a) Original Image. (b) MOptEqs’s saliency map. (c) GEQ’s saliency map.

Figure 3: Saliency map for GEQ and MOptEqs on the ImageNet image.

4.5 Ablation Studies on Patch splitting

The performance of our GEQ model is influenced by the channel splitting parameter and the patch size.
Choosing large values for these parameters causes the kernel to focus mainly on global information
while selecting small values makes the kernel concentrate on local features. To understand the impact
of these choices on model performance, we conducted experiments, the results of which are presented
in Figure 4. This figure illustrates the relationship between the channel splitting parameter, patch size,
and the model’s performance. By analyzing these results, we gain insights into the optimal values for
these parameters that yield the best performance for our GEQ model.

The accuracy trend depicted in the figure shows an initial increase followed by a decrease as the
channel split and patch size increased. Based on these empirical results, we select a patch size of 2
and a channel split of 8 for both the CIFAR and ImageNet experiments. These parameter choices are
made to optimize the performance of our models on the respective datasets.

4.6 Comparison with other kernel functions

Firstly, we introduce different commonly used kernels, such as polynomial, sigmoid, and Gaussian
kernels, to reformulate the hidden optimization problem for equilibrium models. Table 4 illustrates
the equilibrium models induced by these kernels. It can be observed that equilibrium models with
polynomial and sigmoid kernels also incorporate new attentive modules. However, their attentive
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Figure 4: The influence on the patch size and the channel splitting parameter for our GEQ on
CIFAR-100 datasets.

kernels only constrain the input features Ux+ b and do not directly affect the activation of the
output z∗. As a result, their performance may be inferior to our GEQ model. To validate these
claims, we evaluate the performance of different models on the CIFAR-100 dataset. Since the fusion
module is the primary difference between MOptEqs and OptEqs, we can easily modify the structure
of MOptEqs to include different kernel-induced attentive modules using the equations in Table 4,
resulting in MOptEqs (Polynomial) and MOptEqs (Sigmoid). The results are presented in Table 5,
which clearly demonstrates the superior performance of our GEQ model. For a more in-depth analysis
of GEQ, we refer readers to the main paper.

Kernel Hidden Optimization Problem Equilibrium Model
Linear minz

[
1⊤f(z) + 1

2∥z∥
2
2 − ⟨Ux+ b, z⟩ − 1

2∥Wz∥22
]

z∗ = σ
(
W⊤Wz∗ +Ux+ b

)
Polynomial minz

[
1⊤f(z) + 1

2∥z∥
2
2 − (⟨Ux+ b, z⟩)d − 1

2∥Wz∥22
]

z∗ = σ
(
W⊤Wz∗ + d (⟨Ux+ b, z⟩)d−1

(Ux+ b)
)

Sigmoid minz
[
1⊤f(z) + 1

2∥z∥
2
2 − tanh (⟨Ux+ b, z⟩)− 1

2∥Wz∥22
]

z∗ = σ
(
W⊤Wz∗ +

(
1− tanh2 (⟨Ux+ b, z⟩)

)
(Ux+ b)

)
Gaussian minz

[
1⊤f(z) + 1

2∥z∥
2
2 − 1

2γ e
−γ∥Ux+b−Wz∥2

2

]
z∗ = σ

[
e−γ∥Ux+b−Wz∗∥2

2W⊤(−Wz∗ +Ux+ b)
]

Table 4: The hidden optimization problems and their related equilibrium models. d > 1 is an integer
denoting the polynomial order.

Model Size Accuracy
MOptEqs 8M 75.6± 0.2%

MOptEqs (Polynomial) 8M 75.1± 0.4%
MOptEqs (Sigmoid) 8M 76.1± 0.3%

GEQ 8M 78.2± 0.2%
Table 5: Comparison of equilibrium models with different kernel functions on CIFAR-100.

5 Conclusions

In this paper, we introduce a novel optimization-induced equilibrium model called GEQ, which
utilizes Gaussian kernels in its optimization-induced framework. Our model incorporates a new
attentive module that arises from its novel hidden optimization problem formulation. Notably, GEQ
exhibits significantly improved performance in classification tasks, outperforming deep models as
well. Moreover, GEQ can be interpreted as a weight-tied model with infinite width and depth,
highlighting its expressive power. We also provide theoretical analysis demonstrating the superiority
of our models in terms of generalization ability and stability compared to previous OptEqs. Empirical
results further validate the effectiveness of our proposed approach.
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A Appendix

A.1 Forward Procedure for GEQ

The pseudo-code for our GEQ is listed in Algorithm 1.

Algorithm 1: Calculating one layer GEQ.

Require: initial state z(0), weight parameter W, Ux ∈ Rchw, channel split cs, patch size p, hidden layer
Wh ∈ Rcsp

2×32

Ensure: Get the output z∗ of i-th fixed point iteration.
def g(z(i);x,U,W,b):

Rearrage Wz(i) → z̃, Ux+ b → x̃ ∈ R
chw
csp2

×(csp
2)

m̃ = diag
(
e−γ∥(x̃·−z̃·)Wh∥22

)
(x̃− z̃)WhW

⊤
h

Rearrage m̃ → m ∈ Rc×h×w

return z(i+1) = σ
(
W⊤m

)
with torch.no_grad():

Use anderson algorithm to solve z∗ = g(z∗;x,U,W,b)
# calculate gradient via phantom gradient:
for i in range(5) do

z∗ = 0.2× z∗ + 0.8× g(z∗;x,U,W,b).
end for
return z∗

A.2 Proofs for proposition 1

Proposition 1. The outputs of GEQ with Gaussian kernels (Eqn (6)) is the same as Optimized
induced Equilibrium Models’ output whose output is the optimal solution of the hidden optimization
problems:

min
z

G(z;x) =1⊤f(z) +
1

2
∥z∥2 − λ

〈
ΦU(x+U−1b),ΦW(z)

〉
(17)

where ΦW(z) =

[
1,

√
2γΦ

(1)
W (z), ...,

√
(2γ)i

i Φ
(i)
W(z), ...

]
∈ R1×∞ which projects the features to

the infinite-dimensional space. And Φ
(i)
W : Rn → Rini

is the k-tuple permutation with repetitions
formulated as follows:

Φ
(i)
W =

 i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)1,

i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)2, ...,

i︷ ︸︸ ︷
(Wx)j(Wx)k...(Wx)m, ...︸ ︷︷ ︸

ini

 (18)

where (Wx)j denotes the j-th element of vector Wx. Then the Gaussian kernel can also be regarded
as calculating the input features after the weight-tied infinite wide projection ΦW and ΦU.

Proof. We can formulate the OptEqs’ hidden optimization problem with Gaussian kernels as below:

min
z

G(z;x) =1⊤f(z) +
1

2
∥z∥2 − 1

2γ
e−γ∥Ux+b−Wz∥2

2 , (19)

For e−γ∥(Ux+b−Wz)∥2
2 , we have

e−γ∥Ux+b−Wz∥2
2 = e−γ∥Ux+b∥2

2−γ∥Wz∥2
2+2γ⟨Ux+b,Wz⟩,

= e−γ∥Ux+b∥2
2−γ∥Wz∥2e2γ⟨Ux+b,Wz⟩,

(20)

letting λ = e−γ∥Ux+b∥2
2e−γ∥Wz∥2 and we do the Taylor expansion for e⟨Ux+b,Wz⟩, we have:

e−γ∥Ux+b−Wz∥2
2 = λ

∞∑
i=0

(
⟨
√
2γ(Ux+ b),

√
2γ(Wz)⟩

)i
i!

. (21)
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For any i we have from the permutation theory:(
⟨
√
2γ(Ux+ b),

√
2γ(Wz)⟩

)i
i!

= λ
〈
Φ

(i)
U (x+U−1b),Φ

(i)
W(z)

〉
, (22)

where Φ
(i)
W(x) is the i-tuple permutation with the repetition for given (Wx)1, (Wx)2, ..., (Wx)n.

Each element of Φ(i)
W(x) is one possible permutation. Since there are ni tuples, then Φ

(i)
W can project

the input features to ini space as follows,

Φ
(i)
W =

 i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)1,

i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)2, ...,

i︷ ︸︸ ︷
(Wx)j(Wx)k...(Wx)m, ...︸ ︷︷ ︸

ini

 . (23)

Thereby, the hidden optimization problem for our GEQ can be reformulated as,

min
z

G(z;x) =1⊤f(z) +
1

2
∥z∥2 − λ

〈
ΦU(x+U−1b),ΦW(z)

〉
(24)

Then our conclusion is proved.

A.3 Proofs for proposition 2

Proposition 2. If input ∥x∥2 is bounded by B, µ := max {∥U∥2, ∥W∥2, ∥Wc∥2, ∥b∥2} < 1, then
we have following results for GEQ and OptEqs with ReLU activations. For ∀δ, η > 0, with probability
at least 1− δ over the training set of size M, we have:

L0(f
c
geq) ≤ L̂η(f

c
geq) +

√
16hln(24h) [βmaxµ4B + (2µβmax + 1)(1− βmaxm)µB + (1− βmaxm)2]

2 BW

η2(1− βmaxm)4M
+

ln(M
√
M

δ )

M
,

L0(f
c
opteq) ≤L̂η(f

c
opteq) +

√
16hln(24h) [µ3B + (1−m)µB + (1−m)2]

2 BW

η2(1−m)4M
+

ln(M
√
M

δ )

M
,

(25)

where L̂η(f
c
geq) denotes the empirical margin loss on the training set, the maximum scaling number is

defined by βmax := max
x∈D

e−γ∥Ux+b−Wz∥2
2 , BW := ∥W⊤W∥2F +∥U∥2F +∥b∥22+∥Wc∥2F +∥bc∥22,

and m = ∥W⊤W∥2 is less than 1 to ensure the convergence of equilibrium models.

Before the proof our results, we need to introduce a lemma in former work [38] for the perturbation
bound for GEQs and reformulated OptEqs as follows.

Lemma 1. Let ∥W∥2 ≤ m and ∥W∥2 ≤ m. Then change in the output of the DEqs z =
σ(Wz+Ux+ b) on perturbation the weights and biases from W,U,b to W,U,b is bounded as
follows: ∥∥f(Wz+Ux+ b) − f(Wz+Ux+ b)∥2 ≤∥∥W −W

∥∥
2
∥Ux+ b∥2 +

∥∥(U−U)x
∥∥
2
+ ∥b− b∥2

(1−m)2

(26)

Like former works [38], we we also introduce another lemma [36] here:
Lemma 2. Let fw be any predictor with parameters w, and let P denote any distribution on the
parameters that are independent of the training data. Then, for any δ, γ > 0, with probability
≥ 1 − δ over the training data of size M , for any w, and any random perturbation u such that
P
[
maxx ∥fw+u(x)− fw(x)∥∞ < η

4

]
≥ 1

2 , we have

L0(fw) ≤ L̂ηfw + 4

√
KL(w + u||P ) + ln 6M

δ

M − 1
(27)

Then we can derive the perturbation bound for the reformulated OptEqs and our GEQ following
former settings [38]. First, we also incorporate a fully connected layer at the end as we mentioned in
the paper.

f c
geq(x) = Wcfgeq(x) + bc, f

c
opteq(x) = Wcfopteq(x) + bc. (28)
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Since the entries in the perturbations obeying the distribution os N (0, σ2), we have that all the
perturbations of weights ∥∆·∥ are bounded by σ

√
2hln(24h) : ω with probability larger than 1/2.

Since the only difference between OptEqs and monDEQ [51] is the weight parameterization, our
reformulate OptEqs is parameterized by Ws = W⊤W while the monDEQ’s weight parameter is
parameterized by a series of weights Wmondeq = I+A+A⊤+B+B⊤. Therefore, the pertubation
in ∥∆Ws

∥ is different from former analysis [38]. We have that:

∥∆Ws∥2 = ∥∆⊤
WW +W∆⊤

W∥2 ≤ 2ωµ (29)

Then using the above lemma, we have that for all x with probability at least 1/2.

∥f c

opteq(x)− f c
opteq(x)∥2 ≤ ∥Wcfopteq(x) + bc −Wcf

c
opteq(x)− b∥2

≤ 2µ2ω(B + 1)

(1−m)2
+

2µω(B + 1)

1−m
+ ω

(30)

Setting σ = η(1−m2)

4
√

2hln(24h)(2µ3(B+1)+2(1−m)µ+(1−m)2)
will make the above perturbation less than η

4 .

Then we have,

KL(W· +∆W· |P ) ≤ BW

2σ2
=

16hln(24h)(2µ3(B + 1) + 2(1−m)µ(B + 1) + (1−m)2)2

η2(1−m)4
BW

(31)
With the same choice of β’s bound like former work [38],

η(1−m)

2(B + 1)
≤ β ≤ η(1−m)

√
M

2(B + 1)
, (32)

we can finally get the upper bound as our OptEqs bound as our proposition shows.

The difference between GEQ and OptEqs is that GEQ’s can be viewed as multiplying scaler β =

e−γ∥Ux+b−Wz∥2
2 with depend on x since z is also depended on x. Setting βmax = maxx∈D β(x) <

1 and βmin = minx∈D β(x) > c. Assuming β changes a little with respect to the small perturbations
on weights, we have:

z∗(W,U,b) = σ(−βWsz
(i) + βW(Ux+ b))

∥z∗(W,U,b)∥2 ≤ βmaxµ∥Ws −Ws∥2∥Ux+ b∥2
(1− βmaxm)2

+
βmax(∥(WU−WU)x∥2 + ∥Wb−Wb∥2)

1− βmaxm
(33)

With the same setting as above OptEqs, we have:

∥(WU−WU)x∥2 = ∥∆WU−W∆Ux∥2 ≤ 2ωµ∥(Wb−Wb)x∥2 = ∥∆Wb−W∆bx∥2 ≤ 2ωµ
(34)

Then we can obtain that:
∥f c

geq(x)− f c
kereq(x)∥2 ≤ ∥Wcfopteq(x) + bc −Wcf

c
opteq(x)− b∥2

≤ 2βmaxµ
3ω(B + 1)

(1− βmaxm)2
+

2µ2ωβmax(B + 1)

1− βmaxm
+

µω(B + 1)

1− βmaxm
+ ω

=
(βmaxµ) ∗ (2µ2ω(B + 1))

(1− βmaxm)2
+

(2µβmax + 1) ∗ (µω(B + 1))

1− βmaxm
+ ω

(35)
With the same setting as above, we have:

KL(W· +∆W· |P ) ≤ BW

2σ2

= TBW ,
(36)

where T is defined as follows:

T =
16hln(24h)(2(βmaxµ)µ

3(B + 1) + 2(2µβmax + 1)(1− βmaxm)µ(B + 1) + (1− βmaxm)2)2

η2(1− βmaxm)4

(37)
then we can finally we can get the upper bound as our OptEqs bound as our proposition shows.
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A.4 Proofs for proposition 3

Lipschitz constant is the minimal constant for f and ∀x,y suits the following equation:
∥f(x)− f(y)∥2 ≤ L∥x− y∥2. (38)

Thereby, our analysis in Proposition 3 can be viewed as proposing an upper bound for different
models. In this section, we are going to prove the Lipschitz upper bounds for our GEQ and OptEqs.
First, we restate the proposition as follows:
Proposition 3. If norms for the inputs and outputs are bounded by B, the spectral norm for the
weight parameter W,U of equilibrium models with ReLU activation are bounded by µ < 1 to ensure
convergence, then we have the conclusions as below:

∥fgeq(x1)− fgeq(x2)∥2 ≤ Lgeq∥x1 − x2∥2 =
βmaxµ

2 +
√
γBµ3

1− βmaxµ2 −√
γBµ3

∥x1 − x2∥2, (39)

∥fopteq(x1)− fopteq(x2)∥2 ≤ Lopteq∥x1 − x2∥2 =
µ

1− µ2
∥x1 − x2∥2, (40)

where x1 and x2 are input samples, fgeq(x·) and fopteq(x·) denotes the equilibrium states for GEQ
and OptEqs given input x·, and βmax := maxx∈D e−γ∥Ux−Wz∥2

2 < 1.

Proof. We first prove the inequality for OptEqs:

∥fopteq(x1)− fopteq(x2)∥2 = ∥zx1
− zx2

∥2 ≤
∥∥σ (

W⊤Wzx1
+Ux1

)
− σ

(
W⊤Wzx2

+Ux2

)∥∥
2

≤
∥∥W⊤W(zx1 − zx2)

∥∥
2
+ ∥U(x1 − x2)∥2

≤ µ2∥zx1 − zx2∥2 + µ∥x1 − x2∥2,
(41)

where zx1
denotes the equilibrium states for OptEq with input x1, which means the following

equation is satisfied:
zx1 = σ

(
W⊤Wzx1 +Ux1

)
. (42)

Reformulating the equations, we can get:

∥fopteq(x1)− fopteq(x2)∥2 ≤ µ

1− µ2
∥x1 − x2∥2. (43)

Then for GEQ, we have:

∥zx1
− zx2

∥2 ≤
∥∥∥σ (

e−γ∥Wzx1−Ux1∥2

2

(
−W⊤Wzx1

+W⊤Ux1

))
−σ

(
e−γ∥Wzx2

−Ux2∥2

2

(
−W⊤Wzx2

+W⊤Ux2

))∥∥∥
2

≤βmax

∥∥W⊤W(zx1 − zx2)
∥∥
2
+
∥∥W⊤U(x1 − x2)

∥∥
2
+Bµ2 |βx1 − βx2 | ,

≤βmaxµ
2 ∥zx1 − zx2∥2 + βmaxµ

2 ∥x1 − x2∥2 +Bµ2 |βx1 − βx2 |

(44)

where zx1
denotes the equilibrium states for GEQ with input x1, and βx1

is defined as follows:

βx1
= e−γ∥Wzx1−Ux∥2

2 . (45)
Then with the mean value theorem, we have the following equations:

|βx1
−βx2

| =
∣∣∣e−γ∥Wzx1

−Ux2∥2

2 − e−γ∥Wzx1
−Ux2∥2

2

∣∣∣
≤ √

γ| ∥Wzx1
−Ux2∥2 − ∥Wzxx

−Ux2∥2 | · max
c∈√

γ[∥Wzx1
−Ux1∥

2
,∥Wzx2

−Ux2∥
2
]
ce−c2

≤ √
γ| ∥Wzx2

−Ux2∥2 − ∥Wzx2
−Ux2∥2 |

≤ √
γ ∥W(zx1

− zx2
)∥2 + ∥U(x1 − x2)∥2

≤ √
γµ (∥zx1 − zx2∥2 + ∥x1 − x2∥2)

(46)
Then reformulating Eqn (44), we can finally obtain our proposition as below:

∥zx1 − zx2∥2 = ∥fgeq(x1)− fgeq(x2)∥2 ≤
βmaxµ

2 +
√
γBµ3

1− βmaxµ2 −√
γBµ3

∥x1 − x2∥2 (47)
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A.5 Proofs for proposition 4

In this section, we are going to prove the output similarity bounds for our GEQ and OptEqs. First, we
restate the proposition as follows:
Proposition 4. If norms for the inputs and outputs are bounded by B, the spectral norm for the
weight parameter W of equilibrium models with ReLU activation are bounded by µ < 1 to ensure
the convergence, and each row in U obeys the spherical Gaussian distributions N (0,E[U2

i ]I). Then
we have the following conclusions for the expectation of the output similarity for GEQ and OptEqs
with respect to input x1,x2 as follows,

κgeq(x1,x2) ≤ κgeq =
µ2De−

γ
4 (σmin(U)2∥x1−x2∥2

2)E[U2
i ]∥x1∥∥x2∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2
,

(48)

κopteq(x1,x2) ≤ κopteq =
E[U2

i ]∥x1∥∥x2∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− µ2)2
, (49)

where x1 and x2 are input samples, D = eγB∥W∥2
2 and βmax := maxx∈D e−γ∥Ux−Wz∥2

2 < 1.
θ0 = cos−1( ⟨x1,x2⟩

∥x1∥∥x2∥ ) is defined as the angle between the samples.

Proof. Before the proof, we first introduce the following lemma:

Lemma 3. [48] If U obeys the spherical Gaussian distributions of variance E[U2
i ] and mean 0, then

the expectation of the Similarity for the one-layer Neural Network σ(Ux) is:

κNN (x1,x2) =
E[U2

i ]∥x1∥∥x2∥
2π

(sin θ0 + (π − θ0) cos θ0) (50)

where θ0 = cos−1( ⟨x,y⟩
∥x∥∥y∥ ).

Letting m := ∥Ws∥2 = ∥W⊤W∥2 < 1 and µ := ∥W∥2 < 1 as our assumptions demonstrate and
neglecting the bias b for convenience. Then for our reformulated OptEqs, we have:

z∗⊤x1
zx2

≤ σ(Wszx1
)⊤zx2

+ σ(Ux1)
⊤zx2

≤ µ2σ(zx1)
⊤zx2 + σ(Ux1)

⊤zx2

(51)

And we have
σ(Ux1)

⊤zx2
≤ σ(Ux1)

⊤σ(Wzx2
) + σ(Ux1)

⊤σ(Ux2)

≤ µ2σ(Ux1)
⊤zx2

+ σ(Ux1)
⊤σ(Ux2)

(52)

Then

σ(Ux1)
⊤zx2

≤ σ(Ux1)
⊤σ(Ux2)

1− µ2

z∗x1
⊤zx2

≤ σ(Ux1)
⊤σ(Ux2)

(1− µ2)2

(53)

Therefore, we can conclude

κopteq(x1,x2) ≤
E[U2

i ]∥x1∥∥x2∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− µ2)2
(54)

For GEQ, we set βx = e−γ∥Ux−Wz∥2
2 and βmax := max

x∈D
e−γ∥Ux−Wz∥2

2 < 1

z∗⊤x1
zx2 ≤ βmaxσ(Wszx1)

⊤zx2 + βx∥W∥2σ(Ux1)
⊤zx2

≤ βmaxµ
2σ(zx1

)⊤zx2
+ βxµσ(Ux1)

⊤zx2

(55)

Like OptEqs, we obtain the following equations for GEQ:

z∗⊤x1
zx2

≤ µ2βx1
βx2

σ(Ux1)
⊤σ(Ux2)

(1− βmaxµ2)2
(56)
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Therefore,

κgeq(x1,y2) ≤
µ2βx1

βx2
E[U2

i ]∥x1∥2∥x2∥2 (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2
(57)

And we have,
βx1

βx2
= e−γ(∥Wzx1−Ux1∥2

2+∥Wzx2−Ux2∥2
2)

≤ e−γ/2(∥W(zx1−zx2 )−U(x1−x2)∥2
2)

≤ De−
γ
4 (σmin(U)2∥x1−x2∥2

2),

(58)

where D = eγ∥W∥2
2B , the latter two inequality is acquired by Jensen’s inequality. Then we have,

κgeq(x1,x2) ≤
µ2De−

γ
4 (σmin(U)2∥x1−x2∥2

2)E[U2
i ]∥x1∥2∥x2∥2 (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2
(59)

A.6 Experiment Settings

A.6.1 Experiments on CIFAR

For our GEQ, we parallel 6 branches with each branch taking the scale of 32, 16, 8, 8, 4, 4 and using
the average fusion method for branches’ fusion. The output channels for 6 branches are all 256
or 320 but the mid-channel number(output channel for weight U and W) for the six branches are
64, 128, 128, 128, 256, 256 or 80, 160, 160, 160, 320, 320 with patch size 2 and c splitting is 8. And
the inner MLP inner Wh output 64 hidden dimension for each patch. We use the SGD [23] optimizer
with momentum and step learning rate schedule for all the models. We also use RandomAug for all
the models for comparison.

A.6.2 Experiments on ImageNette and ImageNet-100

We take the input scale as 256 for all models. For our GEQ, we parallel 6 branches with each
branch taking the scale of 64, 32, 16, 16, 8, 8 after two downsampling convolutions and using the
average fusion method for branches’ fusion. The output channels for 6 branches are all 256 or
384 but the mid-channel number(output channel for weight U and W) for the six branches are
32, 64, 128, 128, 256, 256 or 48, 96, 192, 192, 384, 384 with patch size 2 and c splitting is 8. And the
inner MLP inner Wh output 128 hidden dimension for each patch. We use the SGD optimizer with
momentum and step learning rate schedule for all the models. We also use RandomAug for all the
models for comparison.
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