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Abstract

Informational parsimony provides a useful inductive bias for learning represen-1

tations that achieve better generalization by being robust to noise and spurious2

correlations. We propose information gating as a way to learn parsimonious repre-3

sentations that identify the minimal information required for a task. When gating4

information, we can learn to reveal as little information as possible so that a task5

remains solvable, or hide as little information as possible so that a task becomes6

unsolvable. We gate information using a differentiable parameterization of the7

signal-to-noise ratio, which can be applied to arbitrary values in a network, e.g.,8

erasing pixels at the input layer or activations in some intermediate layer. When9

gating at the input layer, our models learn which visual cues matter for a given10

task. When gating intermediate layers, our models learn which activations are11

needed for subsequent stages of computation. We call our approach InfoGating.12

We apply InfoGating to various objectives such as multi-step forward and inverse13

dynamics models, Q-learning, and behavior cloning, highlighting how InfoGating14

can naturally help in discarding information not relevant for control. Results show15

that learning to identify and use minimal information can improve generalization16

in downstream tasks. Policies based on InfoGating are considerably more robust17

to irrelevant visual features, leading to improved pretraining and finetuning of RL18

models.19
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Figure 1: InfoGating at the input layer predicts a mask conditioned on the original input and then processes the
masked input to compute representations that minimize a downstream loss. The mask is encouraged to remove
as much of the original input as possible without hurting performance on the downstream task. The mask is
applied by taking a convex combination of the input and Gaussian noise, weighted by the mask.

1 Introduction20

Pretraining models on large, diverse datasets and transferring their representations to downstream21

applications is becoming common practice in deep learning. Such representations should capture22

useful information from available data while ignoring irrelevant features and noise [7, 8]. For instance,23

an object recognition model may achieve high accuracy on its training set while strongly relying24

on “spurious” correlations between background features and important objects. When transferred to25

new data with the same objects but a different distribution of backgrounds, performance may suffer.26

Similarly, a policy for vision-based robot control [23, 10] may perform well in its original training27
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environment, but fail catastrophically when transferred to a new setting [28] where all task-relevant28

features are the same but minor background features differ from training.29

A promising principle for encouraging robustness to out-of-distribution observations is informational30

parsimony: learning features that contain minimal information [39] about the input while still31

containing enough information to solve the task(s) of interest. Such regularization is usually based on32

imposing an information bottleneck (IB) [38] on the network that tries to minimize the amount of33

information flowing from the input, through the bottleneck, to the output prediction. Although IB34

approaches have been beneficial in some cases, adding an information bottleneck at the penultimate35

step of computation does little to prevent overfitting in the preceding steps of computation, which36

typically comprise the overwhelming bulk of the model. To that end, we consider restricting the37

information used throughout a computation rather than just restricting the information that comes38

out of a computation.39

In this paper, we propose learning input-conditioned functions that gate the flow of information40

through a model. For example, we can consider what happens when one inserts an IB near the41

beginning of a model’s computation rather than near the end. In this case, we train the information42

gating functions to minimize information flow from the input into the rest of the model while still43

permitting the model to solve the task(s) of interest. We implement this gating using a differentiable44

parameterization of the signal-to-noise ratio. As the noise level goes up, the signal level goes down,45

and hence the model displays reduced dependencies on the input. Gating functions can be learnt46

in conjunction with any downstream loss corresponding to some task of interest. For example,47

the downstream loss could be a standard contrastive loss for self-supervised learning or an inverse48

dynamics loss when learning representations for reinforcement learning (RL). In both cases, we can49

learn gating functions that reveal minimal information used to optimize the loss or learn adversarial50

gating functions that will remove any information that can be used to optimize the loss. We primarily51

focus on InfoGating representations used for learning control policies in RL. A natural focus of the RL52

paradigm is on learning a mapping from observations to actions, thus discarding most information not53

useful for control. We bring forth such a notion of only capturing what the agent can affect through54

InfoGating. Using background distractors and multi-object interactions as a form of noise/irrelevant55

features, we see that InfoGating is able to remove almost all of the irrelevant information from56

the pixels, leading to better out-of-distribution generalization in the presence of noise and better57

in-distribution generalization in the presence of multiple task-irrelevant objects.58

Our main contributions are as follows: 1. A general purpose, practical framework for informational59

parsimony called InfoGating that can restrict information flow throughout a computation to learn60

robust representations. 2. Qualitative analyses on the properties of the gating functions learned with61

InfoGating that show they are semantically meaningful and enhance intrepretability. 3. Quantitative62

analyses of applying InfoGating in the context of various downstream objectives which show clear63

benefits in terms of improved generalization performance.64

2 Related Work65

Information Bottleneck. Much prior work in learning robust representations has stemmed from66

the idea of imposing an information bottleneck (IB) [38, 39]. Imposing an IB involves maximizing67

performance on the downstream task, while removing as much information about the input as possible68

from a network’s internal representations. Typical approaches based on Variational IB [2] achieve this69

by learning stochastic representations that are constrained to be close to a standard Gaussian prior.70

Variants of dropout [36, 19] can have a similar effect (i.e., adding noise to representations used in71

the network) but without explicitly maximizing noise/minimizing information in the representations.72

While IB is typically applied to later stages of a network, InfoGating can be seen as enforcing an IB73

at the input itself, which is less explored in the IB literature. Like Variational IB methods, and unlike74

typical dropout-based methods, InfoGating learns how much noise can be added without hurting75

performance on the downstream task(s). Information Dropout [1] is perhaps the most similar prior76

work to InfoGating. Information Dropout imposes IBs at multiple points in a network’s computation77

and the IBs are implemented using techniques based on variational dropout [19]. A key distinction78

between InfoGating and Information Dropout is that InfoGating works post-hoc. With InfoGating79

a model can consider a computation it has already performed and predict ways in which it could80

produce the same result more parsimoniously.81

Masked Image Modelling. There has been a lot of recent work in self-supervised learning where82

the input is masked and the model is tasked with reconstructing the missing bits [3, 15, 41]. Most of83
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these works operate with a fixed, random masking scheme, instead of learning it directly through the84

downstream loss. The amount of information masked is also fixed a priori whereas we seek to mask85

as much of the input as possible, while still retaining enough information to solve the task. Some86

related ideas include learning adversarial augmentations for producing new views of an input during87

contrastive learning [37], while also learning masks that essentially segment the input space [35].88

Representation Learning in Reinforcement Learning. Prior work on learning representations89

for RL includes temporally contrastive learning [33, 27], one-step inverse models [32], learning90

through next state reconstruction [14], bisimulation metrics [9], and many more. Some of these91

objectives have been shown to be useful in learning robust representations [40], and we see our92

method as complementary to these approaches since InfoGating works with any downstream loss93

function, without needing knowledge of specific values like reward, next state, etc. For instance,94

bisimulation and task-informed abstractions [11] learn to compress the observation space using95

reward information, while recent work on learning Denoised MDPs [42] aims at regularizing next96

state reconstruction using a variational objective. On the other hand, InfoGating remains agnostic to97

choices of downstream objectives.98

3 Background99

This section describes the primary downstream losses we use with InfoGating in this paper, namely100

an InfoNCE based contrastive loss and a multi-step inverse dynamics loss.101

Mutual Information Estimation via InfoNCE. Given x and z as two random variables, their mutual102

information can be defined as the decrease in uncertainty when observing x given z, compared to just103

observing x: I(x, z) = H(x)−H(x | z), where H is the Shannon entropy. InfoNCE [31], based on104

Noise Contrastive Estimation [13], computes a lower bound on I(z1, z2), where z1 and z2 are two105

representations of the input x produced by some encoder f(x). Specifically, the bound is optimized106

by discriminating “positive” and “negative” pairs:107

LInfoNCE = EZ−

[
log

eψ(z
1, z2)

eψ(z1, z2) +
∑

z−∈ Z− eψ(z
1, z−)

]
, (1)

where ψ is a pairwise, scalar-valued function of the representations and Z− is a batch of “negative108

samples”. Typically, self-supervised contrastive learning uses data augmentation such as random109

cropping and color jittering to define two augmented views (z1, z2) of a given input as “positives”110

while views z− of other inputs are treated as “negatives”. The InfoNCE objective then encourages111

the representations of positive views of x to be close (i.e., ψ(z1, z2) is high), while pushing apart the112

negatives (i.e., ψ(z1, z−) is low) [4, 5].113

Multi-Step Inverse Dynamics Models. Multi-step inverse dynamics models [8] predict the action(s)114

that took an agent from some observation xt to some future observation xt+k, attempting to learn a115

useful representation of the observations. This resembles learning goal-conditioned policies through116

relabelling future observations as achieved goals. Although the trivial case of k = 1 (a one-step117

model) does not capture long term dependencies, recent work has shown that multi-step models118

are able to capture more information that may be useful for controlling the agent [22]. Multi-step119

inverse models can be used to learn representations by simply predicting the actions (at, ...,at+k−1)120

conditioned on xt and xt+k. Actions can be predicted using a standard max likelihood objective or121

with a contrastive reconstruction objective which maximizes the InfoNCE-based lower bound on122

I((xt,xt+k), (at, ...,at+k−1)). The learning objective in this case looks as follows:123

L = InfoNCE
(
(zt, zt+k),yt:t+k−1

)
,

where zt and zt+k are representations computed from xt and xt+k, and yt:t+k−1 is a representation124

computed from (at, ...,at+k−1). The negative samples in this case come from randomly sampling125

action sequences of the appropriate length from the agent’s collected experience. In the simplest case,126

the representation yt:t+k−1 may depend only on at.127

4 Information Gating128

We present two approaches to InfoGating that we describe as cooperative and adversarial. Cooper-129

ative InfoGating involves keeping as little information as possible to obtain good performance on130
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the downstream task. Adversarial InfoGating involves removing as little information as possible131

to preclude good performance on the downstream task. We include both approaches in this paper132

since identifying minimal sufficient information (cooperative) and identifying any useful information133

(adversarial) may have different affects depending on the downstream loss and the application domain.134

The InfoGating approach has two major components. The first is an encoder of the input x, f(x). The135

second is an information gating function, ig(x) (see Figure 1). In principle, we can gate information136

passing through any layer in the representation network that computes the encoding z = f(x).137

The ig(x) function provides continuous-valued masks (values in [0, 1]) that describe where to erase138

information from the computation graph for f(x). The shape/size of the output of ig(x) will depend139

on where we want to gate information. For instance, if we wish to gate information in the input140

pixel space, ig(x) masks are the size of the image. In general, the goal of ig(x) is to erase as much141

information from f(x) as possible without hurting task performance.142

4.1 Cooperative InfoGating143

We primarily focus on cooperative InfoGating in this paper and we consider two cooperative variants:144

gating in the input space or in the feature space.145

InfoGating in Input Space. We apply InfoGating to an input x by taking a simple convex combina-146

tion of x and random Gaussian noise ϵ. The combination weights are given by ig(x):147

xig = ig(x)⊙ x+ (1− ig(x))⊙ ϵ, (2)

where xig denotes the info-gated input and ⊙ denotes element-wise multiplication. An all-zero mask148

corresponds to complete noise (i.e., erasing all information from the input), while an all-one mask149

corresponds to keeping the original input. The function ig(x) is learnt using the same downstream150

objective that is used to learn f(x). We encourage masks to remove information from the input by151

minimizing their L1 norm. This tends to produce sparse masks due to properties of the L1 norm [30].152

The overall objective for learning with InfoGating is153

Lig,f = Ltask
(
f(xig)

)
+ λ ||ig(x)||1, (3)

where Ltask refers to any objective through which a useful representation z can be learnt. Note that154

when doing InfoGating, we minimize the downstream loss for the masked input xig (first term),155

instead of the original input x, while masking out as much of the input as possible through the L1156

penalty (second term). The λ coefficient is a hyperparameter that controls how much of the input is157

masked. In principle, any loss function can be used in conjunction with InfoGating and we consider158

multiple downstream objectives: contrastive learning of dynamic, Q-learning, and behavior cloning.159

We describe the overall procedure in Algorithm 1, which assumes contrastive multi-step inverse160

dynamics modeling as the downstream objective.161
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Figure 2: Feature InfoGating. gates rep-
resentations produced by the encoder. The
gating network and the encoder are jointly
trained to minimize the downstream loss,
while the gating network is also encouraged
to mask as much of z as possible.

InfoGating in Feature Space. As an alternative to directly162

gating the input pixels, we can also consider a variant163

where f(x) is masked instead of the input. Consider the164

following masking:165

zig = ig(x)⊙z+(1−ig(x))⊙ϵ, where z = f(x).
(4)

The training objective remains the same as in the pixel-166

level case, i.e., minimize the downstream loss Ltask(z
ig)167

for the masked representation zig , while masking as much168

of z as possible (Figure 2). This version is closely re-169

lated to the deep variational information bottleneck (VIB),170

which minimizes the KL divergence between the (stochas-171

tic) representation z and a prior distribution, typically172

chosen to be a standard Gaussian. Roughly, the values in173

ig(x) can be seen as specifying how many steps of for-174

ward diffusion to run in a Gaussian diffusion process initiated at z, where values near zero correspond175

to running more steps of diffusion and thus sampling from a distribution that is closer to a standard176

Gaussian in terms of KL divergence [18]. Thus, like VIB methods, we aim to minimize I(x, z),177

while maximizing the task performance of z. However, feature space InfoGating uses a different178
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Algorithm 1 InfoGating Pseudocode
1: Input encoder f , masking net ig
2: for (x,xt+k,at) ∈ loader do
3: xt, xt+k = aug(xt), aug(xt+k) # random crop augmentation

4: xig
t , xig

t+k = ig(xt), ig(xt+k) # get infogates

5: xig
t = ig(xt)⊙ xt + (1− ig(xt))⊙ ϵ # infogate current state

6: xig
t+k = ig(xt+k)⊙ xt+k + (1− ig(xt+k))⊙ ϵ # infogate future state

7: zt, zt+k = f(xig
t ), f(xig

t+k) # get encodings

8: if Cooperative then
9: Run Adam update on overall loss:

Lig,f = InfoNCE(zt, zt+k,at) + λ ||ig(xt)||1 + λ ||ig(xt+k)||1
10: else if Adversarial then
11: Run Adam update on masking loss:

Lig = −InfoNCE(zt, zt+k,at)− λ ||ig(xt)||1 − λ ||ig(xt+k)||1
12: Run Adam update on encoder loss:

Lf = InfoNCE(zt, zt+k,at)
13: end if
14: end for

optimization objective and parameterization compared to existing VIB approaches. We leave similar179

variations of InfoGating where arbitrary layers in a computation graph are gated for future work*.180

4.2 Adversarial InfoGating181

The versions of InfoGating discussed above are cooperative objectives, where the gating network182

and the encoder work together to lower the overall loss. This leads to finding representations that183

capture the minimal sufficient information for a given task. We can also turn this formulation on its184

head, yielding an adversarial objective. In this case, the gating network is tasked with discovering185

masks that, when used by the encoder, lead to maximizing its loss. Instead of encouraging the masks186

to erase as much of the input as possible, the adversarial objective encourages the masks to remove as187

little information as possible while minimizing the encoder’s performance on the downstream task.188

We write the adversarial objective for ig(x) and f(x) as:189

Lig = −Ltask
(
f(xig)

)
− λ ||ig(x)||1, Lf = Ltask

(
f(xig)

)
(5)

This gives rise to a min-max objective w.r.t. the encoder and the gating network while cooperative190

InfoGating corresponds to a min-min objective (see lines 11-12 in Algorithm 1).191

5 Experiment Setup192

To understand whether InfoGating can consistently focus on the minimal possible information193

required for control, we test generalization performance when using InfoGating with three different194

downstream control objectives: 1) contrastive dynamics models (both inverse and forward models),195

2) Q-learning (TD-based critic updates), and 3) behavior cloning. We choose these three objectives196

since they remove irrelevant information to varying degrees by default — for example, dynamics197

models can capture a lot of task-irrelevant information, while behavior cloning models are meant to198

only contain information that is useful for predicting the optimal policy. Through our experiments,199

we evaluate whether all three of these objectives can benefit from InfoGating, and to what degree†.200

We test 1) and 2) on the offline visual D4RL domain [25] and 3) on the Kitchen [12] manipulation201

domain. InfoGating can also be used in non-RL settings like self-supervised learning, as discussed202

in Appendix A. We now describe the details of each use of InfoGating and the corresponding203

experimental results. Hyper-parameters are listed in Appendix E.204

*Constructing differentiable upper bounds on compute cost is one possibility, similar to DARTS [24].
†Since the multi-step inverse model produces the best results, we use the same for testing the feature

InfoGating and adversarial InfoGating versions as well.
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Table 1: Multi-step Inverse Dynamics with InfoGating. Comparing performance in the presence of noisy
distractors. We report returns achieved by a policy produced by behavior cloning on top of pretrained repre-
sentations in cheetah-run. Extended results are provided in Appendix C. The “inv” model is our baseline with
pretraining via multi-step inverse dynamics. The “w/ Rand” model adds random info gating during pretraining
and the “w/ IG” model adds learned info gating during pretraining (this is our method). The easy/medium/hard
settings add different levels of distractor noise. Results are for 3 seeds each, with mean and std. dev. reported.

case IQL DRIML Inv Inv w/ Dropout Inv w/ VIB Inv w/ RCAD Inv w/Rand Inv w/ IG

expert
easy 10.7 ± 8.0 0.9 ± 0.1 42.6 ± 36.3 11.79 ± 3.5 97.1 ± 17.9 25.0 ± 3.6 21.0 ± 15.6 176.2 ± 9.1
medium 29.2 ± 28.8 1.0 ± 0.6 29.5 ± 31.9 73.3 ± 12.3 38.9 ± 16.9 19.9 ± 24.8 7.2 ± 6.12 97.0 ± 5.7
hard 8.8 ± 1.9 13.8 ± 7.9 2 ± 0.6 5.9 ± 5.7 34.0 ± 19.4 1.4 ± 0.4 4.2 ± 0.7 44.8 ± 18.4
overall 16.2 5.2 24.7 30.3 56.6 15.4 10.8 106.0

medium
easy 42.6 ± 26.4 2.6 ± 0.2 45.6 ± 23.2 28.0 ± 23.6 113.5 ± 11.8 29.6 ± 24.5 42.0 ± 31.8 133.0 ± 12.8
medium 31.4 ± 24.7 86.6 ± 55.0 2 ± 0.8 39.9 ± 39.4 44.0 ± 22.8 4.0 ± 2.2 85.4 ± 13.2 92.0 ± 35.2
hard 15.2 ± 7.7 3.1 ± 1.5 10.7 ± 6.0 18.8 ± 15.2 6.1 ± 1.8 4.2 ± 1.6 5.3 ± 1.9 3.0 ± 1.43

overall 29.7 30.7 19.4 28.9 54.5 12.6 44.2 76.0
medium-expert

easy 42.4 ± 31.4 12.9 ± 12.7 25.5 ± 45.7 ± 7.4 130.4 ± 32.0 51.8 ± 38.1 10.4 ± 9.9 158.0 ± 21.8
medium 39.6 ± 24.7 22.3 ± 13.6 14.2 ± 11.2 15.6 ± 8.1 52.2 ± 26.0 5.4 ± 3.9 24.8 ± 34.4 89.2 ± 7.0
hard 10.2 ± 4.0 5.2 ± 2.6 3.4 ± 4.8 16.2 ± 14.4 31.2 ± 38.7 9.1 ± 3.4 2.9 ± 1.2 38.8 ± 37.5
overall 30.7 13.4 14.3 25.8 71.2 22.1 12.7 95.3

5.1 Inverse Dynamics Models205

We use multi-step inverse models as our primary downstream loss due to its ability to recover the206

latent state effectively [17, 22]. Consider the contrastive loss based on InfoNCE as described in Eq. 1.207

To apply InfoGating, we mask both the current observation xt and the goal observation xt+k using208

the masks from ig(xt) and ig(xt+k) respectively. We then process both masked observations through209

the encoder to compute the corresponding representations zigt = f(xigt ) and zigt+k = f(xigt+k). These210

are then optimized through a loss similar to Eq. 3:211

L = InfoNCE((zigt , z
ig
t+k),at) + λ

(
||ig(xt)||1 + ||ig(xt+k)||1

)
(6)

Note that both current and future observation masks are penalized through the L1 term. We test the212

inverse model with InfoGating on datasets consisting of offline observation-action pairings. The213

datasets contain pixel-based observations with video distractors playing in the background [25]. We214

first pretrain the representations with the InfoGating objective in Eq. 6 and then perform behavior215

cloning (BC) using a 2-layer MLP over the frozen representations. We have tried replacing BC-216

based evaluation with, e.g., Q-Learning-based evaluation, which leads to similar relative scores.217

We report scores for BC-based evaluation for easier reproducibility and reduced dependence on218

hyperparameters.219

We work with three levels of distractor difficulty: easy, medium, and hard. These levels correspond220

to the amount of noise added to the observations. At evaluation time, a noise-free observation221

space is used, thus creating an out-of-distribution shift in the distractor. We use random cropping222

as a pre-processing step for the observations in all our experiments. We compare inverse dynamics223

with InfoGating to six baselines: control specific methods, i.e. 1) IQL [21], 2) DRIML [27], and224

3) inverse dynamics without InfoGating (the standard formulation from Eq. 1), and regularization225

specific methods that work on top of inverse dynamics by adding 4) Dropout, 5) VIB bottleneck, 6)226

adversarial learning (RCAD) [34] and 6) random masks rather than learnable masks as in InfoGating.227

See Table 1 for results.228

We observe that InfoGating leads to considerable performance gains over all baselines. Although229

adding random masking is better than no masking, learnable masks lead to much better performance.230

Since random masking provides similar benefits to data augmentation, some performance improve-231

ment over the standard inverse model is expected. However, learning masks clearly does more than232

just data augmentation. Moreover, InfoGating in the input space also performs more robustly than233

methods that add regularization in the model weights (Dropout), in an intermediate layer (VIB) or at234

the output (adversarial samples). This result highlights how valuable removing information in the235

input space can be for certain applications (as can be visualized in Figure 1). Finally, these results236
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Figure 3: Visualizing Masks Produced by InfoGating. Masks improve during training on the Kitchen-sdoor-
open-v3 task (left to right corresponds to increasing training steps). InfoGating is able to learn semantically
meaningful masks, even beyond the planar control domains such as the cheetah-run task.

also indicate that minimizing the downstream objective (in this case the inverse model loss is not237

always sufficient for learning robust representations. By incorporating the InfoGating objective, we238

add an inductive bias that encourages the model to focus on the most minimal, useful information239

without additional supervision. This inductive bias towards informational parsimony empirically240

produces more powerful representations.241

5.2 InfoGating for Stabilizing Q-Learning242

Our prior experiments focused on pretraining representations and then learning regression-based243

policies, while keeping the representation fixed. In this section, we ask if the same conclusions hold244

if we train the representation end-to-end with a Q-Learning loss instead. We use the DrQ [20] loss as245

the downstream objective for this variant of InfoGating. Our InfoGating formulation for Q-Learning246

essentially amounts to doing standard DrQ training with observations that are masked by the gating247

network. The gating network learning is driven by the Q-Learning loss directly as follows:248

Lig,θ =
(
Qθ(x

ig
t ,at)− r(xt,at)− γQ′

θ(xt+1,at+1)
)2

+ λ ||ig(xt)||1, (7)

where Qθ and Q′
θ denote the current and target Q networks respectively, while r(xt,at) is the249

obtained reward. In Table 2, we observe that the base DrQ algorithm is quite prone to failure for250

all three distractor settings, while with InfoGating we see significant improvements in performance.251

This result shows how using minimal information in the input space can be beneficial in stabilizing252

TD-based critic training.253

Table 2: InfoGating for Q-Learning. We use DrQ as the base Q-Learning algorithm and add InfoGating to it.
The experimental setup is the same as in Table 1. Results are for an expert policy level.

case easy medium hard overall

DrQ 5.7 ± 2.3 29.8 ± 20.5 3.4 ± 0.8 12.9
DrQ + IG 63.4 ± 22.6 52.0 ± 6.2 5.3 ± 1.9 40.2

5.3 Finetuning General Representations with Behavior Cloning254

Recent work [29, 26] has investigated learning general representations from large datasets involving255

diverse object interactions and different varieties of tasks. A natural question arises when using such256

pretrained representations for downstream tasks — how should the representation be fine-tuned so257

that only the relevant object and task features for the given task are used for learning the task’s policy?258

InfoGating can be seen as a natural way to extract only information pertaining to the downstream259

task. Having tested InfoGating extensively on noisy environments, we now study whether there are260

similar benefits when there is no explicit noise present in the environments, but there are multiple261

objects/pixel components which could act as potential distractors. We choose five different tasks262

from the Kitchen [12] environment to test this hypothesis.263

Specifically, given pretrained features, we test whether fine-tuning them using InfoGating is more264

powerful than fine-tuning with only a behavior cloning (BC) loss. We test two pretraining variations265

here: one corresponding to ImageNet features and the other corresponding to CLIP features. Both266

are 1) trained on ImageNet data, alongside language clippings for CLIP and 2) fine-tuned using a267

behavior cloning (BC) policy with a 2-layer MLP attached on top of the pre-trained encoding. Table 3268

shows normalized success rates (each out of a maximum score of 100) for both BC and BC with269

InfoGating. We consistently see that InfoGating is able to mask out most pixel-level information270

except the robot gripper and the objects being manipulated (see Figure 3 for visualizations of the271

learnt masks), thus leading to strictly better success rates than the baseline BC policy.272
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Table 3: Finetuning with Behavior Cloning on Kitchen-v3. We compare fine-tuning performance of BC with
and without InfoGating. Representations are pre-trained either on ImageNet labels or through CLIP training.
In both cases, InfoGating learns to remove irrelevant objects in the environment surroundings and leads to
consistently higher performance.

ImageNet CLIP

env BC w/ IG BC BC w/ IG BC
knob1-on 17.6 ± 3.1 7.3 ± 4.2 13.3 ± 1.49 11.3 ± 0.94
ldoor-open 9 ± 5.3 5 ± 1.9 11.0 ± 4.8 4.6 ± 1.49
light-on 19.6 ± 7.7 11 ± 3.6 24.0 ± 12.8 11.0 ± 3.0
sdoor-open 61.6 ± 5.0 36.6 ± 16.6 61.6 ± 8.7 42.0 ± 5.9
micro-open 13.0 ± 7.8 4.3 ± 2.9 12.0 ± 5.6 5.5 ± 2.1
overall 24.1 12.8 24.3 14.8

6 Ablations273

We study various design choices involved in InfoGating and include the most important ablations in274

this section. Further ablation results are provided in Appendix D.275

InfoGating in the Feature Space. We compare the feature InfoGating version with the Variational276

Information Bottleneck (VIB), while using the same backbone encoders for both methods (see277

Table 4). Both VIB and feature InfoGating lead to some performance improvement over the base278

architecture, but do not come close to the score for the pixel InfoGating version. This is potentially279

due to not removing background distractor information in the first layer itself. Interestingly, feature280

InfoGating almost matches the pixel InfoGating performance for the hard distractor case. Note that281

there exist variations such as change in body color, camera zoom, etc in the hard distractor case, that282

remain even after pixel-level InfoGating. We suspect that feature InfoGating is able to mask out such283

features but is hurt by the background distractor instead, hence falling to the same performance as the284

pixel-level variant.285

Table 4: InfoGating in the Feature Space. We compare the Variational Information Bottleneck with InfoGating
in feature space. The experimental setup is the same as in Table 1. Results are for an expert policy level.

case easy medium hard overall

VIB 97.7 ± 32.2 86.2 ± 24.8 11.0 ± 5.2 64.9
feat. IG 71.4 ± 44.5 76.7 ± 21.3 58.9 ± 28.3 69.0

Original Observation InfoGated
Observation

Figure 4: Left. Original distractor-based
image. Right. Learnt adversarial mask over
the original image.

Adversarial InfoGating. We test the adversarial InfoGat-286

ing algorithm using a multi-step inverse model loss, just287

as we did for cooperative InfoGating. Figure 4 shows how288

the adversarial masks tend to hide the agent body. Some289

additional image content is also erased, since a precise290

silhouette of the agent’s pose would be highly predictive291

of the agent’s pose. To test how useful this kind of mask-292

ing is, we simultaneously train a separate encoder over293

the reverse of the adversarial masks. If the adversarial294

process hides the robot pose successfully, then the reverse295

mask should contain maximal information about the agent296

and minimal information about the background. We in-297

deed see that the adversarial InfoGating model performs298

similarly to the cooperative version, thus verifying that it299

is an equally viable approach for learning parsimonious300

representations (see Table 5).301

Table 5: Adversarial InfoGating. We compare differences in the representations learnt with Cooperative vs
Adversarial InfoGating. The experimental setup is the same as in Table 1. Results are for an expert policy level.

case easy medium hard overall

cooperative 176.2 ± 9.1 97.0 ± 5.7 44.8 ± 18.4 105.9
adversarial 202.3 ± 2.64 84.8 ± 41.2 4.6 ± 1.7 96.8
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Figure 5: Scaling λ leads to different masks which
reveal different amounts of information. For small λ, the
masked observation still contains distracting/non-salient
information, thus hurting performance. Similarly, when
masking is too aggressive, too much information is lost
and performance goes down.

Effect of Mask Sparsity. We test what range302

of λ values leads to improved performance (Fig-303

ure 5). As is expected, when λ is too high, the304

entire input is masked and no useful information305

is captured. Similarly, when λ is too low, none306

of the input is masked and we recover the per-307

formance of the base model, one that directly308

minimizes the downstream loss.309

Mixing Original and Masked Inputs to En-310

coder. Since the masking network and the en-311

coder process different kinds of input (unmasked312

and masked input, respectively), it is worth ask-313

ing if the encoder can be better regularized by314

forcing it to be able to process both masked and315

unmasked images. We can also encourage the316

encoder to be robust to changes in the input/-317

mask mapping learned by the masking network318

by occasionally swapping masks between images in a batch while training the encoder. We test both319

of these separately (Table 6) and observe that training the encoder on masked and unmasked inputs320

provides strong improvements over the base InfoGating model. This also has the added benefit of321

not using the masking network at evaluation time, and only using the encoder, which has now been322

implicitly trained to be invariant to the masked and unmasked inputs. Note that we use this mixed323

input InfoGating as the default for all our experiments.324

Table 6: Mixing Masking and Unmasked Inputs. Experiment setup follows Table 1. Default InfoGating
version is marked in gray . Results are for an expert policy level.

case easy medium hard overall

w/ mix input 176.2 ± 9.1 97.0 ± 5.7 44.8 ± 18.4 106
shuffle mask 170.0 ± 31.6 54.6 ± 22.3 9.8 ± 10.2 78.1
w/o mix input 119.4 ± 15.6 18.4 ± 17.5 10.5 ± 7.4 49.4

7 Limitations and Future Work325

Although InfoGating helps learn robust representations, it does not recover the same performance for326

all distractor levels as in the case when no distractors are present. Ideally, we should be able to learn327

masks that fully remove the background information and thus recover the distractor-free performance.328

This might be down to two reasons. First, the masks may leave room for noise information to escape329

around the edges of the object/agent they mask. Second, the encoder that processes the masked330

images should be robust to slight variations in the masking patterns between training and evaluation331

samples. In practice, using a UNet for more accurate masks and training the encoder on a mix of332

masked and unmasked inputs helped remedy these issues quite well, but there still remains room for333

improvement. This motivates the idea of efficiently InfoGating at multiple layers, without having334

separate masking networks for each InfoGating layer.335

Furthermore, our initial exploration of InfoGating can be viewed as a step towards learning object-336

centric representations without any explicit notion of objects forced into the model architecture or337

learning objective. For example, in settings where an agent’s actions may affect multiple objects, and338

we want to predict future observations conditioned on the agent’s actions, the masks produced by339

InfoGating will need to reveal some information about (i.e., “look at”) each object. The pursuit of340

informational parsimony should discourage masks from revealing more of each object than necessary.341

8 Conclusion342

We present InfoGating, a wide-ranging method to learn parsimonious representations that are robust to343

irrelevant features and noise. We describe two different approaches to InfoGating: cooperative and ad-344

versarial, while demonstrating that the gating can be learnt both at the input space or any intermediate345

feature space. We apply InfoGating to multiple downstream objectives including multi-step inverse346

dynamics models, Q-Learning, and behavior cloning. InfoGating produces semantically meaningful347

masks that improve interpretability, and leads to consistently better performing representations, in348

terms of both out-of-distribution (visual D4RL distractor noise) and in-distribution (irrelevant Kitchen349

objects) generalization.350
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A InfoGating with SimSiam473

Random masking has been used as an SSL objective to learn useful features for downstream object474

detection/classification. Can InfoGating be used as a general strategy to recover similarly useful475

features? We test this by applying InfoGating with self-supervised representation learning algorithms,476

in particular SimSiam [6].477

The SimSiam [6] objective uses a cosine similarity loss between the representation of one view z1478

and a predicted output of the representation of the second view p = p(z2), where the function p479

is called the predictor. This is in place of using the InfoNCE loss to define contrastive pairs for z1480

and z2. Both methods lead to similar performing representations with the main difference being that481

SimSiam does not require negative examples. The overall SimSiam loss can be written as:482

LSimSiam(z1, z2) = D(p1, z2) / 2 +D(p2, z1) / 2,

where D denotes the cosine similarity function:483

D(p, z) = − p

∥p∥2
· z

∥z∥2
,

Note that D is not a symmetric quantity as it uses a stop gradient operation on its second argument z.484

Having described how SimSiam works, we can now go into how InfoGating is applied alongside it.485

Given two augmented views of the input image x1 and x2, we mask both views to get xig1 and xig2 ,486

then process them through the encoder to compute the SimSiam loss L(zig1 , z
ig
2 ). Finally, we also487

add the original SimSiam loss, i.e. one over the unmasked inputs to the overall objective:488

L = LSimSiam(z
ig
1 , z

ig
2 ) + LSimSiam(z1, z2)

+ λ
(
||ig(x1)||1 + ||ig(x2)||1

) (8)

We test this version of InfoGating on CIFAR-10, while evaluating performance on Corrupted CIFAR-489

10 [16]. Figure 6 shows that InfoGating leads to improved evaluation scores in comparison to the490

base SimSiam method, thus showcasing better robustness to test-time induced corruptions.491
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Figure 6: Generalizing to Corruptions through InfoGating. We directly compare SimSiam performance
w/ and w/o InfoGating on different subsets of the corrupted CIFAR-10 dataset. Adding InfoGating improves
robustness to test-time corruptions.

B Visualizing InfoGating Masks492

Learning info-gates directly from the downstream loss allows for adapting the mask based on the task493

at hand. On the other hand, a fixed random masking scheme offers limited benefits, largely pertaining494

to enhanced data augmentation. For instance, using an InfoNCE loss derived from augmented views495

of the input with no distractors leads to learning accurate masks that capture the agent pose almost496

perfectly (see Figure 7). However, when distractor noise is added, the same InfoNCE loss leads to497

masks that are spread across the input, failing to remove background noise. Switching the loss to a498

multi-step inverse dynamics loss leads to masks that focus on the agent pose and successfully remove499

the background noise. Similarly, using the forward dynamics loss as the downstream objective,500

masks do not clearly follow the agent pose as in the inverse model case. Similarly, when the501
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Figure 7: Effect of Losses on InfoGating Masks. InfoNCE w/o Distractor (mean score: 208.0) learns almost
perfect masks, while InfoNCE w/ Distractor (mean score: 10.4) learns masks that are spread across the input,
thus failing to learn a robust enough representation. Forward dynamics w/ Distractor (mean score: 60.4) and
Inverse dynamics w/ Distractor (mean score: 176.2) lead to much more accurate masks and thus lead to better
performing representations as well.

Figure 8: Visualizing Masks Learnt by InfoGating. STL-10 images alongside the masked image. The
masking network gradually learns to trace the edge boundaries for both foreground and background objects.

downstream objective is a self-supervised loss that focuses on all parts of the input (as opposed to502

only information useful to control an agent), we see that the learnt masks capture the edge boundaries503

of both background and foreground objects (see Figure 8). These different variations highlight504

the importance of choosing the right downstream loss as well as learning InfoGating masks in505

conjunction with the given loss.506

C Extended Results507

Throughout the paper, we use a contrastive variant of the multi-step inverse dynamics loss. This is508

implemented by first encoding the current and future/goal observations (which are info-gated) xigt509

and xigt+k into corresponding encodings zigt and zigt+k. We then concatenate the two encodings along510

with the action to form a single encoding triplet. This is then passed through a 2-layer MLP to output511

logits for the energy value corresponding to the given (zigt , z
ig
t+k,at) triplet. The actions actually512

taken by the agent make up for a ‘positive’ triplet and the model is trained to output a low energy513

value. Similarly, at is replaced by random actions āt to form a ‘negative’ triplet, for which the model514

is trained to output a high energy value.515

We can consider a similar version that uses a forward contrastive loss instead. To that end, we516

simply encode the current action and observation pair (xigt ,at) to z̄igt ) while encoding the future/goal517

observation xigt to a similar size vector zigt+k. We then train these by applying standard InfoNCE518

over the two encodings. The forward model is usually not enough to encode sufficient information519

for control and therefore lacks the guarantees that a multi-step inverse model has. We test this by520

info-gating both the current and future observation pair, just as in the inverse model. Next we process521

both of the masked observations through the encoder, and then concatenate the action at with the zigt522
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representation, before projecting it to the same dimension as the goal representation zigt+k. Finally,523

we penalize the info-gates for both current and goal observations as done previously to obtain the524

following objective:525

L = InfoNCE(z̄igt , z
ig
t+k) + λ

(
||ig(xt)||1 + ||ig(xt+k)||1

)
, (9)

where z̄igt = g(zigt ,at) is a projection function that maps the state and action embedding to a space of526

the same size as zigt . Note that in the InfoNCE loss, the negatives now come from sampling different527

future observation representations from the batch.528

Table 7: InfoGating with Forward Dyanmics Models. Experiment setup follows Table 1. “fwd” is the baseline
forward dynamics model and “fwd + IG” adds InfoGating. For reference, training a forward dynamics model
without distractors has a return of 173.6 ± 13.5.

case easy medium hard overall

fwd 6.0 ± 4.6 7.6 ± 5.9 4.2 ± 1.6 5.9
fwd + IG 60.4 ± 27.9 62.1 ± 29.0 18.9 ± 5.2 47.1

D Extended Ablations529

Sharing Parameters for Masking Network and Encoder. Instead of using two different encoders530

for the masking network and the encoding network, we ask if the same kind of masks can be recovered531

when sharing parameters between the two encoders (see Table 8). In such a case, the network first532

outputs the mask by processing the original image through its encoder, then masks the image, and533

then passes the masked image through its encoder again to generate an embedding vector. Such a534

shared parameter setup by default ensures that the encoder has a chance to see both masked and535

unmasked images, which could help avoid overfitting to the distribution of masks output by the mask536

encoder.537

Table 8: Sharing Masking Network and Encoder Parameters. Experiment setup follows Table 1. Default
InfoGating version is marked in gray .

case easy medium hard overall

unshared 176.2 ± 9.1 97.0 ± 5.7 44.8 ± 18.4 106.0
shared 104.3 ± 22.6 44.2 ± 44.0 22.6 ± 6.3 57.0

We generally observe that the performance of InfoGating suffers when sharing parameters. We538

suspect this result may depend strongly on hyperparameters (e.g. model capacity, noise scale, etc.).539

E Hyperparameter Details540

We use a UNet architecture all throughout this paper for implementing InfoGating on the pixel-level.541

We use a warm-up consisting of 5k gradient steps where the InfoGating network is not trained, while542

the downstream encoder is. This is done so that the learnt masks are not affected by initial gradient543

errors in the downstream loss. Once the warm-up period is over, the loss in Equation 3 is deployed544

as usual. The details for the masking network (which follows a UNet architecture) and the encoder545

are described in Table 9 and Table 10 respectively. Note that these network architectures correspond546

to the visual D4RL locomotion tasks. We add additional layers based on differences in input image547

sizes (84 x 84) for the Kitchen (256 x 256) and CIFAR/STL-10 experiments (32 x 32 / 96 x 96).548
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Table 9: UNet Architecture.

Down Sampling (InfoGating Network)

3 x 3 conv2d 32, stride 1, pad 1, GroupNorm, ReLU
3 x 3 conv2d 32, stride 1, pad 1, GroupNorm, ReLU
3 x 3 conv2d 64, stride 1, pad 1, GroupNorm, ReLU
3 x 3 conv2d 64, stride 1, pad 1, GroupNorm, ReLU
3 x 3 conv2d 64, stride 1, pad 1, GroupNorm, ReLU

MLP

FC 128, ReLU
FC 128, ReLU
FC 1600, ReLU

Up Sampling (InfoGating Decoder)

3 x 3 conv2d 64, stride 1, pad 1, GroupNorm, ReLU
3 x 3 conv2d 64, stride 1, pad 1, GroupNorm, ReLU
3 x 3 conv2d 32, stride 1, pad 1, GroupNorm, ReLU
3 x 3 conv2d 32, stride 1, pad 1, GroupNorm, ReLU
3 x 3 conv2d 32, stride 1, pad 1, GroupNorm, ReLU

Table 10: Encoder Architecture.

6 x 6 conv2d 128, stride 6, pad 0, ReLU
1 x 1 conv2d 128, stride 1, pad 0, ReLU
3 x 3 conv2d 128, stride 1, pad 0, ReLU
4 x 4 conv2d 256, stride 2, pad 0, ReLU
FC 256, LayerNorm, ReLU

Table 11: Visual D4RL Locomotion Training Details.

batch size 128
λ 0.1
IG warm-up 5k steps
cropping padding 4
frame_stack 3
action_repeat 2
buffer_size 100000
learning_rate 1e-4
eval_episodes 10
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Table 12: Kitchen Training Details.

batch size 32
λ schedule(0.1, 3.0, 2k steps)
IG warm-up 1k steps
cropping padding none
frame_stack 1
num_demos 5 trajectories
learning_rate 1e-3
IG learning_rate 1e-4
action_repeat 1
eval_trajectories 50

Table 13: CIFAR/STL-10 Training Details.

batch size 32
momentum 0.9
weight_decay 1e-6
λ 0.06
IG warm-up 100 steps
cropping scale (0.2, 1.0)
learning_rate 0.3
IG learning_rate 0.3
num_epochs 60
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